hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting Parkinson's disease from sustained phonation and speech signals
Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab). Kaunas University of Technology, Kaunas, Lithuania.ORCID-id: 0000-0003-2185-8973
Kaunas University of Technology, Kaunas, Lithuania.
Kaunas University of Technology, Kaunas, Lithuania.
2017 (engelsk)Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, nr 10, artikkel-id e0185613Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study investigates signals from sustained phonation and text-dependent speech modalities for Parkinson’s disease screening. Phonation corresponds to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. Signals were recorded through two channels simultaneously, namely, acoustic cardioid (AC) and smart phone (SP) microphones. Additional modalities were obtained by splitting speech recording into voiced and unvoiced parts. Information in each modality is summarized by 18 well-known audio feature sets. Random forest (RF) is used as a machine learning algorithm, both for individual feature sets and for decision-level fusion. Detection performance is measured by the out-of-bag equal error rate (EER) and the cost of log-likelihood-ratio. Essentia audio feature set was the best using the AC speech modality and YAAFE audio feature set was the best using the SP unvoiced modality, achieving EER of 20.30% and 25.57%, respectively. Fusion of all feature sets and modalities resulted in EER of 19.27% for the AC and 23.00% for the SP channel. Non-linear projection of a RF-based proximity matrix into the 2D space enriched medical decision support by visualization. © 2017 Vaiciukynas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

sted, utgiver, år, opplag, sider
San Francisco, CA: Public Library of Science , 2017. Vol. 12, nr 10, artikkel-id e0185613
Emneord [en]
Speech analysis, Pathology detection, Parkinson's disease
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-35229DOI: 10.1371/journal.pone.0185613ISI: 000412360300047PubMedID: 28982171Scopus ID: 2-s2.0-85030766664OAI: oai:DiVA.org:hh-35229DiVA, id: diva2:1150426
Merknad

Funding: The Research Council of Lithuania (No. MIP-075/2015)

Tilgjengelig fra: 2017-10-19 Laget: 2017-10-19 Sist oppdatert: 2017-11-29bibliografisk kontrollert

Open Access i DiVA

fulltext(3884 kB)89 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3884 kBChecksum SHA-512
339218341561640d8dc96ecce66de0992760c281ec4e6a5827e00be3439e2ebd65e6bf7e175ef827c87839f5db0f3b645ba8088c728d84f6eb96ddc30f02a8b2
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Verikas, Antanas

Søk i DiVA

Av forfatter/redaktør
Verikas, Antanas
Av organisasjonen
I samme tidsskrift
PLoS ONE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 89 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 99 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf