hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Differentially Private Markov Chain Monte Carlo
Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Esbo, Finland.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland & Department of Public Health, University of Helsinki, Helsinki, Finland.
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Recent developments in differentially private (DP) machine learning and DP Bayesian learning have enabled learning under strong privacy guarantees for the training data subjects. In this paper, we further extend the applicability of DP Bayesian learning by presenting the first general DP Markov chain Monte Carlo (MCMC) algorithm whose privacy-guarantees are not subject to unrealistic assumptions on Markov chain convergence and that is applicable to posterior inference in arbitrary models. Our algorithm is based on a decomposition of the Barker acceptance test that allows evaluating the Renyi DP privacy cost of the accept-reject choice. We further show how to improve the DP guarantee through data subsampling and approximate acceptance tests.

sted, utgiver, år, opplag, sider
2019.
Serie
Advances in Neural Information Processing Systems ; 32
Emneord [en]
Differential Privacy, Bayesian Inference, Markov Chain Monte Carlo
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41239OAI: oai:DiVA.org:hh-41239DiVA, id: diva2:1377690
Konferanse
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, December 8-14, 2019
Forskningsfinansiär
Academy of Finland, 294238, 303815, 313124Tilgjengelig fra: 2019-12-12 Laget: 2019-12-12 Sist oppdatert: 2020-03-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Paper

Person

Dikmen, Onur

Søk i DiVA

Av forfatter/redaktør
Dikmen, Onur
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 106 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf