Open this publication in new window or tab >>Show others...
2023 (English)In: Sustainability, E-ISSN 2071-1050, Vol. 15, no 3, article id 2717Article in journal (Refereed) Published
Abstract [en]
Mobility as a Service (MaaS) combines various modes of transportation to present mobility services to travellers based on their transport needs. This paper proposes a knowledge-based framework based on Artificial Intelligence (AI) to integrate various mobility data types and provide travellers with customized services. The proposed framework includes a knowledge acquisition process to extract and structure data from multiple sources of information (such as mobility experts and weather data). It also adds new information to a knowledge base and improves the quality of previously acquired knowledge. We discuss how AI can help discover knowledge from various data sources and recommend sustainable and personalized mobility services with explanations. The proposed knowledge-based AI framework is implemented using a synthetic dataset as a proof of concept. Combining different information sources to generate valuable knowledge is identified as one of the challenges in this study. Finally, explanations of the proposed decisions provide a criterion for evaluating and understanding the proposed knowledge-based AI framework. © 2023 by the authors.
Place, publisher, year, edition, pages
Basel: MDPI, 2023
Keywords
mobility as a service, knowledge-based, explainability
National Category
Computer Sciences
Research subject
Smart Cities and Communities
Identifiers
urn:nbn:se:hh:diva-49970 (URN)10.3390/su15032717 (DOI)000929663500001 ()2-s2.0-85148043364 (Scopus ID)
Funder
Knowledge Foundation, 20180181
2023-02-142023-02-142023-08-21Bibliographically approved