Open this publication in new window or tab >>I. Physikalisches Institut and JARA-FIT, RWTH Aachen, Aachen, Germany.
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany & Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany.
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA & Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, USA.
Department of Physics, Lund University, Lund, Sweden.
Department of Physics, Lund University, Lund, Sweden.
Department of Applied Physics, Stanford University, Stanford, USA.
Lawrence Livermore National Laboratory, Livermore, USA.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA.
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, USA & Paul Scherrer Institute, Villigen, Switzerland.
Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, Aachen, Germany.
Department of Physics, Lund University, Lund, Sweden.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA & Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, USA & Department of Materials Science and Engineering, Stanford University, Stanford, USA.
Institut Laue-Langevin, Grenoble, France.
Lawrence Livermore National Laboratory, Livermore, USA.
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, USA & Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, USA.
Institut für Theoretische Festkörperphysik, JARA-FIT and JARA-HPC, RWTH Aachen University, Aachen, Germany.
I. Physikalisches Institut and JARA-FIT, RWTH Aachen, Aachen, Germany & PGI 10 (Green IT), Forschungszentrum Jülich, Jülich, Germany.
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany.
Show others...
2019 (English)In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 364, no 6445, p. 1062-1067Article in journal (Refereed) Published
Abstract [en]
In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics. © 2019 American Association for the Advancement of Science.
Place, publisher, year, edition, pages
Washington, DC: American Association for the Advancement of Science, 2019
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:hh:diva-39862 (URN)10.1126/science.aaw1773 (DOI)000471306700040 ()31197008 (PubMedID)2-s2.0-85067625790 (Scopus ID)
2019-06-192019-06-192019-12-10Bibliographically approved