hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Automated Latent Fingerprint Identification Using Extended Minutia Types
School of Electronic Engineering, Dublin City University, Ireland.
School of Engineering, Universidad Autonoma de Madrid, Spain.
School of Engineering, Universidad Autonoma de Madrid, Spain.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Vise andre og tillknytning
2019 (engelsk)Inngår i: Information Fusion, ISSN 1566-2535, E-ISSN 1872-6305, Vol. 50, s. 9-19Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Latent fingerprints are usually processed with Automated Fingerprint Identification Systems (AFIS) by law enforcement agencies to narrow down possible suspects from a criminal database. AFIS do not commonly use all discriminatory features available in fingerprints but typically use only some types of features automatically extracted by a feature extraction algorithm. In this work, we explore ways to improve rank identification accuracies of AFIS when only a partial latent fingerprint is available. Towards solving this challenge, we propose a method that exploits extended fingerprint features (unusual/rare minutiae) not commonly considered in AFIS. This new method can be combined with any existing minutiae-based matcher. We first compute a similarity score based on least squares between latent and tenprint minutiae points, with rare minutiae features as reference points. Then the similarity score of the reference minutiae-based matcher at hand is modified based on a fitting error from the least square similarity stage. We use a realistic forensic fingerprint casework database in our experiments which contains rare minutiae features obtained from Guardia Civil, the Spanish law enforcement agency. Experiments are conducted using three minutiae-based matchers as a reference, namely: NIST-Bozorth3, VeriFinger-SDK and MCC-SDK. We report significant improvements in the rank identification accuracies when these minutiae matchers are augmented with our proposed algorithm based on rare minutiae features. © 2018 Elsevier B.V.

sted, utgiver, år, opplag, sider
Amsterdam: Elsevier, 2019. Vol. 50, s. 9-19
Emneord [en]
Latent Fingerprints, Forensics, Extended Feature Sets, Rare minutiae features
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-38113DOI: 10.1016/j.inffus.2018.10.001Scopus ID: 2-s2.0-85054739072OAI: oai:DiVA.org:hh-38113DiVA, id: diva2:1254167
Prosjekter
BBfor2
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, FP7-ITN-238803Knowledge Foundation, SIDUS-AIRKnowledge Foundation, CAISR
Merknad

R.K. was supported for the most part of this work by a Marie Curie Fellowship under project BBfor2 from European Commission (FP7-ITN-238803). This work has also been partially supported by Spanish Guardia Civil, and project CogniMetrics (TEC2015-70627-R) from Spanish MINECO/FEDER. The researchers from Halmstad University acknowledge funding from KK-SIDUS-AIR 485 project and the CAISR program in Sweden.

Tilgjengelig fra: 2018-10-08 Laget: 2018-10-08 Sist oppdatert: 2019-04-10bibliografisk kontrollert

Open Access i DiVA

fulltext(4737 kB)74 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4737 kBChecksum SHA-512
0dcc8411edd8016ded59ec1f570ab98eeabee084a8bb6374dd70860c52eb57cb3db56d79a23fcc5a74a267a158e5c2ddb000f8762048b97e90a77d374f2e3696
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Alonso-Fernandez, FernandoBigun, Josef

Søk i DiVA

Av forfatter/redaktør
Alonso-Fernandez, FernandoBigun, Josef
Av organisasjonen
I samme tidsskrift
Information Fusion

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 74 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 89 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf