hh.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (8 of 8) Show all publications
Rezk, N. (2022). Deep Learning on the Edge: A Flexible Multi-level Optimization Approach. (Doctoral dissertation). Halmstad: Halmstad University Press
Open this publication in new window or tab >>Deep Learning on the Edge: A Flexible Multi-level Optimization Approach
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recent advances in Deep Learning (DL) research have been adopted in a wide variety of applications, including autonomous driving, AI in health care, and smart homes. In parallel, research in high-performance embedded computing has resulted in advanced hardware platforms that offer enhanced performance and energy efficiency for demanding computations. However, the high demands of DL models for computational and memory resources are still a challenge for embedded computing. Algorithmic optimizations can be used to reduce the computational and memory requirements of DL models. Hardware implementations and architectures can also be tuned to support DL applications’ requirements. This thesis identifies that insufficient coordination between hardware implementations and models’ optimizations limits the efficiency of the resulting implementations. In addition, the implementation methods themselves suffer from poor flexibility in adapting to changes in the model and application constraints. The overarching theme of this thesis is to study and propose methods for the efficient and flexible implementation of DL models on embedded platforms. The work in this thesis bridges the gap between DL models’ algorithmic optimizations and embedded platforms’ hardware-specific optimizations, and investigates the features that need support from DL domain-specific architectures. In addition, a method for multi-objective quantization of DL models is proposed to address both the model error and platform performance metrics. Post-training optimization techniques are employed to facilitate the multiobjective optimization of the models because they do not require retraining after model optimization. This thesis also reviews the optimization methods that are known to have been applied to improve the implementation efficiency of DL models. It highlights the most fruitful optimizations found in existing, highly efficient implementations, and applies them in the proposed methods. A method for mapping Convolution Neural Networks (CNN) on Epiphany, a manycore architecture, is proposed and evaluated. A method for quantization and approximation for RNN models in a post-training fashion is also proposed, and evaluated on four RNN models. The proposed quantization method is used in a hardware-aware multi-objective optimization for RNN models to be deployed on SiLago and Bit fusion architectures.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2022. p. 65
Series
Halmstad University Dissertations ; 95
National Category
Embedded Systems
Identifiers
urn:nbn:se:hh:diva-48680 (URN)978-91-89587-03-8 (ISBN)978-91-89587-02-1 (ISBN)
Public defence
2022-12-15, Halda, Visionen, Kristian IV:s, väg 3, Halmstad, 11:58 (English)
Opponent
Supervisors
Note

Kompletteras med LibrisID när tillgängligt.

Available from: 2022-11-24 Created: 2022-11-23 Last updated: 2022-11-24Bibliographically approved
Rezk, N., Nordström, T., Stathis, D., Ul-Abdin, Z., Aksoy, E. & Hemani, A. (2022). MOHAQ: Multi-Objective Hardware-Aware Quantization of recurrent neural networks. Journal of systems architecture, 133, Article ID 102778.
Open this publication in new window or tab >>MOHAQ: Multi-Objective Hardware-Aware Quantization of recurrent neural networks
Show others...
2022 (English)In: Journal of systems architecture, ISSN 1383-7621, E-ISSN 1873-6165, Vol. 133, article id 102778Article in journal (Refereed) Published
Abstract [en]

The compression of deep learning models is of fundamental importance in deploying such models to edge devices. The selection of compression parameters can be automated to meet changes in the hardware platform and application. This article introduces a Multi-Objective Hardware-Aware Quantization (MOHAQ) method, which considers hardware performance and inference error as objectives for mixed-precision quantization. The proposed method feasibly evaluates candidate solutions in a large search space by relying on two steps. First, post-training quantization is applied for fast solution evaluation (inference-only search). Second, we propose the ”beacon-based search” to retrain selected solutions only and use them as beacons to estimate the effect of retraining on other solutions. We use speech recognition models on TIMIT dataset. Experimental evaluations show that Simple Recurrent Unit (SRU)-based models can be compressed up to 8x by post-training quantization without any significant error increase. On SiLago, we found solutions that achieve 97% and 86% of the maximum possible speedup and energy saving, with a minor increase in error on an SRU-based model. On Bitfusion, the beacon-based search reduced the error gain of the inference-only search on SRU-based models and Light Gated Recurrent Unit (LiGRU)-based model by up to 4.9 and 3.9 percentage points, respectively.

Place, publisher, year, edition, pages
Amsterdam: Elsevier, 2022
Keywords
Simple recurrent unit, Light gated recurrent unit, Quantization, Multi-objective optimization, Genetic algorithms
National Category
Embedded Systems
Identifiers
urn:nbn:se:hh:diva-48679 (URN)10.1016/j.sysarc.2022.102778 (DOI)000892114100006 ()2-s2.0-85141919627 (Scopus ID)
Available from: 2022-11-23 Created: 2022-11-23 Last updated: 2023-08-21Bibliographically approved
Rezk, N. M., Nordström, T. & Ul-Abdin, Z. (2022). Shrink and Eliminate: A Study of Post-Training Quantization and Repeated Operations Elimination in RNN Models. Information, 13(4), Article ID 176.
Open this publication in new window or tab >>Shrink and Eliminate: A Study of Post-Training Quantization and Repeated Operations Elimination in RNN Models
2022 (English)In: Information, E-ISSN 2078-2489, Vol. 13, no 4, article id 176Article in journal (Refereed) Published
Abstract [en]

Recurrent neural networks (RNNs) are neural networks (NN) designed for time-series applications. There is a growing interest in running RNNs to support these applications on edge devices. However, RNNs have large memory and computational demands that make them challenging to implement on edge devices. Quantization is used to shrink the size and the computational needs of such models by decreasing weights and activation precision. Further, the delta networks method increases the sparsity in activation vectors by relying on the temporal relationship between successive input sequences to eliminate repeated computations and memory accesses. In this paper, we study the effect of quantization on LSTM-, GRU-, LiGRU-, and SRU-based RNN models for speech recognition on the TIMIT dataset. We show how to apply post-training quantization on these models with a minimal increase in the error by skipping quantization of selected paths. In addition, we show that the quantization of activation vectors in RNNs to integer precision leads to considerable sparsity if the delta networks method is applied. Then, we propose a method for increasing the sparsity in the activation vectors while minimizing the error and maximizing the percentage of eliminated computations. The proposed quantization method managed to com-press the four models more than 85%, with an error increase of 0.6, 0, 2.1, and 0.2 percentage points, respectively. By applying the delta networks method to the quantized models, more than 50% of the operations can be eliminated, in most cases with only a minor increase in the error. Comparing the four models to each other under the quantization and delta networks method, we found that compressed LSTM-based models are the most-optimum solutions at low-error-rates constraints. The compressed SRU-based models are the smallest in size, suitable when higher error rates are acceptable, and the compressed LiGRU-based models have the highest number of eliminated operations. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Place, publisher, year, edition, pages
Basel: MDPI, 2022
Keywords
delta networks, edge devices, quantization, recurrent neural network
National Category
Computer Sciences
Identifiers
urn:nbn:se:hh:diva-46752 (URN)10.3390/info13040176 (DOI)000786262400001 ()34789458 (PubMedID)2-s2.0-85128393517 (Scopus ID)
Funder
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Available from: 2022-05-02 Created: 2022-05-02 Last updated: 2022-11-23Bibliographically approved
Rezk, N. (2020). Exploring Efficient Implementations of Deep Learning Applications on Embedded Platforms. (Licentiate dissertation). Halmstad: Halmstad University Press
Open this publication in new window or tab >>Exploring Efficient Implementations of Deep Learning Applications on Embedded Platforms
2020 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The promising results of deep learning (deep neural network) models in many applications such as speech recognition and computer vision have aroused a need for their realization on embedded platforms. Augmenting DL (Deep Learning) in embedded platforms grants them the support to intelligent tasks in smart homes, mobile phones, and healthcare applications. Deep learning models rely on intensive operations between high precision values. In contrast, embedded platforms have restricted compute and energy budgets. Thus, it is challenging to realize deep learning models on embedded platforms.

In this thesis, we define the objectives of implementing deep learning models on embedded platforms. The main objective is to achieve efficient implementations. The implementation should achieve high throughput, preserve low power consumption, and meet real-time requirements.The secondary objective is flexibility. It is not enough to propose an efficient hardware solution for one model. The proposed solution should be flexible to support changes in the model and the application constraints. Thus, the overarching goal of the thesis is to explore flexible methods for efficient realization of deep learning models on embedded platforms.

Optimizations are applied to both the DL model and the embedded platform to increase implementation efficiency. To understand the impact of different optimizations, we chose recurrent neural networks (as a class of DL models) and compared its' implementations on embedded platforms. The comparison analyzes the optimizations applied and the corresponding performance to provide conclusions on the most fruitful and essential optimizations. We concluded that it is essential to apply an algorithmic optimization to the model to decrease it's compute and memory requirement, and it is essential to apply a memory-specific optimization to hide the overhead of memory access to achieve high efficiency. Furthermore, it has been revealed that many of the work understudy focus on implementation efficiency, and flexibility is less attempted.

We have explored the design space of Convolutional neural networks (CNNs) on Epiphany manycore architecture. We adopted a pipeline implementation of CNN that relies on the on-chip memory solely to store the weights. Also, the proposed mapping supported both ALexNet and GoogleNet CNN models, varying precision for weights, and two memory sizes for Epiphany cores. We were able to achieve competitive performance with respect to emerging manycores.

As a part of the work in progress, we have studied a DL-architecture co-design approach to increase the flexibility of hardware solutions. A flexible platform should support variations in the model and variations in optimizations. The optimization method should be automated to respond to the changes in the model and application constraints with minor effort. Besides, the mapping of the models on embedded platforms should be automated as well.

Place, publisher, year, edition, pages
Halmstad: Halmstad University Press, 2020. p. 81
Series
Halmstad University Dissertations ; 71
National Category
Embedded Systems
Identifiers
urn:nbn:se:hh:diva-41969 (URN)978-91-88749-51-2 (ISBN)978-91-88749-50-5 (ISBN)
Presentation
2020-06-04, Wigforss, Visionen, Halmstad University, Kristian IV:s väg 3, Halmstad, 10:00 (English)
Opponent
Supervisors
Available from: 2020-05-14 Created: 2020-04-27 Last updated: 2020-05-14Bibliographically approved
Rezk, N., Purnaprajna, M., Nordström, T. & Ul-Abdin, Z. (2020). Recurrent Neural Networks: An Embedded Computing Perspective. IEEE Access, 8, 57967-57996
Open this publication in new window or tab >>Recurrent Neural Networks: An Embedded Computing Perspective
2020 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 8, p. 57967-57996Article in journal (Refereed) Published
Abstract [en]

Recurrent Neural Networks (RNNs) are a class of machine learning algorithms used for applications with time-series and sequential data. Recently, there has been a strong interest in executing RNNs on embedded devices. However, difficulties have arisen because RNN requires high computational capability and a large memory space. In this paper, we review existing implementations of RNN models on embedded platforms and discuss the methods adopted to overcome the limitations of embedded systems. We will define the objectives of mapping RNN algorithms on embedded platforms and the challenges facing their realization. Then, we explain the components of RNN models from an implementation perspective. We also discuss the optimizations applied to RNNs to run efficiently on embedded platforms. Finally, we compare the defined objectives with the implementations and highlight some open research questions and aspects currently not addressed for embedded RNNs. Overall, applying algorithmic optimizations to RNN models and decreasing the memory access overhead is vital to obtain high efficiency. To further increase the implementation efficiency, we point up the more promising optimizations that could be applied in future research. Additionally, this article observes that high performance has been targeted by many implementations, while flexibility has, as yet, been attempted less often. Thus, the article provides some guidelines for RNN hardware designers to support flexibility in a better manner. © 2020 IEEE.

Place, publisher, year, edition, pages
Piscataway: IEEE, 2020
Keywords
Compression, flexibility, efficiency, embedded computing, long short term memory (LSTM), quantization, recurrent neural networks (RNNs)
National Category
Computer Systems
Identifiers
urn:nbn:se:hh:diva-41981 (URN)10.1109/ACCESS.2020.2982416 (DOI)000527411700168 ()2-s2.0-85082939909 (Scopus ID)
Projects
NGES (Towards Next Generation Embedded Systems: Utilizing Parallelism and Reconfigurability)
Funder
Vinnova, INT/SWD/VINN/p-10/2015
Note

As manuscript in thesis.

Other funding: Government of India

Available from: 2020-04-30 Created: 2020-04-30 Last updated: 2022-11-23Bibliographically approved
Rezk, N., Purnaprajna, M. & Ul-Abdin, Z. (2018). Streaming Tiles: Flexible Implementation of Convolution Neural Networks Inference on Manycore Architectures. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW): . Paper presented at The 7th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics, Vancouver, British Columbia, Canada, May 21, 2018 (pp. 867-876). Los Alamitos: IEEE Computer Society
Open this publication in new window or tab >>Streaming Tiles: Flexible Implementation of Convolution Neural Networks Inference on Manycore Architectures
2018 (English)In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Los Alamitos: IEEE Computer Society, 2018, p. 867-876Conference paper, Published paper (Refereed)
Abstract [en]

Convolution neural networks (CNN) are extensively used for deep learning applications such as image recognition and computer vision. The convolution module of these networks is highly compute-intensive. Having an efficient implementation of the convolution module enables realizing the inference part of the neural network on embedded platforms. Low precision parameters require less memory, less computation time, and less power consumption while achieving high classification accuracy. Furthermore, streaming the data over parallelized processing units saves a considerable amount of memory, which is a key concern in memory constrained embedded platforms. In this paper, we explore the design space for streamed CNN on Epiphany manycore architecture using varying precisions for weights (ranging from binary to 32-bit). Both AlexNet and GoogleNet are explored for two different memory sizes of Epiphany cores. We are able to achieve competitive performance for both Alexnet and GoogleNet with respect to emerging manycores. Furthermore, the effects of different design choices in terms of precision, memory size, and the number of cores are evaluated by applying the proposed method.

Place, publisher, year, edition, pages
Los Alamitos: IEEE Computer Society, 2018
Keywords
manycores, CNN, stream processing, embedded systems
National Category
Embedded Systems
Identifiers
urn:nbn:se:hh:diva-36887 (URN)10.1109/IPDPSW.2018.00138 (DOI)000541051600099 ()2-s2.0-85052195969 (Scopus ID)978-1-5386-5555-9 (ISBN)978-1-5386-5556-6 (ISBN)
Conference
The 7th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics, Vancouver, British Columbia, Canada, May 21, 2018
Projects
NGES (Towards Next Generation Embedded Systems: Utilizing Parallelism and Reconfigurability)
Funder
Vinnova
Note

As manuscript in thesis.

Other funding: Department of Science and Technology, Government of India.

Available from: 2018-06-01 Created: 2018-06-01 Last updated: 2023-10-05Bibliographically approved
Rezk, N., Purnaprajna, M. & Ul-Abdin, Z. (2017). E€iffcient Implementation of Convolution Neural Networks Inference On Manycore Architectures. In: : . Paper presented at 10th Nordic Workshop on Multi-Core computing (MCC2017), Uppsala, Sweden, Nov. 30 - Dec. 1, 2017.
Open this publication in new window or tab >>E€iffcient Implementation of Convolution Neural Networks Inference On Manycore Architectures
2017 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

The convolution module of convolution neural networks is highly computation demanding. In order to execute a neural network inference on embedded platforms, an ecient implementation of the convolution is required. Low precision parameters can provide an implementation that requires less memory, less computation time, and less power consumption. Nevertheless, streaming the convolution computation over parallelized processing units saves a lot of memory, which is a key concern in memory constrained embedded platforms. In this paper, we show how the convolution module can be implemented on Epiphany manycore architecture. Low precision parameters are used with ternary weights of +1, 0, and -1 values. The computation is done through a pipeline by streaming data through processing units. The proposed approach decreases the memory requirements for CNN implementation and could reach up to 282 GOPS and up to 5.6 GOPs/watt.

National Category
Embedded Systems
Identifiers
urn:nbn:se:hh:diva-38289 (URN)
Conference
10th Nordic Workshop on Multi-Core computing (MCC2017), Uppsala, Sweden, Nov. 30 - Dec. 1, 2017
Available from: 2018-11-09 Created: 2018-11-09 Last updated: 2022-06-07Bibliographically approved
Rezk, N.ModelFlex: Parameter Tuning for Flexible Design of Deep Learning Accelerators.
Open this publication in new window or tab >>ModelFlex: Parameter Tuning for Flexible Design of Deep Learning Accelerators
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Algorithmic optimizations are applied to neural networks models to decrease their compute and memory requirements for efficient realization on embedded platforms. A feedback form the target platform during the optimization process can increase the benefit of these optimizations. In this paper, we propose a method for hardware guided optimizations to recurrent neural networks. The method is automated to respond to changes in the model or the application constraints with minimal effort. Also, a hybrid of three optimizations is applied to the base RNN model to increase the search space for a feasible solution and increase the chance of skipping retraining.

National Category
Embedded Systems
Identifiers
urn:nbn:se:hh:diva-41998 (URN)
Note

As manuscript in thesis

Available from: 2020-05-05 Created: 2020-05-05 Last updated: 2021-05-27Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-4674-3809

Search in DiVA

Show all publications