hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A lifting method for analyzing distributed synchronization on the unit sphere
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.ORCID-id: 0000-0002-9738-4148
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.
Max-Planck-Institute for Informatics, Saarland Informatics Campus, Germany.
Systems Biomedicine, University of Luxembourg, Luxembourg.
2018 (engelsk)Inngår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 96, s. 253-258Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper introduces a new lifting method for analyzing convergence of continuous-time distributed synchronization/consensus systems on the unit sphere. Points on the d-dimensional unit sphere are lifted to the (d+1)-dimensional Euclidean space. The consensus protocol on the unit sphere is the classical one, where agents move toward weighted averages of their neighbors in their respective tangent planes. Only local and relative state information is used. The directed interaction graph topologies are allowed to switch as a function of time. The dynamics of the lifted variables are governed by a nonlinear consensus protocol for which the weights contain ratios of the norms of state variables. We generalize previous convergence results for hemispheres. For a large class of consensus protocols defined for switching uniformly quasi-strongly connected time-varying graphs, we show that the consensus manifold is uniformly asymptotically stable relative to closed balls contained in a hemisphere. Compared to earlier projection based approaches used in this context such as the gnomonic projection, which is defined for hemispheres only, the lifting method applies globally. With that, the hope is that this method can be useful for future investigations on global convergence.

sted, utgiver, år, opplag, sider
Oxford: Pergamon Press, 2018. Vol. 96, s. 253-258
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-39452DOI: 10.1016/j.automatica.2018.07.007ISI: 000444659500026OAI: oai:DiVA.org:hh-39452DiVA, id: diva2:1317375
Tilgjengelig fra: 2019-05-22 Laget: 2019-05-22 Sist oppdatert: 2019-05-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttps://doi.org/10.1016/j.automatica.2018.07.007

Søk i DiVA

Av forfatter/redaktør
Thunberg, Johan
I samme tidsskrift
Automatica

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 35 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf