hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of injury risk in sports
Högskolan i Halmstad, Akademin för hälsa och välfärd, Centrum för forskning om välfärd, hälsa och idrott (CVHI), Hälsa och idrott.
Umeå University, Umeå, Sweden & University of Gothenburg, Gothenburg, Sweden & University of Otago, Dunedin, New Zealand.
2019 (engelsk)Inngår i: Wiley StatsRef: Statistics Reference Online / [ed] N. Balakrishnan, Theodore Colton, Brian Everitt, Walter Piegorsch, Fabrizio Ruggeri & Jozef L. Teugels, John Wiley & Sons, 2019Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Sport injuries are a major problem associated with sport participation. To develop preventive strategies and programs, it is important to identify factors that will increase the likelihood of sport injuries. In most sport injury risk factor research, statistical analyses are performed; however, many of the most common statistical analyses provide limited information about predictors of sport injury risk. The common analyses used in previous studies do not acknowledge the complexity associated with investigating risk factors for sport injuries. To better capture this complexity, suggested in most theoretical frameworks, more appropriate of statistical approaches should be used. In this article we present how latent profile analysis, latent change score analysis, and latent growth curve analysis can be used to overcome some of the limitations with more traditional analyses. Lastly, we also elaborate on future directions for analyses in sport injury risk factor research. More specifically, we present how advanced statistical models, such as classification and regression trees (CART) analysis and random forest analysis, can be used to provide researchers and clinicians with results that are more clinically meaningful.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2019.
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-38528DOI: 10.1002/9781118445112.stat08141ISBN: 9781118445112 (digital)OAI: oai:DiVA.org:hh-38528DiVA, id: diva2:1269177
Tilgjengelig fra: 2018-12-09 Laget: 2018-12-09 Sist oppdatert: 2019-05-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Ivarsson, AndreasStenling, Andreas

Søk i DiVA

Av forfatter/redaktør
Ivarsson, AndreasStenling, Andreas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf