hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Structured Evaluation of Deep Neural Network Supervisors
Semcon AB, Gothenburg, Sweden.
University of Gothenburg, Chalmers Institute of Technology, Gothenburg, Sweden.
RISE Research Institutes of Sweden AB, Lund and Gothenburg, Sweden.
Machine Learning and AI Center of Excellence, Volvo Cars, Gothenburg, Sweden.
Vise andre og tillknytning
2019 (engelsk)Inngår i: 2019 IEEE International Conference On Artificial Intelligence Testing (AITest), New York: IEEE, 2019, s. 27-34Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Deep Neural Networks (DNN) have improved the quality of several non-safety related products in the past years. However, before DNNs should be deployed to safety-critical applications, their robustness needs to be systematically analyzed. A common challenge for DNNs occurs when input is dissimilar to the training set, which might lead to high confidence predictions despite proper knowledge of the input. Several previous studies have proposed to complement DNNs with a supervisor that detects when inputs are outside the scope of the network. Most of these supervisors, however, are developed and tested for a selected scenario using a specific performance metric. In this work, we emphasize the need to assess and compare the performance of supervisors in a structured way. We present a framework constituted by four datasets organized in six test cases combined with seven evaluation metrics. The test cases provide varying complexity and include data from publicly available sources as well as a novel dataset consisting of images from simulated driving scenarios. The latter we plan to make publicly available. Our framework can be used to support DNN supervisor evaluation, which in turn could be used to motive development, validation, and deployment of DNNs in safety-critical applications. © 2019 IEEE.

sted, utgiver, år, opplag, sider
New York: IEEE, 2019. s. 27-34
Emneord [en]
deep neural networks, robustness, out-of-distribution, supervisor, automotive perception
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41102DOI: 10.1109/AITest.2019.00-12ISI: 000470916100005Scopus ID: 2-s2.0-85067113703ISBN: 978-1-7281-0492-8 (tryckt)OAI: oai:DiVA.org:hh-41102DiVA, id: diva2:1375173
Konferanse
EEE International Conference On Artificial Intelligence Testing (AITest), San Francisco, CA, USA, 4-9 April, 2019
Forskningsfinansiär
VinnovaWallenberg AI, Autonomous Systems and Software Program (WASP)
Merknad

Funding Agency: Fordonsstrategisk forskning och innovation (FFI) Grant Number: 2017-03066

Tilgjengelig fra: 2019-12-04 Laget: 2019-12-04 Sist oppdatert: 2019-12-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Englund, Cristofer

Søk i DiVA

Av forfatter/redaktør
Englund, Cristofer

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 46 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf