hh.sePublications
Change search
Link to record
Permanent link

Direct link
Sánchez-García, LuisORCID iD iconorcid.org/0000-0002-6369-2222
Publications (10 of 18) Show all publications
Fallahnejad, M., Kranzl, L., Haas, R., Hummel, M., Müller, A., Sánchez-García, L. & Persson, U. (2024). District heating potential in the EU-27: Evaluating the impacts of heat demand reduction and market share growth. Applied Energy, 353(Part B), Article ID 122154.
Open this publication in new window or tab >>District heating potential in the EU-27: Evaluating the impacts of heat demand reduction and market share growth
Show others...
2024 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 353, no Part B, article id 122154Article in journal (Refereed) Published
Abstract [en]

This paper presents a novel approach to modeling the gradual reduction in heat demand and the evolving expansion of district heating (DH) grids for assessing the DH potential in EU member states (MS). It introduces new methodological elements for modeling the impact of connection rates below 100% on heat distribution costs in both dense and sparse areas. The projected heat demand in 2050 is derived from a decarbonization scenario published by the EU, which would lead to a reduction in demand from 3128 TWh in 2020 to 1709 TWh by 2050. The proposed approach yields information on economic DH areas, DH potential, and average heat distribution costs. The results confirm the need to expand DH grids to maintain supply levels in view of decreasing heat demand. The proportion of DH potential from the total demand in the EU-27 rises from 15% in 2020 to 31% in 2050. The analysis of DH areas shows that 39% of the DH potential is in areas with heat distribution costs above 35 EUR/MWh, but most MS have average heat distribution costs between 28 and 32 EUR/MWh. The study reveals that over 40% of the EU's heat demand is in regions with high potential for implementing DH.  © 2023 The Author(s)

Place, publisher, year, edition, pages
Oxford: Elsevier, 2024
Keywords
District heating potential, EU-27, District heating grid investment, GIS
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-51333 (URN)10.1016/j.apenergy.2023.122154 (DOI)001109288600001 ()2-s2.0-85175477205 (Scopus ID)
Note

Funding: TU Wien Bibliothek for financial support for proofreading and through its Open Access Funding Program

Earlier title: Overview of district heating potentials in EU-27 countries under evolving DH market shares and ambitious heat demand reduction scenario

Available from: 2023-08-03 Created: 2023-08-03 Last updated: 2024-01-16Bibliographically approved
Sánchez-García, L. (2023). Modelling District Heating Network Costs. (Licentiate dissertation). Lund: Lund University Open Access
Open this publication in new window or tab >>Modelling District Heating Network Costs
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The solution of the undergoing climate and energy crises requires a radical transformation of the energy system, in which sustainability, no carbon emissions and energy efficiency ought to play a paramount role. 

This revolution should extend to all areas of the energy system, including the space heating and cooling sector, which accounts for a third of the European final energy demand and, in the European continent, it is still mostly supplied by fossil fuels.

District heating is a simple but powerful technology that can contribute to tackle this challenge. As a network infrastructure, it is characterised by the flexibility of the heat production, allowing the incorporation of a wide range of heat sources over time. Furthermore, it enables the recycling of heat that would otherwise be wasted and the use of local heat sources in a more cost-effective manner. Moreover, its coupling with the electricity sector can facilitate the increase of intermittent electric renewable energy sources. 

Nevertheless, at the moment, district heating only covers a tenth of the European space heating and cooling needs, albeit with significant differences among countries. In addition, the development of new district heating networks is capital intensive and can only be justified in those areas where the concentration of the heat demand is sufficiently high to deliver a lower cost to society than an individual alternative. 

Therefore, it is crucial to assess the potential of district heating and to identify the target areas for in-depth investigations. This necessity demands easy and straightforward tools, which can provide a first order approximation of the construction cost of new networks. 

One of these tools is the capital cost model developed by Persson & Werner, which is based on, among others, the effective width parameter. This is an indicator of the required trench length in an area supplied by district heating and has been related to the building density. 

This work has contributed to the understanding of the effective width parameter in a wide range of building densities, taking advantage of one of the largest district heating networks in Denmark, and provided new equations that relate it to various indicators of building density. 

Furthermore, the average pipe diameter of district heating pipes has been linked to another crucial parameter in district heating technology, the linear heat density, extending prior work conducted by Persson and Werner. 

In addition, Persson and Werner's model and the newly found empirical expressions have been validated in various Danish district heating networks, showing that the model provides relatively accurate results on an aggregate level and large areas but dismally fails in low-extension areas. 

Finally, the model has been applied to the European Union showing that district heating networks could potentially supply a third of the heat demand in 2050.

Abstract [sv]

Lösningen av de pågående klimat- och energikriserna kräver en radikal omvandling av energisystemet, där hållbarhet, inga koldioxidutsläpp och energieffektivitet bör spela en avgörande roll.

Denna revolution bör sträcka sig till alla delar av energisystemet, inklusive sektorn för uppvärmning och kylning av byggnader, som står för en tredjedel av Europas slutliga energibehov och på den europeiska kontinenten fortfarande till största delen försörjs av fossila bränslen.

Fjärrvärme är en enkel men kraftfull teknik som kan bidra till denna utmaning. Som nätverksinfrastruktur kännetecknas den av flexibilitet i värmeproduktionen, vilket möjliggör inkorporering av ett brett utbud av värmekällor över tid. Dessutom möjliggör det återvinning av värme som annars skulle gå till spillo och användning av lokala värmekällor på ett mer kostnadseffektivt sätt. Dessutom kan dess koppling till elsektorn underlätta ökningen av intermittenta elektriska förnybara energikällor.

Detta till trots täcker fjärrvärme för närvarande bara en tiondel av det europeiska behovet av uppvärmning och kylning av byggnader, om än med betydande skillnader mellan länderna. Utbyggnaden av nya fjärrvärmenät är dessutom kapitalkrävande och kan endast motiveras i de områden där koncentrationen av värmebehovet är tillräckligt hög för att ge en lägre kostnad för samhället än ett individuellt alternativ.

Därför är det avgörande att bedöma potentialen för fjärrvärme och att identifiera målområdena för fördjupade utredningar. Denna nödvändighet kräver enkla och okomplicerade verktyg, som kan ge en första ordningens uppskattning av investeringskostnader för nya nätverk.

Ett av dessa verktyg är kapitalkostnadsmodellen utvecklad av Persson & Werner, som bygger på bland annat parametern effektiv bredd. Detta är en indikator på den erforderliga dikeslängden i ett område som försörjs av fjärrvärme och har relaterats till byggnadstätheten.

Detta arbete har bidragit till förståelsen av effektiv bredd-parametern i ett vitt spektrum av byggnadstätheter, vars studium drar fördel av ett av de största fjärrvärmenäten i Danmark, och har gett nya ekvationer som relaterar den till olika indikatorer på byggnadstäthet.

Vidare har den genomsnittliga rördiametern för fjärrvärmerör kopplats till en annan avgörande parameter inom fjärrvärmetekniken, den linjära värmedensiteten, vilket utökar tidigare arbete utfört av Persson och Werner.

Dessutom har Persson och Werners modell och de nyfunna empiriska uttrycken validerats i olika danska fjärrvärmenät, vilket visar att modellen ger relativt exakta resultat på aggregerad nivå och stora ytor men mindre så i lågutbyggnadsområden.

Slutligen har modellen tillämpats på EU som visar att fjärrvärmenät potentiellt kan tillgodose en tredjedel av värmebehovet år 2050.

Place, publisher, year, edition, pages
Lund: Lund University Open Access, 2023. p. 48
Keywords
District Heating, Pipe network, Cost analysis, Distribution Capital Cost, Effective Width, Plot Ratio, Heat Density, GIS
National Category
Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-50916 (URN)978-91-8039-702-5 (ISBN)978-91-8039-703-2 (ISBN)
Presentation
2023-05-31, E-huset, E:1406, Ole Römers väg 3, Lund, 13:15 (English)
Opponent
Supervisors
Projects
Quantification of synergies between Energy Efficiency first principle and renewable energy systems
Funder
EU, Horizon 2020, 846463
Available from: 2023-08-04 Created: 2023-06-21 Last updated: 2023-09-29Bibliographically approved
Braungardt, S., Bürger, V., Fleiter, T., Bagheri, M., Manz, P., Billerbeck, A., . . . Sánchez-García, L. (2023). Renewable heating and cooling pathways – Towards full decarbonisation by 2050 – Final report. Brussels: Publications Office of the European Union
Open this publication in new window or tab >>Renewable heating and cooling pathways – Towards full decarbonisation by 2050 – Final report
Show others...
2023 (English)Report (Other academic)
Abstract [en]

With the adoption of the EU Climate Law in 2021, the EU has set itself a binding target to achieve climate neutrality by 2050 and to reduce greenhouse gas emissions by 55 percent compared to 1990 levels by 2030. To support the increased ambition, the EU Commission adopted proposals for revising the key directives and regulations addressing energy efficiency, renewable energies and greenhouse gas emissions in the Fit for 55 package.

The heating and cooling (H&C) sector plays a key role for reaching the EU energy and climate targets. H&C accounts for about 50 percent of the final energy consumption in the EU, and the sector is largely based on fossil fuels. In 2021, the share of renewable energies in H&C reached 23%. The decarbonisation of heating and cooling is addressed across several directives and regulations at EU level.

The aim of this study is to support the analytical basis for the development and implementation of policies to ensure a seamless pathway to the full decarbonisation of the heating and cooling sector by 2050 in buildings and industry.

Place, publisher, year, edition, pages
Brussels: Publications Office of the European Union, 2023. p. 277
National Category
Energy Systems Energy Engineering
Research subject
Smart Cities and Communities, PROACTS
Identifiers
urn:nbn:se:hh:diva-52184 (URN)10.2833/036342 (DOI)978-92-68-07633-0 (ISBN)
Projects
ENER C1 2019-482
Funder
European Commission, ENER C1 2019-482
Available from: 2023-12-06 Created: 2023-12-06 Last updated: 2023-12-19Bibliographically approved
Sánchez-García, L., Averfalk, H., Möllerström, E. & Persson, U. (2023). Understanding effective width for district heating. Energy, 277, Article ID 127427.
Open this publication in new window or tab >>Understanding effective width for district heating
2023 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 277, article id 127427Article in journal (Refereed) Published
Abstract [en]

District heating is one of the technologies that can contribute to the decarbonisation of the European heat sector. Nonetheless, these infrastructures only deliver about a tenth of the heat demands in the continent. Therefore, it is essential to assess the expansion potential of these systems and to identify which areas should be target for further investigations, which calls for easy-to-use and straightforward methods such as Persson & Werner's network capital cost model. Pivotal parameters of the model are the effective width, a metric of trench length by land area, alongside the average pipe diameter and the linear heat density. This study has carried out an in-depth analysis of these crucial parameters with respect to both distribution and service pipes in a large Danish district heating network, which has allowed to explore the behaviour of effective width in a broad range of building densities and derive new equations for both effective width and average pipe diameter. The model has subsequently been validated in another large network in Denmark and several minor districts in the same country, showing the accuracy of the model on an aggregated level. © 2023 Elsevier Ltd.

Place, publisher, year, edition, pages
London: Elsevier, 2023
Keywords
District heating, GIS, Pipe network, Cost analysis, Effective width, Plot ratio
National Category
Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-50424 (URN)10.1016/j.energy.2023.127427 (DOI)000992994200001 ()2-s2.0-85154565584 (Scopus ID)
Funder
EU, Horizon 2020, 846463
Available from: 2023-05-07 Created: 2023-05-07 Last updated: 2023-06-21Bibliographically approved
Sánchez-García, L., Averfalk, H., Persson, U., Hermoso-Martínez, N. & Hernández-Iñarra, P. (2023). Viability of district heating networks in temperate climates: Benefits and barriers of cold and warm temperature networks. In: Lund, Henrik; Mathiesen, Brian Vad; Østergaard, Poul Alberg; Brodersen, Hans Jørgen (Ed.), Book of Abstracts: 9th International Conference on Smart Energy Systems. Paper presented at 9th International Conference on Smart Energy Systems, Copenhagen, Denmark, 12-13 September, 2023 (pp. 280-281). Aalborg
Open this publication in new window or tab >>Viability of district heating networks in temperate climates: Benefits and barriers of cold and warm temperature networks
Show others...
2023 (English)In: Book of Abstracts: 9th International Conference on Smart Energy Systems / [ed] Lund, Henrik; Mathiesen, Brian Vad; Østergaard, Poul Alberg; Brodersen, Hans Jørgen, Aalborg, 2023, p. 280-281Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

The decarbonization of the heat supply and the attainment of a higher security of supply demand the transition towards zero-carbon heating solutions. In dense urban environments, where the construction cost of a pipe network is relatively low, heating and cooling networks can deliver heating and cooling at a lower cost compared to individual solutions. 

This paper builds on prior research by these authors mapping heating and cooling energy use in Bilbao, Spain, a city characterised by mild oceanic climate and a dense urban pattern. Areas within the city where heating and cooling networks could be more feasible have been identified taking into account the building stock characteristics and energy use, together with other urban and resource parameters, and a city district has been selected for further study.      

Warm networks deliver heat at a sufficiently high temperature to be directly used by the consumers whereas cold networks employ lower temperatures, thus requiring heat pumps at the consumers premises. Research has highlighted as advantages of this newer configuration the possibility of delivering both heating and cooling with the same network, the lower capital costs of these networks and negligible heat losses. Nonetheless, comparisons between the two technologies have been seldom performed in the literature. In this paper, an economic comparison between these two solutions is presented for the selected district of Bilbao.  Results show that cold networks require a lower investment in the actual network infrastructure but the distributed heat pumps increase the costs to a higher total CAPEX than in warm networks.  Overall life cycle costs of heat are also slightly higher for cold networks than for warm networks. Other benefits and barriers for each of the solutions, for example regarding necessary space or speed and modularity of the implementation of the network are also discussed.

Place, publisher, year, edition, pages
Aalborg: , 2023
Keywords
District Heating, Warm Network, Cold Network, Distribution Technology, Heat Density
National Category
Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-51640 (URN)
Conference
9th International Conference on Smart Energy Systems, Copenhagen, Denmark, 12-13 September, 2023
Projects
Decarb City Pipes 2050 - Transition roadmaps to energy efficient, zero-carbon urban heating and cooling
Funder
EU, Horizon 2020, 893509
Available from: 2023-09-15 Created: 2023-09-15 Last updated: 2023-09-28Bibliographically approved
Persson, U., Atabaki, M. S., Sánchez-García, L. & Lichtenwöhrer, P. (2022). H/C outlook 2050 of cities with cross-city synthesis: Deliverable D2.6 (Edited version).
Open this publication in new window or tab >>H/C outlook 2050 of cities with cross-city synthesis: Deliverable D2.6 (Edited version)
2022 (English)Report (Other academic)
Abstract [en]

This report is the second out of three consecutive accounts of a coherent methodological framework developed in the EU Horizon 2020 project Decarb City Pipes 2050 to define heating and cooling decarbonisation design approaches for cities based on urban typologies. The first and third accounts are, respectively, the deliverable reports D2.5 (Decarbonisation design-approaches based on urban typologies) and D2.7 (Recommendations for cities' H/C supplies & demands in 2050). The framework has been developed by identifying possible thematic synergies between the objectives of the concerned deliverables, by combining different method elements, and by organising a collaborative work strategy among the involved project partners. This report presents, in overview and detail, the input data synonymously used within the framework for the determination of urban typologies, for the modelling and mapping of heating and cooling outlooks for 2050, for the quantification of a cross-city synthesis, as well as for formulating recommendations for cities´ heating and cooling demands and supplies in 2050. The study focusses on the urban areas of seven European project cities (Bilbao (ES), Bratislava (SK), Dublin (IE), Munich (DE), Rotterdam (NL), Vienna (AT), Winterthur (CH)), for which EU-scoped, publicly available input data, to the extent possible, has been gathered according to ten structuring criteria parameters. Heating and cooling outlooks for 2050 are established for each project city based on the used input data and illustrated in the form of tables, graphs, and maps, and constitute the first element of a quantitative cross-city synthesis (city comparison). The second element (city ranking) is facilitated by application of a multi-criteria decision model, which here consists of combining the Analytical Hierarchy Process method (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS).

Publisher
p. 95
National Category
Energy Systems Remote Sensing Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-50239 (URN)
Projects
Decarb City Pipes 2050 - Transition roadmaps to energy efficient, zero-carbon urban heating and cooling
Funder
EU, Horizon 2020, 893509
Available from: 2023-03-29 Created: 2023-03-29 Last updated: 2023-12-01Bibliographically approved
Möller, B., Wiechers, E., Persson, U., Nielsen, S., Werner, S., Connolly, D., . . . Lund, H. (2022). Peta: the Pan-European Thermal Atlas : version 5.2 : developed as part of the sEEnergies project. Flensburg: Europa-Universität Flensburg
Open this publication in new window or tab >>Peta: the Pan-European Thermal Atlas : version 5.2 : developed as part of the sEEnergies project
Show others...
2022 (English)Other (Other academic)
Abstract [en]

The Pan-European Thermal Atlas version 5.2 (Peta, version 5.2). Peta is an online visualization tool for spatial data relating to energy efficiency in buildings, industry, and transport sectors. Developed as part of the sEEnergies project. Copyright Flensburg, Halmstad and Aalborg Universities 2022. 

Place, publisher, year, pages
Flensburg: Europa-Universität Flensburg, 2022
National Category
Energy Systems Remote Sensing Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-48178 (URN)
Funder
EU, Horizon 2020, 846463
Available from: 2022-09-29 Created: 2022-09-29 Last updated: 2023-02-27Bibliographically approved
Lichtenwöhrer, P., Hemis, H., Persson, U., Sánchez-García, L. & Atabaki, M. S. (2022). Report on decarbonisation design-approaches based on urban typologies: Deliverable D2.5.
Open this publication in new window or tab >>Report on decarbonisation design-approaches based on urban typologies: Deliverable D2.5
Show others...
2022 (English)Report (Other academic)
Abstract [en]

This report identifies different typology-based approaches and methods for decarbonising the energy sector of cities. Respectively, typologies were evaluated, and design approaches were developed. In a first step, already existing typologies were evaluated, including a study by the Technical University of Darmstadt and examples from the City of Vienna. In a next step, conceivable structuring criteria and decarbonisation approaches from existing work within the DCP project were identified and summarised. These include structuring criteria such as heat demand density, renewable energy sources or types of refurbishment activities. On this basis, a new typology was developed. Five highly weighted criteria could be derived from the results of the expert survey, including structural energy efficiency, coverage of district heating, potential for renewable sources, potential for waste heat and heat demand density. These criteria formed the basis for the development of the novel typology. The first typology represents areas with high compatibility with highly weighted criteria, the third typology represents areas with comparably low compatibility, while the second typology is associated in between. Based on the developed typology, six design approaches were presented in this report. One short-term and one long-term approach for each typology include recommendations as well as concrete measures for strategic decision-making.

Publisher
p. 46
National Category
Energy Systems Remote Sensing Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-50238 (URN)
Projects
Decarb City Pipes 2050 - Transition roadmaps to energy efficient, zero-carbon urban heating and cooling
Funder
EU, Horizon 2020, 893509
Available from: 2023-03-29 Created: 2023-03-29 Last updated: 2023-12-01Bibliographically approved
Sánchez-García, L., Persson, U. & Averfalk, H. (2022). sEEnergies special report: Construction costs of new district heating networks in France. sEEnergies
Open this publication in new window or tab >>sEEnergies special report: Construction costs of new district heating networks in France
2022 (English)Report (Other academic)
Abstract [en]

This report aims to present the results of the work carried out within the sEEnergies project pertaining to estimating construction costs of new district heating networks in France.

This project has followed a similar methodology to Heat Roadmap Europe when estimating the costs of district heating systems. Nonetheless, several improvements have been introduced to attain more realistic results. On the one hand, it has been carried out a detailed geographic analysis of two large Danish networks so the necessary pipe length can be better appraised. Moreover, both the distribution network and service pipes have been taken into consideration. On the other hand, pipe construction cost data from each country has been used to the maximum extent possible.  

This part of the project has only focused on the pipe network and has not taken into account other elements for the development of a district heating system, such as heat supply plants or the connections to the heat demands via a substation. 

The results for France show that the country has a significant potential for District Heating expansion. Approximately a quarter of the total heat demand (28%) could be supplied with a cost lower than 20 €/MWh and nearly half of the heat demand (47%) would be economically viable with a higher marginal cost of 30 €/MWh. Nonetheless, there is significant regional variation. For instance, for a marginal cost threshold of 20 €/MWh, Paris could cover nearly the entire heat demand and the other départements of the petite couronne de París, could reach penetration rates above 70%. On the contrary, the 12 least dense départements would not be able to deliver more than 10% of the heat demand, having the département of Vendée the lowest potential with merely 3%. 

Place, publisher, year, edition, pages
sEEnergies, 2022. p. 27
Keywords
District Heating, GIS, Energy Transition, France
National Category
Energy Engineering Energy Systems
Identifiers
urn:nbn:se:hh:diva-48478 (URN)
Available from: 2022-10-14 Created: 2022-10-14 Last updated: 2022-10-17Bibliographically approved
Sánchez-García, L., Averfalk, H. & Persson, U. (2022). sEEnergies special report: Construction costs of new district heating networks in Germany. sEEnergies
Open this publication in new window or tab >>sEEnergies special report: Construction costs of new district heating networks in Germany
2022 (English)Report (Other academic)
Abstract [en]

This report aims to present the results of the work carried out within the sEEnergies project pertaining to estimating construction costs of new district heating networks in Germany.

This project has followed a similar methodology to Heat Roadmap Europe when estimating the costs of district heating systems. Nonetheless, several improvements have been introduced to attain more realistic results. On the one hand, it has been carried out a detailed geographic analysis of two large Danish networks so the necessary pipe length can be better appraised. Moreover, both the distribution network and service pipes have been taken into consideration. On the other hand, pipe construction cost data from each country has been used to the maximum extent possible.  

This part of the project has only focused on the pipe network and has not taken into account other elements for the development of a district heating system, such as heat supply plants or the connections to the heat demands via a substation. 

The results for Germany show that the country has a significant potential for District Heating expansion. Approximately a quarter of the total heat demand could be supplied with a cost lower than 20 €/MWh and nearly half of the heat demand would be economically viable with a higher marginal cost of 30 €/MWh. Nonetheless, there is significant regional variation, and whilst the most urban districts (kreise) could reach penetration rates above 70% for a marginal cost of 20 €/MWh, the least dense would fall below 10% of the heat demand. 

Place, publisher, year, edition, pages
sEEnergies, 2022. p. 26
Keywords
District Heating, GIS, Energy Transition, Germany
National Category
Energy Engineering Energy Systems
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-48303 (URN)
Funder
EU, Horizon 2020, 846463
Available from: 2022-10-10 Created: 2022-10-10 Last updated: 2022-10-17Bibliographically approved
Projects
Soldriven fjärrvärme med groplager för svenska förhållanden [P50037-1_Energi]; Dalarna University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-6369-2222

Search in DiVA

Show all publications