hh.sePublications
Change search
Link to record
Permanent link

Direct link
Werner, Sven, Professor emeritusORCID iD iconorcid.org/0000-0001-9069-0807
Alternative names
Publications (10 of 95) Show all publications
Gadd, H., Atabaki, M. S., Gong, M., Möllerström, E., Norrström, H., Ottermo, F., . . . Werner, S. (2024). 70 New Possibilities for District Heating. Stockholm: Energiforsk AB
Open this publication in new window or tab >>70 New Possibilities for District Heating
Show others...
2024 (English)Report (Other academic)
Abstract [en]

The ongoing transformation in European district heating systems fromthe usage of fossil-based technologies to non-fossil heat supplies issummarised by a collection of 70 possibilities linked to decarbonisation. These possibilities are exemplified by 284 implemented, planned, orproposed cases. The 70 possibilities for decarbonised district heatinginclude using heat, connecting customers, moving heat, storing heat, removing carbon dioxide, and supplying heat together with somefeatures for the entire value chain, to heat usage from heat generation orrecycling. This collection of 70 possibilities is neither complete nor doesit contain any recommendations for the possibilities or advocate forspecific possibilities.

The purpose of this project was to provide an extensive inventory ofdecarbonisation activities recently performed by district heating operators andother heat suppliers. These decarbonisation activities include the directsubstitution of heat obtained from the combustion of fossil fuels and indirectactions for obtaining more efficient district heating systems. These indirect actionsreduce costs and increase revenue, thereby improving the competitiveness ofdistrict heating. The time horizon, which is linked to the EU’s target for thereduction of greenhouse gas emissions by 55% compared to 1990 levels, is 2030. This inventory of early decarbonisation projects concerning district heatingsystems has revealed the following three key conclusions.

First, decarbonisation activities can be divided into substituting and supportingpossibilities. Substituting possibilities in heat supply include linear supply fromrenewables, heat recycling from processes that generate excess heat, and non-fossilways of meeting peak heat demands during very cold days. The linear heat supplyis based on geothermal heat, solar heat, and electricity supply. Heat recycling ispossible from various processes related to biorefineries, hydrogen supply, petrochemical plants, electricity distribution, district cooling, data centres, batteryfactories, food supply chains, and sewage waters. Heat storage can make heatdelivery more independent of heat supply and provide additional opportunities toreduce peak loads. Supporting possibilities mainly comprise activities forobtaining lower temperatures in heat distribution networks to increase profitabilitywhen using low-temperature heat sources. These activities are performed whenconnecting customers, moving heat, and using heat. Another supporting activity is the removal of biogenic carbon dioxide from the natural carbon cycle, although anappropriate international accounting system for its removal is still missing.

Second, the decarbonisation possibilities of district heating systems differ fromthose of traditional systems based on fossil fuels. The availability ofdecarbonisation possibilities for district heating depends on local conditions,whereas fossil fuels are transported from available global resources and are usedworldwide. Hereby, decarbonised district heating systems will not be as uniformas traditional systems based on fossil fuels. The local conditions lower the degrees of freedom for the implementation of substituting possibilities in existing buildingsand systems. Hence, it is important to adopt new methods for utilising the highestdegree of freedom possible in new buildings and systems.

Third, the common denominators for the 70 identified possibilities are degrees offreedom for decarbonisation, action plans for achieving lower heat distributiontemperatures, the use of heat pumps for upgrading low-temperature supplies tomeet high-temperature demands, smart digitalisation options, clear supplyresponsibilities, favourable institutional frameworks, and digital planning models. These seven common denominators are efficient tools for obtaining decarbonisedand more efficient district heating systems in the future. These redesigned and newsystems will be somewhat different than traditional systems, which have beenbased on a district heating technology that was originally elaborated for systemsbased on fossil fuels.

Place, publisher, year, edition, pages
Stockholm: Energiforsk AB, 2024. p. 219
Keywords
Decarbonisation, possibilities, cases, district heating, transformation, Europe
National Category
Energy Engineering
Research subject
Smart Cities and Communities, PROACTS
Identifiers
urn:nbn:se:hh:diva-54567 (URN)978-91-89919-40-2 (ISBN)
Funder
Energy Research, 350966
Available from: 2024-09-06 Created: 2024-09-06 Last updated: 2024-10-24Bibliographically approved
Gadd, H., Atabaki, M. S., Gong, M., Möllerström, E., Norrström, H., Ottermo, F., . . . Werner, S. (2024). 70 nya möjligheter för fjärrvärme. Stockholm: Energiforsk AB
Open this publication in new window or tab >>70 nya möjligheter för fjärrvärme
Show others...
2024 (Swedish)Report (Other academic)
Abstract [sv]

Den pågående omvandlingen av europeiska fjärrvärmesystem från användning av fossilbaserad teknik till icke-fossil värmeförsörjning sammanfattas med en utvald samling av 70 möjligheter kopplade till fossilfrihet. Dessa möjligheter exemplifieras med 284 genomförda, planerade eller föreslagna fall. De 70 möjligheterna för koldioxidfri fjärrvärme omfattar att använda värme, ansluta kunder, flytta värme, lagra värme, avskilja koldioxid och tillföra värme tillsammans med några aspekter för hela värdekedjan till värmeanvändning från värmeåtervinning eller värmegenerering. Uppsättningen av 70 möjligheter är varken komplett eller innehåller några rekommendationer för vilka möjligheter som bör användas. Syftet med detta projekt har varit att tillhandahålla en omfattande inventering av tidiga aktiviteter för att erhålla fossilfri fjärrvärme som nyligen utförts av fjärrvärmeföretag eller andra värmeaktörer. Dessa aktiviteter omfattar både direkt substitution av värme som tidigare erhållits från förbränning av fossila bränslen och stödjande indirekta åtgärder för att erhålla mer effektiva fjärrvärmesystem. Dessa stödjande åtgärder minskar kostnaderna eller ökar intäkterna som förbättrar fjärrvärmens konkurrenskraft. Tidshorisonten har varit 2030, kopplat till EU:s mål för minskning av växthusgasutsläppen med 55 % jämfört med 1990 års utsläpp. Denna inventering av tidiga projekt för fossilfri fjärrvärme har givit följande tre viktiga slutsatser. För det första, aktiviteter för fossilfri fjärrvärme kan delas in i ersättande och stödjande möjligheter. Ersättande möjligheter i värmeförsörjningen inkluderar linjär försörjning från förnybar energi, värmeåtervinning från processer som genererar restvärme och icke-fossila sätt att möta spetsbehov under mycket kalla dagar. Den linjära värmeförsörjningen baseras på geotermisk värme, solvärme och eltillförsel. Nya aktiviteter för värmeåtervinning är möjliga från många olika samhällsprocesser, såsom bioraffinaderier, vätgasförsörjning, petrokemiska anläggningar, eldistribution, fjärrkyla, datacenter, batterifabriker, livsmedelsförsörjning och avloppsvatten. Värmelager kan göra värmeleveransen mer oberoende av värmetillförseln, vilket också ger ytterligare möjligheter att minska spetsbelastningar. Stödjande möjligheter innehåller främst aktiviteter för att erhålla lägre temperaturer i värmedistributionsnät, vilket ökar lönsamheten vid användning av lågtempererade värmekällor. Dessa aktiviteter utförs när man använder värme, ansluter kunder och flyttar värme. En planerad stödaktivitet är också avskiljning av biogen koldioxid från det naturliga kolkretsloppet, även om ett lämpligt internationellt ersättningssystem för detta fortfarande saknas. För det andra, karaktären hos möjligheterna till fossilfritt skiljer sig från de traditionella erfarenheterna baserade på fossila bränslen. Tillgången på möjligheter till fossilfritt beror på lokala förhållanden, medan fossila bränslen transporterades från tillgängliga globala resurser, vilket gav full frihet att använda fossila bränslen var som helst i världen. Härigenom kommer fossilfria fjärrvärmesystem inte bli så 4likartade som traditionella fjärrvärmesystem var med fossila bränslen. De lokala förutsättningarna för fossilfri fjärrvärme ger något lägre frihetsgrader för implementering av ersättande möjligheter i befintliga byggnader eller system. Därför är det viktigt för framtiden att utnyttja den högre frihetsgrad som är möjlig i nya byggnader och system genom att använda nya metoder mm. För det tredje, de gemensamma nämnarna för de 70 identifierade möjligheterna är antal frihetsgrader för fossilfrihet, handlingsplaner för att erhålla lägre temperaturer i värmedistributionsnät, olika sätt att använda värmepumpar för att uppgradera låga framtemperaturer för att tillgodose högre temperaturbehov hos kunderna, möjliga smarta digitaliseringsalternativ, tydliga leveransansvar, gynnsamma institutionella ramar samt digitala planeringsverktyg. Dessa sju gemensamma nämnare är effektiva verktyg för att få mer effektiva fossilfria fjärrvärmesystem, eftersom den traditionella fjärrvärmetekniken en gång i tiden utformades för system baserade på användning av fossila bränslen. 

Place, publisher, year, edition, pages
Stockholm: Energiforsk AB, 2024. p. 219
Keywords
Fossilfritt, möjligheter, fall, fjärrvärme, omvandling, Europa
National Category
Energy Engineering
Research subject
Smart Cities and Communities, PROACTS
Identifiers
urn:nbn:se:hh:diva-54566 (URN)978-91-89919-39-6 (ISBN)
Funder
Energy Research, 350966
Available from: 2024-09-06 Created: 2024-09-06 Last updated: 2024-09-11
Werner, S. (2022). Network configurations for implemented low-temperature district heating. Energy, 254, part B, Article ID 124091.
Open this publication in new window or tab >>Network configurations for implemented low-temperature district heating
2022 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 254, part B, article id 124091Article in journal (Refereed) Published
Abstract [en]

This paper presents the findings and conclusions from an inventory of network configurations implemented in several early projects concerning low-temperature district heating systems implemented in both existing and new networks. The main findings are presented for each configuration group, including configuration layouts, typical temperature levels and several implemented installation examples, together with the advantages and disadvantages of each network configuration. In the assessment, a classification system comprising six different groups of typical network configurations was identified for low-temperature heat distribution. Together with eight variants within three of these six groups, fourteen possible network configurations were identified for low-temperature district heating. The main feature became the choice between a cold or warm network for the heat distribution, while the suitability of each network configuration depends on the temperatures of the available heat sources. © 2022 The Author

Place, publisher, year, edition, pages
London: Elsevier, 2022
Keywords
Low-temperature, District heating, District cooling, Inventory, Classification
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-47899 (URN)10.1016/j.energy.2022.124091 (DOI)000808087000005 ()2-s2.0-85131141583 (Scopus ID)
Projects
Low-Temperature District Heating
Funder
Swedish Energy Agency, F2017/178
Available from: 2022-08-17 Created: 2022-08-17 Last updated: 2022-08-19Bibliographically approved
Möller, B., Wiechers, E., Persson, U., Nielsen, S., Werner, S., Connolly, D., . . . Lund, H. (2022). Peta: the Pan-European Thermal Atlas : version 5.2 : developed as part of the sEEnergies project. Flensburg: Europa-Universität Flensburg
Open this publication in new window or tab >>Peta: the Pan-European Thermal Atlas : version 5.2 : developed as part of the sEEnergies project
Show others...
2022 (English)Other (Other academic)
Abstract [en]

The Pan-European Thermal Atlas version 5.2 (Peta, version 5.2). Peta is an online visualization tool for spatial data relating to energy efficiency in buildings, industry, and transport sectors. Developed as part of the sEEnergies project. Copyright Flensburg, Halmstad and Aalborg Universities 2022. 

Place, publisher, year, pages
Flensburg: Europa-Universität Flensburg, 2022
National Category
Energy Systems Remote Sensing Energy Engineering
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-48178 (URN)
Funder
EU, Horizon 2020, 846463
Available from: 2022-09-29 Created: 2022-09-29 Last updated: 2023-02-27Bibliographically approved
Norrström, H., Stålne, K., Averfalk, H. & Werner, S. (2022). Ranagård med 4GDH-teknik: Slutrapport mars 2022. Eskilstuna: Energimyndigheten
Open this publication in new window or tab >>Ranagård med 4GDH-teknik: Slutrapport mars 2022
2022 (Swedish)Report (Other academic)
Place, publisher, year, edition, pages
Eskilstuna: Energimyndigheten, 2022. p. 75
Keywords
Ny fjärrvärmeteknik, genomförande, acceptans, hinder, möjligheter
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-48278 (URN)
Projects
Ranagård med ny 4GDH-teknik
Funder
Swedish Energy Agency, 48259-1
Available from: 2022-10-06 Created: 2022-10-06 Last updated: 2024-07-12Bibliographically approved
Johansen, K. & Werner, S. (2022). Something is sustainable in the state of Denmark: A review of the Danish district heating sector. Renewable & sustainable energy reviews, 158, Article ID 112117.
Open this publication in new window or tab >>Something is sustainable in the state of Denmark: A review of the Danish district heating sector
2022 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 158, article id 112117Article, review/survey (Refereed) Published
Abstract [en]

This paper provides a coherent review of district heating in Denmark, exploring past, present and future perspectives. Danish district heating is known as unique internationally in terms of heat planning strategies, technical solutions and combinations, energy efficiency and sustainability, ownership models and financing, and it has captured the attention of district heating communities and stakeholders worldwide from the early days. Historically, a ban on landfills incentivised waste incineration, and the strategic integration of combined heat and power plants and recycling of waste heat from industry all increased energy efficiency in the energy system. Ultimately, this contributed to the top World Energy Council ranking of the Danish energy system according to the energy trilemma criteria. A cooperative mind-set, welfare state values and the notions of energy efficiency-, availability-, independency- and sustainability were all pivotal for the evolution of the district heating networks throughout Denmark. Other unique features of the Danish district heating sector include large-scale collective heat planning, the mandatory connection, the non-profit principle, the same approximate price for customers irrespective of heat density, and the relatively high average price of district heating. Moreover, district heating knowledge hubs have led to world-wide exports of district heating technologies and know-how. Future challenges for the Danish district heating sector include increasing biomass import dependency, the changing role of combined heat and power plants in the energy system, transitions to non-combustion heat supplies, and competition from individual heat pumps in single-family houses. However, future ‘smart’ thermal grids will increasingly facilitate sector coupling processes as more renewable energy resources are integrated into the energy system in Denmark and internationally. © 2022 The Authors. Published by Elsevier Ltd.

Place, publisher, year, edition, pages
Oxford: Elsevier, 2022
Keywords
Denmark, District heating, Energy transition, Heat planning, Review
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-46529 (URN)10.1016/j.rser.2022.112117 (DOI)000820110900001 ()2-s2.0-85123062091 (Scopus ID)
Projects
InterHUB
Note

Funding: Aalborg University

Available from: 2022-03-28 Created: 2022-03-28 Last updated: 2023-08-21Bibliographically approved
Østergaard, P. A., Werner, S., Dyrelund, A., Lund, H., Arabkoohsar, A., Sorknæs, P., . . . Mathiesen, B. V. (2022). The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect. Energy, 253, Article ID 124098.
Open this publication in new window or tab >>The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect
Show others...
2022 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 253, article id 124098Article in journal (Refereed) Published
Abstract [en]

Research into new advanced district heating concepts has increased since the first four generations of district heating were defined in 2014. This definition created a common framework for research and industry alike, and pointed to potential futures for district heating which could benefit from low-temperature heating in buildings. The fully developed fourth-generation district heating includes the cross-sectoral integration into the smart energy system. This paper defines four generations of district cooling to make a similar useful framework for district cooling. The first generation being pipeline refrigeration systems that were first introduced in the late 19th century, the second generation being mainly based on large compression chillers and cold water as distribution fluid, the third generation having a more diversified cold supply such as natural cooling, and the fourth generation combining cooling with other energy sectors sometimes into a renewable energy-based smart energy systems context, including combined heating and cooling. © 2022 The Authors

Place, publisher, year, edition, pages
London: Elsevier, 2022
Keywords
District cooling generations, District cooling approaches, District cooling case review, Energy system integration
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-47898 (URN)10.1016/j.energy.2022.124098 (DOI)000800047100006 ()2-s2.0-85129457791 (Scopus ID)
Note

Funding: Innovation Fund Denmark through the REINVEST project under Grant No. 6154-00022B

Available from: 2022-08-17 Created: 2022-08-17 Last updated: 2022-08-29Bibliographically approved
Sánchez-García, L., Averfalk, H., Persson, U. & Werner, S. (2021). A Closer Look at the Effective Width for District Heating Systems. In: Henrik Lund; Brian Vad Mathiesen; Poul Alberg Østergaard; Hans Jørgen Brodersen (Ed.), Book of Abstracts: 7th International Conference on Smart Energy Systems. Paper presented at 7th International Conference on Smart Energy Systems, Copenhagen, Denmark, 21-22 September 2022 (pp. 153-153). Aalborg: Aalborg Universitetsforlag
Open this publication in new window or tab >>A Closer Look at the Effective Width for District Heating Systems
2021 (English)In: Book of Abstracts: 7th International Conference on Smart Energy Systems / [ed] Henrik Lund; Brian Vad Mathiesen; Poul Alberg Østergaard; Hans Jørgen Brodersen, Aalborg: Aalborg Universitetsforlag, 2021, p. 153-153Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

District heating is an important technology for decarbonizing the heating supply in urban areas since it enables the recovery of waste heat that would otherwise be wasted and the cost-effective utilization of renewable heat. Nonetheless, the current general extent of these systems in Europe is very low, hence the need for simple methods and parameters to estimate their cost and feasibility on a large scale. One of these cost parameters is the Effective Width, which enables a first order approximation of the total pipe length in a given area. This concept, in conjunction with the average pipe diameter in the area, permits the determination of the network’s capital cost. However, previous research of Effective Width has relied on a small set of cases and has not contemplated service pipes. Therefore, there is need for a closer look and a deeper understanding of the underlying phenomena that influences this parameter. This study has analysed several Scandinavian District Heating Systems in detail and provides new evidence on the relation between Effective Width and the urban environment for both distribution and service pipes.

Place, publisher, year, edition, pages
Aalborg: Aalborg Universitetsforlag, 2021
Keywords
Effective Width, Plot Ratio, Distribution Capital Cost, Heat Density, District Heating, GIS
National Category
Energy Engineering Energy Systems Remote Sensing
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-48176 (URN)
Conference
7th International Conference on Smart Energy Systems, Copenhagen, Denmark, 21-22 September 2022
Funder
EU, Horizon 2020, 846463
Available from: 2022-09-29 Created: 2022-09-29 Last updated: 2023-03-21Bibliographically approved
Averfalk, H., Benakopoulos, T., Best, I., Dammel, F., Engel, C., Geyer, R., . . . Werner, S. (2021). Low-Temperature District Heating Implementation Guidebook: Final Report of IEA DHC Annex TS2. Implementation of Low-Temperature District Heating Systems. Stuttgart: Fraunhofer IRB Verlag
Open this publication in new window or tab >>Low-Temperature District Heating Implementation Guidebook: Final Report of IEA DHC Annex TS2. Implementation of Low-Temperature District Heating Systems
Show others...
2021 (English)Report (Other academic)
Abstract [en]

This guidebook was written between 2018 and 2021 by seventeen authors that used approximately 15 000 hours of work within the IEA DHC TS2 annex. The content is based on more than 250 literature references and 165 inspiration initiatives to obtain lower temperatures in buildings and heat distribution networks. The author group wrote 40 internal documents about early implementations of low-temperature district heating. Fifteen of these early implementations are presented in this guidebook.The guidebook contains aggregated information about the main economic drivers for low-temperature district heating. It shows how to obtain lower temperatures in heating systems inside existing and new buildings, as well as in existing and new heat distribution networks. An applied study of a campus system in Darmstadt shows the possibility of reducing temperatures in an existing heat distribution network with rather high temperatures. The competitiveness of low-temperature district heating is explored by analysing business models and heat distribution costs. Early adopters of low-temperature district heating are presented by examples and by identified transition strategies. Five groups of network configurations with fourteen variants are presented to be used for low-temperature district heating. Finally, all 165 identified inspiration initiatives and all 137 locations mentioned are listed.

Place, publisher, year, edition, pages
Stuttgart: Fraunhofer IRB Verlag, 2021. p. 201
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-45697 (URN)978-3-8396-1745-8 (ISBN)
Funder
Swedish Energy Agency
Available from: 2021-10-04 Created: 2021-10-04 Last updated: 2021-10-11Bibliographically approved
Lund, H., Østergaard, P. A., Nielsen, T. B., Werner, S., Thorsen, J. E., Gudmundsson, O., . . . Mathiesen, B. V. (2021). Perspectives on fourth and fifth generation district heating. Energy, 227, Article ID 120520.
Open this publication in new window or tab >>Perspectives on fourth and fifth generation district heating
Show others...
2021 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 227, article id 120520Article in journal (Refereed) Published
Abstract [en]

Fourth-generation district heating (4GDH) has been used as a label or expression since 2008 to describe a transition path for decarbonization of the district heating sector and was defined in more detail in 2014. During recent years, several papers have been published on a concept called fifth generation district heating and cooling (5GDHC). This article identifies differences and similarities between 4GDH and 5GDHC regarding aims and abilities. The analysis shows that these two are common not only in the overarching aim of decarbonization but that they also to some extent share the five essential abilities first defined for 4GDH. The main driver for 5GDHC has been a strong focus on combined heating and cooling, using a collective network close to ambient temperature levels as common heat source or sink for building-level heat pumps. It is found that 5GDHC can be regarded as a promising technology with its own merits, yet a complementary technology that may coexist in parallel with other 4GDH technologies. However, the term “generation” implies a chronological succession, and the label 5GDHC does not seem compatible with the established labels 1GDH to 4GDH. © 2021 The Authors. Published by Elsevier Ltd.

Place, publisher, year, edition, pages
London: Elsevier, 2021
Keywords
Fourth-generation district heating, Fifth-generation district heating and cooling, Decarbonization, Sustainable energy supply, Smart energy systems
National Category
Energy Engineering
Identifiers
urn:nbn:se:hh:diva-45699 (URN)10.1016/j.energy.2021.120520 (DOI)000653079800009 ()2-s2.0-85103926339 (Scopus ID)
Available from: 2021-10-04 Created: 2021-10-04 Last updated: 2021-10-25Bibliographically approved
Projects
Future heat demands 2 [P37905-1_Energi]; Halmstad UniversityDistrict heating research in China [P37907-1_Energi]; Halmstad UniversityDistrict heating in the energy system 2 [P37906-1_Energi]; Halmstad UniversityFuture district heating technology [P41302-1_Energi]; Halmstad UniversityPre-study - new task sharing annex within the IEA-DHC-programme [P42854-1_Energi]; Halmstad University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9069-0807

Search in DiVA

Show all publications