hh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel technique to extract accurate cell contours applied to analysis of phytoplankton images
Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), Laboratoriet för intelligenta system. Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.ORCID-id: 0000-0003-2185-8973
Department of Electrical Power Systems & Department of Information Systems, Kaunas University of Technology, Kaunas, Lithuania.
Department of Electrical Power Systems, Kaunas University of Technology, Kaunas, Lithuania.
2015 (engelsk)Inngår i: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 26, nr 2-3, s. 305-315Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Active contour model (ACM) is an image segmentation technique widely applied for object detection. Most of the research in ACM area is dedicated to the development of various energy functions based on physical intuition. Here, instead of constructing a new energy function, we manipulate values of ACM parameters to generate a multitude of potential contours, score them using a machine-learned ranking technique, and select the best contour for each object in question. Several learning-to-rank (L2R) methods are evaluated with a goal to choose the most accurate in assessing the quality of generated contours. Superiority of the proposed segmentation approach over the original boosted edge-based ACM and three ACM implementations using the level-set framework is demonstrated for the task of Prorocentrum minimum cells’ detection in phytoplankton images. Experiments show that diverse set of contour features with grading learned by a variant of multiple additive regression trees (λ-MART) helped to extract precise contour for 87.6 % of cells tested.

sted, utgiver, år, opplag, sider
Heidelberg: Springer Berlin/Heidelberg, 2015. Vol. 26, nr 2-3, s. 305-315
Emneord [en]
Active contour model (ACM), Object detection, Machine-learned ranking, Phytoplankton
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-27450DOI: 10.1007/s00138-014-0643-0ISI: 000351462900011PubMedID: 26573936Scopus ID: 2-s2.0-84960360101OAI: oai:DiVA.org:hh-27450DiVA, id: diva2:778099
Merknad

Microscopy images of Prorocentrum minimum cells were obtained by dr. Ricardas Paskauskas and dr. Sigitas Sulcius at Coastal Research and Planning Institute, Klaipeda University. Funding for this work was provided by a Grant (No. LEK-09/2012) from the Research Council of Lithuania under National Research Programme “Ecosystems in Lithuania: climate change and human impact”. 

Tilgjengelig fra: 2015-01-09 Laget: 2015-01-09 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Verikas, Antanas

Søk i DiVA

Av forfatter/redaktør
Verikas, Antanas
Av organisasjonen
I samme tidsskrift
Machine Vision and Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 706 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf