hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of two visual odometry systems for use in an agricultural field environment
University of Skövde, Skövde, Sweden.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).
2018 (engelsk)Inngår i: Biosystems Engineering, ISSN 1537-5110, E-ISSN 1537-5129, Vol. 166, s. 116-125Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper analyses two visual odometry systems for use in an agricultural field environment. The impact of various design parameters and camera setups are evaluated in a simulation environment. Four real field experiments were conducted using a mobile robot operating in an agricultural field. The robot was controlled to travel in a regular back-and-forth pattern with headland turns. The experimental runs were 1.8–3.1 km long and consisted of 32–63,000 frames. The results indicate that a camera angle of 75° gives the best results with the least error. An increased camera resolution only improves the result slightly. The algorithm must be able to reduce error accumulation by adapting the frame rate to minimise error. The results also illustrate the difficulties of estimating roll and pitch using a downward-facing camera. The best results for full 6-DOF position estimation were obtained on a 1.8-km run using 6680 frames captured from the forward-facing cameras. The translation error (x, y, z) is 3.76% and the rotational error (i.e., roll, pitch, and yaw) is 0.0482 deg m−1. The main contributions of this paper are an analysis of design option impacts on visual odometry results and a comparison of two state-of-the-art visual odometry algorithms, applied to agricultural field data. © 2017 IAgrE

sted, utgiver, år, opplag, sider
London: Academic Press, 2018. Vol. 166, s. 116-125
Emneord [en]
Visual odometry, Agricultural field robots, Visual navigation
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-35853DOI: 10.1016/j.biosystemseng.2017.11.009Scopus ID: 2-s2.0-85037985130OAI: oai:DiVA.org:hh-35853DiVA, id: diva2:1166228
Tilgjengelig fra: 2017-12-14 Laget: 2017-12-14 Sist oppdatert: 2018-01-09bibliografisk kontrollert

Open Access i DiVA

fulltext(3938 kB)103 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3938 kBChecksum SHA-512
bce2c58268e4ab9570b37708567d3901fcb091de584d3d5f10871224c3b5131c6c8390f2f59b3bf40b6e5cffd74583a9ad104f861d938c6b24ec88acad9f0479
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Åstrand, Björn

Søk i DiVA

Av forfatter/redaktør
Åstrand, Björn
Av organisasjonen
I samme tidsskrift
Biosystems Engineering

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 103 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 182 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf