Endre søk
Link to record
Permanent link

Direct link
Alternativa namn
Publikasjoner (1 av 1) Visa alla publikasjoner
Karimi, M., Jain, V., Heurlin, M., Nowzari, A., Hussain, L., Lindgren, D., . . . Pettersson, H. (2017). Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors [Letter to the editor]. Nano letters (Print), 17(6), 3356-3362
Åpne denne publikasjonen i ny fane eller vindu >>Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors
Vise andre…
2017 (engelsk)Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 6, s. 3356-3362Artikkel i tidsskrift, Letter (Fagfellevurdert) Published
Abstract [en]

The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n+–i–n+ InP nanowires periodically ordered in arrays. The nanowires were grown by metal–organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiOx/ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors. © 2017 American Chemical Society.

sted, utgiver, år, opplag, sider
Washington, DC: American Chemical Society (ACS), 2017
Nanowires, disc-in-nanowire, infrared photodetectors, quantum discs
HSV kategori
urn:nbn:se:hh:diva-34047 (URN)10.1021/acs.nanolett.6b05114 (DOI)000403631600005 ()28535059 (PubMedID)2-s2.0-85020825146 (Scopus ID)
Tilgjengelig fra: 2017-06-10 Laget: 2017-06-10 Sist oppdatert: 2018-04-03bibliografisk kontrollert
ORCID-id: ORCID iD iconorcid.org/0000-0001-7155-7103