hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation and Evaluation
Nokia Bell-Labs, Madrid, Spain & Universidad Autonoma de Madrid, Madrid, Spain.ORCID-id: 0000-0002-2428-3792
Universidad Autonoma de Madrid, Madrid, Spain.ORCID-id: 0000-0002-6343-5656
Universidad Autonoma de Madrid, Madrid, Spain.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
2018 (engelsk)Inngår i: IEEE Transactions on Information Forensics and Security, ISSN 1556-6013, E-ISSN 1556-6021, Vol. 13, nr 8, s. 2001-2014Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The role of soft biometrics to enhance person recognition systems in unconstrained scenarios has not been extensively studied. Here, we explore the utility of the following modalities: gender, ethnicity, age, glasses, beard, and moustache. We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems (COTS). All experiments are reported using the labeled faces in the wild (LFW) database. First, we study the discrimination capabilities of soft biometrics standalone. Then, experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning. We observe that soft biometrics is a valuable complement to the face modality in unconstrained scenarios, with relative improvements up to 40%/15% in the verification performance when using manual/automatic soft biometrics estimation. Results are reproducible as we make public our manual annotations and COTS outputs of soft biometrics over LFW, as well as the face recognition scores. © 2018 IEEE.

sted, utgiver, år, opplag, sider
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 13, nr 8, s. 2001-2014
Emneord [en]
Soft biometrics, hard biometrics, commercial systems, unconstrained scenarios
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-36651DOI: 10.1109/TIFS.2018.2807791ISI: 000429228800010Scopus ID: 2-s2.0-85039786512OAI: oai:DiVA.org:hh-36651DiVA, id: diva2:1199505
Prosjekter
SIDUS-AIR
Forskningsfinansiär
Swedish Research CouncilKnowledge Foundation
Merknad

Funded in part by the Spanish Guardia Civil and the project CogniMetrics from MINECO/FEDER under Grant TEC2015-70627-R and in part by the Imperial College London under Grant PRX16/00580. The work of E. Gonzalez-Sosa was supported by a Ph.D. Scholarship from the Universidad Autonoma de Madrid. The work of F. Alonso-Fernandez was supported in part by the Swedish Research Council, in part by the CAISR program, and in part by the SIDUS-AIR project of the Swedish Knowledge Foundation. 

Tilgjengelig fra: 2018-04-20 Laget: 2018-04-20 Sist oppdatert: 2018-04-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Alonso-Fernandez, Fernando

Søk i DiVA

Av forfatter/redaktør
Gonzalez-Sosa, EsterFierrez, JulianAlonso-Fernandez, Fernando
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Information Forensics and Security

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 72 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf