hh.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 65) Show all publications
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2019). Relay Grouping to Guarantee Timeliness and Reliability in Wireless Networks. IEEE Communications Letters, 23(9), 1661-1664
Open this publication in new window or tab >>Relay Grouping to Guarantee Timeliness and Reliability in Wireless Networks
2019 (English)In: IEEE Communications Letters, ISSN 1089-7798, E-ISSN 1558-2558, Vol. 23, no 9, p. 1661-1664Article in journal (Refereed) Published
Abstract [en]

Relaying can increase reliability, range, or throughput. In many cyber-physical systems (CPS), relaying is used to maximize reliability before a given deadline. Since concurrent transmissions are not supported by most CPS, time-division multiple access (TDMA) is typically used. However, a major drawback of relaying in TDMA is that pre-allocated time-slots are wasted if their respective transmitters do not have any correctly received packet to relay. Therefore, in this letter, we propose a novel relay grouping scheme to overcome this drawback. Numerical results show that the proposed scheme significantly enhances the reliability while guaranteeing the deadline for each message. © Copyright 2019 IEEE - All rights reserved.

Place, publisher, year, edition, pages
Piscataway: Institute of Electrical and Electronics Engineers (IEEE), 2019
Keywords
Relay networks, industrial communication, multi-access communication
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-41274 (URN)10.1109/LCOMM.2019.2923406 (DOI)000485733200048 ()2-s2.0-85072257501 (Scopus ID)
Funder
Swedish Foundation for Strategic Research
Available from: 2019-12-18 Created: 2019-12-18 Last updated: 2019-12-19Bibliographically approved
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2017). A novel relaying scheme to guarantee timeliness and reliability in wireless networks. In: 2016 IEEE Globecom Workshops (GC Wkshps): Proceedings. Paper presented at IEEE Globecom 2016 – 3rd International Workshop on Ultra-Reliable and Low-Latency Communications in Wireless Networks (URLLC), Washington, DC, USA, Dec. 8, 2016. New York: IEEE, Article ID 7848822.
Open this publication in new window or tab >>A novel relaying scheme to guarantee timeliness and reliability in wireless networks
2017 (English)In: 2016 IEEE Globecom Workshops (GC Wkshps): Proceedings, New York: IEEE, 2017, article id 7848822Conference paper, Published paper (Refereed)
Abstract [en]

Many emerging applications based on wireless networks involve distributed control. This implies high requirements on reliability, but also on a predictable maximum delay and sometimes jitter. Further, many distributed control systems need to be constructed using off-the-shelf components, both due to cost constraints and due to interoperability with existing networks. This, in turn, implies that concurrent transmissions and multiuser detection are seldom possible. Instead, half-duplex time division multiple access (TDMA) is typically used. The total communication delay thereby depends on the packet error rate and the time until channel access is granted. With TDMA, channel access is upper-bounded and the jitter can be set to zero. With the aim to reduce the packet error rate given a certain deadline (a set of TDMA time-slots), we propose a novel relaying scheme, which can be implemented on top of off-the-shelf components. The paper includes a full analysis of the resulting error probability and latency. Numerical results show that the proposed relaying strategy significantly improves reliability given a certain maximum latency, or alternatively, reduces the latency, given a certain target reliability requirement. © 2016 IEEE.

Place, publisher, year, edition, pages
New York: IEEE, 2017
Keywords
Relaying Strategies, Reliability, Latency
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-32701 (URN)10.1109/GLOCOMW.2016.7848822 (DOI)000401921400025 ()2-s2.0-85015833222 (Scopus ID)978-1-5090-2482-7 (ISBN)978-1-5090-2481-0 (ISBN)
Conference
IEEE Globecom 2016 – 3rd International Workshop on Ultra-Reliable and Low-Latency Communications in Wireless Networks (URLLC), Washington, DC, USA, Dec. 8, 2016
Available from: 2016-12-15 Created: 2016-12-15 Last updated: 2022-06-07Bibliographically approved
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2017). Low Complexity Algorithm for Efficient Relay Assignment in Unicast/Broadcast Wireless Networks. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring): . Paper presented at Vehicular Technology Conference, Sydney, Australia, 4-7 June, 2017. IEEE
Open this publication in new window or tab >>Low Complexity Algorithm for Efficient Relay Assignment in Unicast/Broadcast Wireless Networks
2017 (English)In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), IEEE, 2017Conference paper, Published paper (Refereed)
Abstract [en]

Using relayers in wireless networks enables higher throughput, increased reliability or reduced delay. However, when building networks using commercially available hardware, concurrent transmissions by multiple relayers are generally not possible. Instead one specific relayer needs to be assigned for each transmission instant. If the decision regarding which relayer to assign, i.e., which relayer that has the best opportunity to successfully deliver the packet, can be taken online, just before the transmission is to take place, much can be gained. This is particularly the case in mobile networks, as a frequently changing network topology considerably affects the choice of a suitable relayer. To this end, this paper addresses the problem of online relay assignment by developing a low-complexity algorithm highly likely to find the optimal combination of relaying nodes that minimizes the resulting error probability at the targeted receiver(s) using a mix of simulated annealing and ant colony algorithms, such that relay assignments can be made online also in large networks. The algorithm differs from existing works in that it considers both unicast as well as broadcast and assumes that all nodes can overhear each other, as opposed to separating source nodes, relay nodes and destination nodes into three disjoint sets, which is generally not the case in most wireless networks.

Place, publisher, year, edition, pages
IEEE, 2017
Keywords
Relay Networks, Error Probability, Latency, Simulated Annealing, Ant Colony Optimization
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-35051 (URN)10.1109/VTCSpring.2017.8108261 (DOI)2-s2.0-85040601258 (Scopus ID)978-1-5090-5932-4 (ISBN)978-1-5090-5933-1 (ISBN)
Conference
Vehicular Technology Conference, Sydney, Australia, 4-7 June, 2017
Projects
ACDCREADYSafeCOP
Funder
Knowledge FoundationELLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Note

Additional funding: the ECSEL Joint Undertaking under grant agreements no 692529, and National funding

Available from: 2017-09-21 Created: 2017-09-21 Last updated: 2022-06-07Bibliographically approved
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2017). Relaying with Packet Aggregation for Half-Duplex All-to-All Broadcast in Time-Critical Wireless Networks. In: 2017 IEEE Globecom Workshops (GC Wkshps): . Paper presented at 2017 IEEE Global Telecommunications (GLOBECOM), Singapore, Singapore, December 4-8, 2017. Piscataway, NJ: IEEE
Open this publication in new window or tab >>Relaying with Packet Aggregation for Half-Duplex All-to-All Broadcast in Time-Critical Wireless Networks
2017 (English)In: 2017 IEEE Globecom Workshops (GC Wkshps), Piscataway, NJ: IEEE, 2017Conference paper, Published paper (Refereed)
Abstract [en]

Wireless automation and control networks, with stringent latency and reliability requirements, typically use half-duplex communications combined with deadline-aware scheduling of time slots to nodes. To introduce higher reliability in legacy industrial control systems, extra time slots are usually reserved for retransmissions. However, in distributed wireless control systems, where sensor data from several different nodes must be timely and reliably available at all places where controller decisions are made, this is particularly cumbersome as all nodes may not hear each other and extra time slots imply increased delay. To enable all-to-all broadcast with manageable overhead and complexity in such systems, we therefore propose a novel relaying strategy using packet aggregation. The strategy assigns relayers to time slots, as well as determines which packets to aggregate in each slot, using a low-complexity algorithm such that ultra-reliable communications can be obtained with maintained end-to-end latency.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE, 2017
Keywords
Broadcasting, Error Probability, Latency, Reliability
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-35192 (URN)10.1109/GLOCOMW.2017.8269134 (DOI)2-s2.0-85050469430 (Scopus ID)978-1-5386-3920-7 (ISBN)978-1-5386-3921-4 (ISBN)
Conference
2017 IEEE Global Telecommunications (GLOBECOM), Singapore, Singapore, December 4-8, 2017
Projects
SIDUSSafeCOP
Funder
Knowledge Foundation, 20130086 READY
Note

As manuscript in thesis; Funding: Knowledge Foundation through the SIDUS project 20130086 READY and from the SafeCOP project, funded from the ECSEL Joint Undertaking under grant agreement n 692529, and from National funding.

Available from: 2017-10-13 Created: 2017-10-13 Last updated: 2022-06-07Bibliographically approved
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2015). A Framework for Reliable Exchange of Periodic and Event-Driven Messages in Platoons. In: 2015 IEEE International Conference on Communication Workshop: . Paper presented at EEE International Conference on Communication Workshop, ICCW 2015, London, United Kingdom, 8 – 12 June, 2015 (pp. 2471-2476). Piscataway: IEEE conference proceedings
Open this publication in new window or tab >>A Framework for Reliable Exchange of Periodic and Event-Driven Messages in Platoons
2015 (English)In: 2015 IEEE International Conference on Communication Workshop, Piscataway: IEEE conference proceedings, 2015, p. 2471-2476Conference paper, Published paper (Refereed)
Abstract [en]

Platooning is widely considered a promising approach to decrease fuel consumption by reducing the air drag. However, in order to achieve the benefits of aerodynamic efficiency, the inter-vehicle distances must be kept short. This implies that the intra-platoon communication must not only be reliable but also able to meet strict timing deadlines. In this paper, we propose a framework that reliably handles the co-existence of both time-triggered and event-driven control messages in platooning applications and we derive an efficient message dissemination technique. We propose a semi-centralized time division multiple access (TDMA) approach, which e.g., can be placed on top of the current standard IEEE 802.11p and we evaluate the resulting error probability and delay, when using it to broadcast periodic beacons and disseminating eventdriven messages within a platoon. Simulation results indicate that the proposed dissemination policy significantly enhances the reliability for a given number of available time-slots, or alternatively, reduces the delay, in terms of time-slots, required to achieve a certain target error probability, without degrading the performance of co-existing time-triggered messages. © 2015 IEEE

Place, publisher, year, edition, pages
Piscataway: IEEE conference proceedings, 2015
Series
IEEE International Conference on Communication Workshop, ISSN 2164-7038 ; 2015
National Category
Communication Systems Telecommunications
Identifiers
urn:nbn:se:hh:diva-28231 (URN)10.1109/ICCW.2015.7247547 (DOI)000380459900401 ()2-s2.0-84947775613 (Scopus ID)978-1-4673-6305-1 (ISBN)
Conference
EEE International Conference on Communication Workshop, ICCW 2015, London, United Kingdom, 8 – 12 June, 2015
Projects
ACDC
Funder
Knowledge Foundation
Available from: 2015-05-08 Created: 2015-05-08 Last updated: 2022-06-07Bibliographically approved
Balador, A., Böhm, A., Uhlemann, E., Calafate, C. T. & Cano, J.-C. (2015). A Reliable Token-Based MAC Protocol for Delay Sensitive Platooning Applications. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall): . Paper presented at IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, MA, USA, Sep. 6-9, 2015. [S.l.]: IEEE, Article ID 7390813.
Open this publication in new window or tab >>A Reliable Token-Based MAC Protocol for Delay Sensitive Platooning Applications
Show others...
2015 (English)In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), [S.l.]: IEEE, 2015, article id 7390813Conference paper, Published paper (Refereed)
Abstract [en]

Platooning is both a challenging and rewarding application. Challenging since strict timing and reliability requirements are imposed by the distributed control system required to operate the platoon. Rewarding since considerable fuel reductions are possible. As platooning takes place in a vehicular ad hoc network, the use of IEEE 802.11p is close to mandatory. However, the 802.11p medium access method suffers from packet collisions and random delays. Most ongoing research suggests using TDMA on top of 802.11p as a potential remedy. However, TDMA requires synchronization and is not very flexible if the beacon frequency needs to be updated, the number of platoon members changes, or if retransmissions for increased reliability are required. We therefore suggest a token-passing medium access method where the next token holder is selected based on beacon data age. This has the advantage of allowing beacons to be re-broadcasted in each beacon interval whenever time and bandwidth are available. We show that our token-based method is able to reduce the data age and considerably increase reliability compared to pure 802.11p. © 2015 IEEE.

Place, publisher, year, edition, pages
[S.l.]: IEEE, 2015
Keywords
Vehicles, Reliability, Delays, Media Access Protocol, Fuels, Vehicular ad hoc networks, Broadcasting
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-35704 (URN)10.1109/VTCFall.2015.7390813 (DOI)000380467300035 ()2-s2.0-84964501824 (Scopus ID)978-1-4799-8091-8 (ISBN)978-1-4799-8090-1 (ISBN)
Conference
IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, MA, USA, Sep. 6-9, 2015
Projects
ACDC
Funder
Knowledge Foundation
Note

This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543- C03-01. Balador is funded by ERASMUS+ programme, and Böhm and Uhlemann are also funded by the Knowledge Foundation through the ACDC project.

Available from: 2018-02-20 Created: 2018-02-20 Last updated: 2018-02-20Bibliographically approved
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2015). A Simple Relaying Scheme to Guarantee Timeliness and Reliability in Wireless Networks.
Open this publication in new window or tab >>A Simple Relaying Scheme to Guarantee Timeliness and Reliability in Wireless Networks
2015 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Many emerging applications based on wireless networks involves distributed control. This implies high requirements on reliability, but also on maximum delay and sometimes jitter. The total delay depends on the packet error rate and the time until channel access is granted. With e.g., TDMA, channel access is upper-bounded and the jitter zero. To reduce the packet error rate given a certain deadline (a set of TDMA time-slots), we propose a simple relaying scheme, including a full analysis of its resulting error probability and delay. Numerical results show that the proposed relaying strategy significantly improves reliability given a certain message deadline.

National Category
Communication Systems Telecommunications
Identifiers
urn:nbn:se:hh:diva-28243 (URN)
Projects
ACDC
Funder
Knowledge FoundationeLLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications
Available from: 2015-05-11 Created: 2015-05-11 Last updated: 2022-06-07Bibliographically approved
Balador, A., Böhm, A., Uhlemann, E., Calafate, C. T., Ji, Y., Cano, J.-C. & Manzoni, P. (2015). An Efficient MAC Protocol for vehicle platooning in automated highway systems. In: : . Paper presented at 2015 IEEE 82nd Vehicular Technology Conference: VTC2015-Fall, Boston, MA, USA, 6–9 September, 2015.
Open this publication in new window or tab >>An Efficient MAC Protocol for vehicle platooning in automated highway systems
Show others...
2015 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Lately, all the top truck manufacturers are investing considerable resources in the research and development of platooning systems which would allow vehicles to save fuel and improve safety by travelling in a close-following manner. The platooning system requires frequent and reliable vehicle-to-vehicle communications. As platooning takes place in a vehicular ad hoc network, the use of IEEE 802.11p is close to mandatory. However, the 802.11p medium access method suffers from packet collisions and random delays. Most ongoing research suggests using TDMA on top of 802.11p as a potential remedy. However, TDMA requires synchronization and is not very flexible if the beacon frequency needs to be updated, the number of platoon members changes, or if re-transmissions for increased reliability are required. We therefore suggest a token-passing medium access method where the next token holder is selected based on beacon data age. This has the advantage of allowing beacons to be re-broadcasted in each beacon interval whenever time and bandwidth are available. We show that our token-based method is able to reduce the data age and considerably increase reliability considerably compared to pure 802.11p.

Keywords
IEEE 802.11p, Vehicular Ad Hoc Networks, Platooning, Beacon Transmission
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-30166 (URN)
Conference
2015 IEEE 82nd Vehicular Technology Conference: VTC2015-Fall, Boston, MA, USA, 6–9 September, 2015
Projects
ACDC
Funder
Knowledge Foundation
Note

This work was partially supported by the Ministerio de Economa y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R. Balador is funded by the ERASMUS+ programme and by the National Institute of Informatics International Internship Program. Bohm and Uhlemann are funded by the Knowledge Foundation through the ACDC project.

Available from: 2016-01-14 Created: 2016-01-14 Last updated: 2020-01-28Bibliographically approved
Hoang, L.-N., Uhlemann, E. & Jonsson, M. (2015). An Efficient Message Dissemination Technique in Platooning Applications. IEEE Communications Letters, 19(6), 1017-1020
Open this publication in new window or tab >>An Efficient Message Dissemination Technique in Platooning Applications
2015 (English)In: IEEE Communications Letters, ISSN 1089-7798, E-ISSN 1558-2558, Vol. 19, no 6, p. 1017-1020Article in journal (Refereed) Published
Abstract [en]

Autonomous driving in road trains, a.k.a. platooning, may reduce fuel consumption considerably if the intervehicle distances are kept short. However, to do this, the intraplatoon communication must not only be reliable but also able to meet strict deadlines. While time-triggered messages are the foundation of most distributed control applications, platooning is likely to also require dissemination of event-driven messages. While much research work has focused on minimizing the age of periodic messages, state-of-the-art for disseminating eventdriven messages is to let all nodes repeat all messages and focus on mitigating broadcast storms. We derive an efficient message dissemination scheme based on relay selection which minimizes the probability of error at the intended receiver(s) for both unicast and broadcast, without degrading the performance of co-existing time-triggered messages. We present a full analysis of the resulting error probability and delay, when relayers, selected by our algorithm, are used to disseminate messages within a platoon. Numerical results indicate that the proposed relaying policy significantly enhances the reliability for a given delay.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE Press, 2015
National Category
Communication Systems Telecommunications
Identifiers
urn:nbn:se:hh:diva-28228 (URN)10.1109/LCOMM.2015.2416174 (DOI)000356164000032 ()2-s2.0-84933507762 (Scopus ID)
Projects
ACDC
Funder
Knowledge Foundation
Available from: 2015-05-08 Created: 2015-05-08 Last updated: 2022-06-07Bibliographically approved
Girs, S., Willig, A., Uhlemann, E. & Björkman, M. (2015). Scheduling Transmissions in Industrial Networks Using Source Relaying and Packet Aggregation. In: 2015 IEEE World Conference on Factory Communication Systems (WFCS): . Paper presented at IEEE World Conference on Factory Communication Systems (WFCS), Palma de Mallorca, Spain, May 27-29, 2015 (pp. 1855-1864). Piscataway, NJ: IEEE, Article ID 7160565.
Open this publication in new window or tab >>Scheduling Transmissions in Industrial Networks Using Source Relaying and Packet Aggregation
2015 (English)In: 2015 IEEE World Conference on Factory Communication Systems (WFCS), Piscataway, NJ: IEEE, 2015, p. 1855-1864, article id 7160565Conference paper, Published paper (Refereed)
Abstract [en]

Wireless networks present a promising alternative to the currently used wired systems as they are more flexible, easier to install and maintain. However, requirements on reliability and timeliness which at present are met by wired networks, also need be fulfilled by wireless solutions. Relaying and packet aggregation have been recognised as viable tools to do this. However, introducing additional relay nodes into an industrial network is costly. Hence, in this paper we propose to use a combination of relaying and packet aggregation performed by the source nodes themselves. The results show that our proposal improves performance considerably, but also that the transmission schedule plays a crucial role. A schedule adapting to the varying channel conditions, improves the performance substantially. By carefully choosing which packet to aggregate, even further improvements can be achieved. © 2015 IEEE.

Place, publisher, year, edition, pages
Piscataway, NJ: IEEE, 2015
Keywords
Schedules, Numerical models, Wireless sensor networks, Aggregates, Wireless networks, Reliability
National Category
Communication Systems
Identifiers
urn:nbn:se:hh:diva-35706 (URN)10.1109/WFCS.2015.7160565 (DOI)000380618100021 ()2-s2.0-84942278861 (Scopus ID)978-1-4799-8244-8 (ISBN)
Conference
IEEE World Conference on Factory Communication Systems (WFCS), Palma de Mallorca, Spain, May 27-29, 2015
Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2018-01-17Bibliographically approved
Projects
Reliable Real-Time Communications [2008-03431_Vinnova]; Halmstad University
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-6497-4099

Search in DiVA

Show all publications