hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Anomaly Detection in Electricity Consumption Data
Högskolan i Halmstad, Akademin för informationsteknologi.
2017 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Distribution grids play an important role in delivering electricityto end users. Electricity customers would like to have a continuouselectricity supply without any disturbance. For customerssuch as airports and hospitals electricity interruption may havedevastating consequences. Therefore, many electricity distributioncompanies are looking for ways to prevent power outages.Sometimes the power outages are caused from the grid sidesuch as failure in transformers or a break down in power cablesbecause of wind. And sometimes the outages are caused bythe customers such as overload. In fact, a very high peak inelectricity consumption and irregular load profile may causethese kinds of failures.In this thesis, we used an approach consisting of two mainsteps for detecting customers with irregular load profile. In thefirst step, we create a dictionary based on all common load profileshapes using daily electricity consumption for one-monthperiod. In the second step, the load profile shapes of customersfor a specific week are compared with the load patterns in thedictionary. If the electricity consumption for any customer duringthat week is not similar to any of the load patterns in thedictionary, it will be grouped as an anomaly. In this case, loadprofile data are transformed to symbols using Symbolic AggregateapproXimation (SAX) and then clustered using hierarchicalclustering.The approach is used to detect anomaly in weekly load profileof a data set provided by HEM Nät, a power distributioncompany located in the south of Sweden.

sted, utgiver, år, opplag, sider
2017. , s. 68
Emneord [en]
electricity consumption, smart meter data, symbolic representation, anomaly detection
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-35011OAI: oai:DiVA.org:hh-35011DiVA, id: diva2:1142213
Fag / kurs
Information Technology
Utdanningsprogram
Master's Programme in Information Technology, 120 credits
Presentation
2017-06-02, D315, Halmstad University, Halmstad, 09:30 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2017-09-19 Laget: 2017-09-18 Sist oppdatert: 2017-09-19bibliografisk kontrollert

Open Access i DiVA

fulltext(2274 kB)174 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 2274 kBChecksum SHA-512
1d20a97b2f6e90a2aadd3ec5235007ba1d5a099ed1e9f2229c5f16e07dc44c6c336b97a6a50d8ddaefcffee9af02655560f6465670cb559c5bb92c81cba3843f
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
GHORBANI, SONIYA
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 174 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2270 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf