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Abstract—We present a model-based feature extractor to
describe neighborhoods around keypoints by finite expansion,
estimating the spatially varying orientation by harmonic func-
tions. The iso-curves of such functions are highly symmetric w.r.t.
the origin (a keypoint) and the estimated parameters have well
defined geometric interpretations. The origin is also a unique
singularity of all harmonic functions, helping to determine the
location of a keypoint precisely, whereas the functions describe
the object shape of the neighborhood. This is novel and comple-
mentary to traditional texture features which describe texture-
shape properties i.e. they are purposively invariant to translation
(within a texture). We report on experiments of verification
and identification of keypoints in forensic fingerprints by using
publicly available data (NIST SD27), and discuss the results
in comparison to other studies. These support our conclusions
that the novel features can equip single cores or single minutia
with a significant verification power at 19% EER, and an
identification power of 24-78% for ranks of 1-20. Additionally,
we report verification results of periocular biometrics using near-
infrared images, reaching an EER performance of 13%, which
is comparable to the state of the art. More importantly, fusion
of two systems, our and texture features (Gabor), result in a
measurable performance improvement. We report reduction of
the EER to 9%, supporting the view that the novel features
capture relevant visual information, which traditional texture
features do not.

Index Terms—image analysis, biometrics, forensics, features,
descriptors, minutia, cores, deltas, feature maps, dense features,
orientation, direction, structure tensor, SAFE, Gabor, fingerprint,
SD27

I. INTRODUCTION

WE suggest the use of a model explaining the orientation
field of the neighborhood of a keypoint by a finite

sequence of basis functions which have a singularity in com-
mon, the keypoint itself. The purpose is to give the keypoint
an identity as much unique as possible by explaining its
neighborhood with reference to the singularity. This is because
each basis function (except one) has no other singularity
than the one at the origin, which is the keypoint, easing
identification of keypoints.

Because it is model-based, the feature extraction process
has the power of providing information about the quality of
the model fit. Model parameters are the features that explain
a neighborhood. The explanation can be significant or poor,
which is represented by the quality.

The goal of the description is to represent the properties of
the neighborhood as unique as possible, to give to its center a
label, the keypoint identity. Furthermore, we want to give an
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identity to few points in comparison to texture segmentation
where one wishes to give an identity or label to a continuum
of points, a region. Thus the goal is to extract object properties
rather than texture properties of a neighborhood1.

We will study our descriptors in the context of forensic
fingerprints (500 dpi), Fig. 1. They are comprised of ridges
forming singularities in micro scale (minutiae, which can
be of type bifurcation or end-point), or macro-scale (cores,
and deltas) [1]. Collectively, we will call them keypoints.
The fingerprints taken at highly controlled environments such
as police-stations are called tenprints. Fingerprints originated
from uncontrolled conditions e.g. collected from a crime
scene are called fingermarks (in Europe), or latents (in USA).
Fingermarks have very poor quality compared to tenprints,
posing challenges to human and machine experts alike.

We have also studied our feature extraction by verifying
identity using periocular images. Irises are usually not distin-
guished from one another by extracting keypoints in biometric
recognition, but by methods quantifying texture properties. We
evaluated if object properties bring complementary informa-
tion to periocular recognition by extracting them on a regular
grid of points placed at the pupil center.

A. Related work

A desired property of texture features is invariance to
translation by which the pixels of a region inherit a common
property allowing to delineate the texture from other textures,
[2]. However, machine vision also uses sparse keypoints to
which the corresponding feature vectors are associated. In
combination, such keypoints can be used to identify visual
objects, for e.g. image content based retrievals, [3], navigation
[4], and image registration [5]. The feature vector describes
then the neighborhood around the keypoint it is associated
with. With this in mind, several feature vectors have been sug-
gested [6], including Scale-invariant feature transform (SIFT)
[7] or Speeded Up Robust Features (SURF) [8] for general
visual object recognition.

One of the earliest usages of image comparison by key-
points is in forensic fingerprint matching, long before the
computer era, e.g. the 19’th century contributors, J. Purkynĕ,
W. Herschel, A. Bertillon, F. Galton, E. Henry, A. Haque, C.
Bose, e.g. [9]. Here the object is a finger and the mission
is to conclude if two fingerprints originate from it, by using
keypoints which are minutiae, cores, deltas. General purpose

1This is an analogy of “particle” and “wave” notions in physics, where the
former is characterized by a well defined position, and the latter by being
repetitive.
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keypoint descriptors such as SIFT [10], SURF [11], LBP [12]
have hitherto not been as performant as fingerprint specific
descriptors. Nonetheless, in matching tenprints to tenprints,
SIFT features are suggested to extract texture properties,
reaching ∼10% EER, in contrast to minutiae positions and
directions descriptor performance of 2% EER [10].

Similar to SIFT, LBP applies histogramming, which is
the source of their translation invariance, to binary codes
representing the orientations of iso-curves passing through a
keypoint and a circle around it. The latter is, in its essence,
what makes SIFT and SURF features translation invariant
(texture descriptors) too. Performance of the texture based
periocular and iris images with these features is therefore
expectedly high: 7% EER with SIFT features, 19% with LBP
[13] and ∼11% EER with SIFT features [14].

To the best of our knowledge there is no study on the
performance of general purpose feature vectors when match-
ing fingermarks to tenprints. This is presumably because, i)
generic feature vectors are most efficient when applied to own
keypoints (rather than minutiae), ii) they extract 2-3 orders
of magnitudes more keypoints than what a human fingerprint
expert endorses as reliable, iii) the repeatability of their
extracted keypoints on fingermarks are yet to be demonstrated
and iv) human expert cannot interpret or interfere with the high
(128 in [10], [11]) dimensional vectors for each keypoint.

For good quality fingerprints Gabor filter responses at
(8) different directions can be established [15], yielding the
fingercode of the neighborhoods of a core. The study of [16]
is similar in the spirit and suggests a polar sampling of the
gradient field (angle, varying in [0, π]) around a keypoint to be
neighborhood descriptors. By contrast works [17], [18] reports
identification performance of fingermarks against tenprints
using minutiae directions, skeleton, and orientation fields,
showing that there is a significant unexploited potential of
non-minutia features in identification. However, the orientation
fields and (ridge) skeletons of fingermarks are reconstructed
from manually extracted minutiae, whereas those of the ten-
prints were based on outputs of (undisclosed) commercial
software.

Periocular recognition has gained attention recently in the
biometrics field [19], [20], [13], [21]. Periocular refers to the
face region in the immediate vicinity of the eye, including
the eye, eyelids, lashes and eyebrows. It has emerged as
a promising trait for unconstrained biometrics, with a sur-
prisingly high discrimination ability. One advantage is its
availability over a wide range of distances even when the iris
texture cannot be reliably obtained (low resolution) or under
partial face occlusion (close distances). The most widely used
approaches for periocular recognition include LBP and, to a
lesser extent, Histogram of Oriented Gradients (HOG) [22]
and SIFT keypoints. The use of different experimental setups
and databases make difficult a direct comparison between
existing works. The study of Park et al. [13] compares LBP,
HOG and SIFT using the same data, with SIFT giving the
best performance 6.95% EER, followed by LBP 19.26% EER
and HOG 21.78% EER. Other works with LBPs, however,
report EER below 1% [23], [24]. Gabor features were also
proposed in a work of 2002 [19]. Here, the authors used three

machine experts to process Gabor features from the facial
regions surrounding the eyes and the mouth, achieving very
low error rates(EER≤0.3%). Another important set of research
works have concentrated their efforts in the fusion of different
algorithms, for example [25], [26].

B. Overview and contributions

The feature extraction method includes three main steps
as shown on Fig. 1. Given an input image, we estimate its
orientation field, Sec. II. This is an iterative process for noisy
images, which also includes the absolute frequency field as
a byproduct. The feature extractor expects that its input has
complex (pixel) values, where argument (angle) and magnitude
(real, non-negative) information define the model parameter
and the error of fitting. This is in itself not novel, [27],
[28], but automatic extraction of fingermark orientation fields
(including the quality measures) and offering this field to a
forensic (human) expert to verify or edit it, to the best of our
knowledge, is a novelty. At the end of Step 1 (and even Step
2) the resulting complex fields are meaningful (for a human
forensic expert) because the complex pixels are measurements
of angles (model parameters) which can be displayed as a color
image in HSV color space by steering the hue component
(orientation angle) and the brightness component (quality),
respectively. Usage of the same complex representation offers
higher resolution both for the human, seeing a color image,
and an algorithm, handling a dense complex field. The human
examiner can interpret dark pixels as low-confidence pixels
and clearly visible hue as reliable angle parameters. This
enables an interface between the forensic examiner, and a
machine algorithm, for manual verification or editing of the
computed angle estimations.

At Step 2 we confine the dense complex field around an
arbitrary keypoint to a set of torus shaped areas of growing
radii. This is done by multiplying the complex valued image
by the (non-negative, real) magnitudes of a set of filters which
are torus shaped and are normalized to reflect the quality as
well as absence of information within the support areas of
filter functions, Sec. II. Subsequently, the extracted complex
tori are projected onto a set of complex filter functions, which
fit angle parameters of highly symmetric function families to
the input (complex) tori, along with the quality of the fitting,
Sec. III-E. The result is equivalent to extracting a Generalized
Structure Tensor feature by using the (complex) symmetry
derivatives of Gaussians. Neither of the latter concepts are
novel, [29]. However, the filter function, Sec. III-C, realizing a
(mathematically) dense set of filters, is a useful novelty. This is
because, beside allowing finite expansion and extracting low-
dimensional features which are meaningful to humans, the
filters can be easily adapted to novel applications, via their
parameters, Sec. III-B. The latter are directly connected to
width and location of tori, as detailed in the Appendix.

The resulting feature vector explains the image content
around a keypoint by families of functions which all except
one have the keypoint as singularity. This makes the feature
vector as a descriptor of object rather than texture properties
of the keypoint neighborhood, because the filter response
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Fig. 1. Flow chart of the suggested object-based feature extraction visualized by the example of fingerprint image. Step 1. Preprocessing by means of Linear
Structure Tensor (LST) to produce dense orientation field. Step 2. Extraction of ring shaped areas in neighbourhood of point of interest followed by feature
extraction. Extraction is performed by projecting orientation image information on basis of harmonic functions generated with Generalized Structure Tensor
(GST). Step 3. Alignment by rotation compensation in the feature space for matching

magnitudes quickly attenuate when going away from the
keypoint. We are not aware of other feature vectors that
systematically measure image contents that are not translation
invariant. The proposed features are translation variant, and
rotation steerable, achieving rotation invariance by rotation
compensation, through complex multiplication, Step 3, Sec.
III-D. This is important to practice since rotation invariance
is achieved by few multiplications of the features, without
rotating the underlying image data. The steerable filter theory
of [30], which is linear w.r.t. the original image, shares some
concepts with the feature vector presented in Sec. III-C.
Nonetheless it is significantly different, since the steerability of
our descriptors concerns orientation field, which is non-linear,
though tractably2 connected to the iso-curves of the original
image, [29]. The arguments of our feature vector elements are
angle parameters of harmonic functions and the magnitudes
are quality measures, which both can be interpreted visually
by humans as collection of curves. We are not aware of other
feature vectors which are orientation steerable and represent
visually meaningful curves.

In the experiments, Sec. IV, we provide verification and
identification results using publicly available databases, and
published methods, for repeatability and future comparisons,
to quantify the recognition power of the suggested features in
isolation. This is novel in its essence for fingerprints because
in prior studies it is not possible to read out the recognition
power of descriptors for a variety of reasons. These include
i) reporting only identification performance (CMC-curves)
means that the background data must be fully available and
future experiments must actually precisely use them3, ii) all
used methods are not published in prior studies, which is an
obstacle to a critical analysis, e.g. on their influence in the
suggested recognition performance in comparison to that of
the descriptors.

2Squaring is implicit in the structure tensors or their equivalent complex
fields representing orientations in double angle.

3The CMC-curves are “normalized” with the number of people in the query
population, not with the number of people in the background data. Accord-
ingly, the curves will systematically shift with the size of the background
data.

II. ORIENTATION FIELD ESTIMATION

Our feature extractor analyzes variations of the complex
valued orientation field around keypoints. We suggest to use
the Linear Symmetry Tensor (LST) [27] with the purpose to
obtain a dense orientation field together with quality measures.
However, to obtain a reliable orientation field, an iterative
procedure can be utilized if the input image is noisy, as is
the case with forensic fingermarks. The procedure comprises
of an initial estimation of the dense orientation field and the
(absolute) frequency field improving one another in subsequent
iterations via enhanced images in intermediate steps [28].

The ordinary structure tensor (ST) [27] is fully equivalent
to one complex, denoted I20, and one real scalar I11, which
in sequel define a vector, LST, the Linear Symmetry Tensor

LST =

(
I20
I11

)
=

(
(λmax − λmin)e2i∠kmax

λmax + λmin

)
(1)

where λmin, λmax are the minor and major eigenvalues of the
tensor. Equation (1) asserts that the predominant direction of
the neighbourhood f , represented by the major eigenvector
kmax of ST, is directly encoded in the argument of I20, albeit
in double angle representation of the former. Contrast, or edge
energy of the neighborhood is obtained by I11. Written in
polar form, the complex component of I20 can be displayed
as a color/hue in HSV colour space modulating (twice) the
direction angle of dominant orientation, whereas brightness of
pixels modulate the magnitude, Fig. 2 Middle.

The degree of consistency between gradient vectors in-
volved in the orientation estimation is read in |I20|, which
in turn can be at most I11 for perfect orientation fit, allowing
for normalization

IL20 = I
(0)
20 /I

(0)
11 , where |IL20| ≤ 1. (2)

It is known that I20 and I11 can directly be obtained by
averaging (Gaussian) squares of complex gradients, [27], as
summarized here next. When modeling and measuring other
symmetries than linear in image neighborhoods, a similar
method can be applied but using complex filters (instead
of Gaussian), [29], having integer indexes describing their
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phase component. The superscript 0 referring to the linear
symmetries (described by the ordinary ST or LST) is thus
used to avoid confusion with descriptors of other symmetric
patterns, presented in sequel.

The dense orientation image IL20 can computationally be
obtained in three steps. First the original image is convolved
with a member (n = 1) of a filter family called the symmetry
derivatives of Gaussians, [5], and then squared (pixel wise).
The filter family is defined as follows

Γ{n,σ
2} = (Dx + iDy)ne−

r2

2σ2 = rn
1

κn
e−

r2

2σ2 einϕ. (3)

Here the constant κn assures that the norm of the filter is 1,
whereas r = |x+ iy| and ϕ = ∠(x+ iy).

The result is a complex image and is called Infinitesimal
Linear Symmetry Tensor (ILST)

ILST = (Ĩ
(0)
20 , |Ĩ

(0)
20 |)T , with Ĩ(0)20 = (Γ{1,σ

2
in} ∗ f)2 (4)

This definition allows to formulate the second step of LST as
a linear filtering of ILST

LST =
Γ{0,σ

2
out} ∗ Ĩ(0)20

|Γ{0,σ2
out}| ∗ |Ĩ(0)20 |

)
= Γ{0,σ

2
out} ∗ ILST (5)

It is worth noting that two different scale parameters are
involved: inner scale σ2

in depending on the spatial frequency
content of the neighborhood and the outer scale σ2

out which
defines the size of the neighborhood.

Many images, e.g. fingermarks, are notoriously noisy and
the orientation fields are difficult to obtain automatically.
One of the reasons is that the local (absolute) frequency
corresponding to parameter σ2

in varies with image location.
It has been shown that if the inner scale σ2

in is changed in
discrete (but not necessarily uniform) steps, the orientation
of log(I

(0)
11 ) can be invertibly mapped to the frequency, [28].

Accordingly, even dense frequency fields can be obtained by
applying the LST, but to the logarithmic scale space of the
contrast I(0)11 since LST is an orientation fitting tensor.

The corresponding LST for estimating the frequency map
from the sampled logarithmic scale space consists of a com-
plex valued I20 and a real valued I11, with normalized
orientation of frequency map equaling to IF20 = I20/I11. Thus,
the signal representation of the frequency IF20 is identical to
that of the orientation IL20, except that its argument encodes
the absolute frequency of the neighborhood. We obtained
dense orientation and (absolute) frequency fields for finger-
print images, Fig. 2, through an iteration process [28]. The
originals are a genuine tenprint-fingermark pair, left column.
The orientation fields are illustrated by the middle images. The
frequency fields are shown by the right column with frequency
range varying in accordance with how the color progresses
in rainbow. For ”mnemonic” reasons the straightforward fre-
quency visualization was updated such that ridge periods cor-
respond to increasing electromagnetic wavelengths. For human
perception it is more natural to identify increasing range with
violet–red colour palette without the need to remember that,
for example, red corresponds to lower frequency as compared
to blue/violet. The frequency field contains less hue variations
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Fig. 2. Orientation and frequency dense maps of matched pair of good quality
tenprints and low quality noisy forensic fingerprint. Hue represents orientation
angle and value/intensity represents the certainty of measured angle in HSV
colour space.

because not all possible frequencies are present with sufficient
prominence, in contrast to orientation field.

III. ORIENTATION FIELD DESCRIPTORS

The Generalized Structure Tensor (GST) is an extension of
the LST for more elaborate symmetries, especially for assess-
ing orientations defined by iso-curves of harmonic functions.
By using an integer n it is possible to obtain a taxonomy of
the symmetry types (linear, parabolic, spiral, hyperbolic, etc.)
and their associated orientations, with n = 0 corresponding to
LST. GST is defined in a similar way as LST

GST (n) = (I
(n)
20 , I

(n)
11 )T = Γ{n,σ

2
out} ∗ ILST (6)

and fits an iso-curve chosen from the function family fixed
by n [31]. In Fig. 3 First Row one pattern of each family is
shown by changing n. For n 6= 0 the filter function Γ{n,σ

2
out}

introduces a complex filter4, whose magnitude is a circular
torus (ring), and argument is an integer power of ϕ. In Fig.
3 Third Row brightness represents the filter magnitude and
hue its argument whereby the frequency of the same hue is
determined by n.

However, the σout we suggest in GST are considerably
larger than the ones used in LST to obtain the orientation and
frequency fields, Sec. II. The σout used in LST is small enough
to ensure local linearity of the iso-curves, i.e. every complex
pixel in the orientation map of Fig. 1 is based on a region with
the same size as the red circle shown in the original. This is
to be compared to the size of σout used in GST, the region
between the white circles of the orientation map, whose goal is
to capture sufficient orientation or frequency variation around
the key point, (green), to give a unique “character” to it.

In GST, the symmetry derivative filters define an orthogonal
spanning set for orientation fields in the angular direction ϕ,

4Note that in LST, where n = 0, this filter is real, being a Gaussian
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Fig. 3. Top: Sample patterns of the family of harmonic functions used as
basis. Patterns are displayed for θ = π/4, [32]. Second: One pattern per
original (top), but in selected tori support |ψkn|. Third: Filters used to detect
patterns above, with n = −4 : 3. Right: A sample filter ψk,−4 shown in 3D,
with color representing ∠ψkn whereby every hue appears 4 times.

eq. (3), Fig. 3 Second Row (but not radially yet). They will
be used to define a complete set of basis functions on which
the orientation image IL20 will be projected (Sec. III-A-III-C).
The coefficients will then explain the angular variation of the
orientation field in rings around the keypoint.

Each filter Γ{n,σ
2
out} matches to the orientation field of a

member of the family defined by n, Fig. 3 First row. A family
is characterized in that its members must have iso-curves
which can be described by a distinct parameter n, which repre-
sents the direction of lines in harmonic functions. For example,
the iso-curves of the spirals in Fig. 3 First Row are due to lines
in log-polar space, cos(θ)<(log z) + sin(θ)=(log z) = const,
with z = x + iy and θ = π/4 5. The iso-curves of the other
patterns have similar explanations by way of precise curvi-
linear coordinates of harmonic functions which are detailed
elsewhere [29]. As in LST, the orientation parameter θ of GST
is estimated and represented in double angle via 2θ = ∠I(n)20 ,
to achieve uniqueness. Only one member per family is shown
in the figure, and all members are deliberately chosen to have
the same parameter 2θ = π/2 albeit in different families
denoted by n = −4 · · · 3.

The GST delivers thus 2θ in the argument of I(n)20 and
an evidence of the presence of the symmetry follows from
the ratio |I(n)20 |/I

(n)
11 ≤ 1, which is brightness independent.

Similarly to linear symmetry, the inequality relationship holds
as equality iff the fitting of θ is error free. If we vary the
parameter θ with the increment ∆θ, all image patterns at the
top-row would rotate proportionally, with the exception of the
spiral pattern. The latter, which corresponds to n = −2, would
first become tighter, then turn into circles and finally will
change the sense of twist, when its θ changes.

The support of the filter |Γ{n,σ2
out}| defines the support

of the region in which the orientation is modelled. Spatial
support is independent of the symmetry index n, offering
an opportunity for completeness radially (in addition to the
angular coordinate) by changing the support of the filter. Thus
increase of the number of basis functions will be enabled in
two ways, angularly and radially. This will allow description
of general complex fields, e.g. contrast normalized orienta-
tion fields I(0)20 /I

(0)
11 and unnormalized orientation fields I(0)20

densely by finite expansion up to a prescribed error.

5The symbols < and = are real and imaginary parts respectively.

A. Finite Expansion of Orientation Fields Angularly
Choosing the keypoint as origin, we suggest usage of a se-

quence of GSTs, Fig. 3 Third Row, to describe the orientation
field h(x, y) around the keypoint, Fig. 1 Step 2

h(x, y) =
∑

k

hk(x, y) with hk(x, y) =
∑

n

cknψkn (7)

where

ψkn =
1

κk
rµe
− r2

2σ2
k e−inϕ. (8)

The normalization constants κk are chosen to assure ‖ψkn‖ =
1. Note that |ψkn| is independent of n due to magnitude | · |
operation although ψkn does depend on n. Additionally, if
consequent tori areas hk and hk+1 have negligible overlap,
then filters |ψkn| will be nearly orthogonal. These tori are
steered by µ and σk as detailed in the next section and the
Appendix.

For every hk, which is the orientation field confined to
a torus, it is possible to associate a finite array of complex
coefficients ckn by varying the symmetry index of the filter n

ckn =< ψkn, hk >=

∫
ψ∗knhk (9)

where <,> denotes the ordinary scalar product defined as
the shown (double) integral. Coefficients ckn are analogous to
I
(n)
20 , except that the radial support of the integral, |ψkn|, is

controlled more precisely (by k). In return the coefficients can
be used to synthesize hk =

∑
n ckne

−inϕ up to a prescribed
error (L2), which follows from the orthogonality of ψkn and
Fourier theory. In addition we make sure that hk is not constant
in the radial direction by letting the thickness of ψkn be as
small as required by adapting its internal parameters. The
coefficients ckn will then tell the amount of the corresponding
angular basis e−inϕ that is present in the orientation field hk

Analogously, the coefficients

ek = < |ψkn|, |ψkn| · |IL20| > (10)

correspond to I
(n)
11 . As in the case of ckn, the measurement

delivered by this integral originates from the support of |ψkn|
in the orientation map, which is steered via k.

By way of example, we have estimated the projection
coefficients ckn of the orientation field in Fig. 4 Right, via
eq. (9). The orientation map is a field generated by

h(r, ϕ) = w2
1e
−iπ2 r−1eiϕ + 2w1w2 + w2

2e
iπ2 re−iϕ (11)

where the origin is the center of the image which is 257×257.
The coefficients w1, w2 are two real constants. The orientation
field is our input, and the equation is thus the ground-truth at
every possible “thin” (concentric) torus. The orientation field
is a linear combination of those of the component iso-curves,
n = −1 and n = 1, and an additive constant field, 2w1w2.

It is possible to invert the orientation field analytically to
obtain the original6, yielding

f(r, ϕ) = cos(<[w1e
−iπ4 (2r

1
2 ei

ϕ
2 ) + w2e

iπ4 (
2

3
r

3
2 ei

3ϕ
2 )]).

(12)

6Obtaining f from h (inversion) in ((Dx + iDy)f)2 = h can be done by
using the relationship between gradients of harmonic functions and complex
derivation, Appendix of [29].
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Fig. 4. Left: The original image as linear combination of parabolic and
hyperbolic patterns Right: Orientation map of the original described with finite
expansion coefficients.

which is illustrated in Fig. 4 Left, whereby the link between
line orientations and colors is immediate. The iso-curves of
the original consist of a linear combination of iso-curves of
the members of pattern families, resembling cores, n = −1
(or z1/2 in polar coordinates, [29]), and deltas, n = 1 (z3/2)
of fingerprint images, Fig. 3.

From the equation of the orientation field and the corre-
sponding gray scale image it can be seen that outside of a
torus, indicated in the original, |z| < r0 (where r0 = 64),
orientations of a delta like pattern dominate, whereas inside,
the orientations are best described by those of a core pattern.
On the torus itself the orientation schemes originating from
the core and the delta have the same strength. Purposively
w1 and w2 are chosen such that they generate the same
(absolute) spatial frequencies on the indicated ring (Red, or
Dash-dot), i.e. w1r

−1/2
0 = w2r

1/2
0 = 2π/8 = ω0 which is

a typical frequency for fingerprints. This results in that the
ground-truth for non-zero coefficients [c−1, c0, c1]T are given
by [1·w2

0e
−iπ/2|z|−1, 2·ω2

0 , 1·ω2
0e
−iπ/2|z|] on any (concentric)

torus of the orientation field. It is thus the function

hk(z) = |ψk·|h(z) =
1

κk
|z|µe−

r2

2σ2
k h(z) (13)

which will be described by the projections of (9).
The experimentally estimated coefficients are given as

columns of table of Fig. 5. The magnitude values |ckn|
are shown for 7 tori placed at exponentially increasing dis-
tances from the center, Right, as rows of table. The left
half of the table shows the approximations of ckn in polar
coordinates corresponding to the 3 “mid” basis functions,
.n with n = −1, 0, 1 only, since the rest were negligibly

close to 0, as they should. This is illustrated by the 7 × 8
(estimated) coefficient matrix shown as a color image, where
the coefficient magnitudes and argument angles modulate the
brightness, and the hue respectively. The right half of the table
shows the absolute error compared to the ground truth which
confirm possibility to estimate coefficients accurately up to
3-4 decimals with the suggested method. The marked row
corresponds to the torus defined for images of Fig. 4, where
magnitudes vary in proportion to 1:2:1, as they should.

These results support the view that series of GSTs with
properly shaped outer filters ψkn acts as a Fourier series
expansion of tori of orientation fields, even though we cannot
expect the orientation field or the underlying original to be as
“noise-free”. We emphasize that the expansion is done in the

n = −1 n = 0 n = 1 ε−1 ε0 ε1

(1.23 4.71) (1.23 6.28) (0.31 1.57) 0.002 0.000 0.001
(0.98 4.71) (1.23 6.28) (0.39 1.57) 0.002 0.000 0.002
(0.78 4.71) (1.23 6.28) (0.49 1.57) 0.001 0.000 0.002
(0.62 4.71) (1.23 6.28) (0.62 1.57) 0.001 0.000 0.003
(0.49 4.71) (1.23 6.28) (0.78 1.57) 0.001 0.000 0.004
(0.39 4.71) (1.23 6.28) (0.98 1.57) 0.001 0.000 0.005
(0.31 4.71) (1.23 6.28) (1.24 1.57) 0.000 0.000 0.006

Fig. 5. Left: Complex coefficients ckn, where rows are for rings with
increased radii, k and columns for different symmetry. Right: The same
but numerically in polar format |ckn| for the 3 mid-columns, and the
corresponding error magnitudes. Groundtruth phases are −π/2, 2π and π/2.

space of orientation field, not in the gray value space of the
original image.

B. Finite Expansion of Orientation Fields Radially

Formula (8) reveals that n controls the symmetry of the
outer scale filters independently of their thickness (controlled
by µ), and the radius rk of the (magnitude) peak, Fig. 10 Left.
By derivation, it is straight forward to show that the radii rk
are determined as

rk =
√
µσk (14)

Accordingly, we can change the peak location by changing µ
and σk. Here, we will place the rk concentrically around the
keypoint and in an equidistant manner on the log r scale so
that they will progress geometrically with a constant (design)
factor α = rk+1/rk.

As detailed in the Appendix, the parameter µ alone deter-
mines all properties related to the thickness of ψkn: the inter-
section location τ of successive tori, or the filter attenuation
(height at the next torus peak location) τε. These parameters
τ, τε are indicated in Fig. 10 and can be used in the filter
design process directly, see the Appendix.

C. Symmetry Assessment by Finite Expansion–Feature Vector

In this section we present our feature set which describes the
normalized orientation field IL20 (or the frequency field IF20),
around a keypoint by projecting the fields on the set of com-
plex filters presented above. The projection coefficients ckn
have precise geometrical meanings via their interpretation as
the orientation components (I(n)20 ) of GSTs detecting presence
of curves described by harmonic function pairs.

In particular, we suggest h̃k defined as orientation field pre-
multiplied with a torus

h̃k = IL20 · |ψkn| (15)

as the data to be described by GST projections. The projection
coefficients are then obtained as

ckn = I
(k,n)
20 =< ψkn, |ψkn| · IL20 >=< |ψkn|2e−inϕ, IL20 >

(16)
The superscript of the I20 component of the GST now contains
k, the torus identity, in addition to n.

We introduce the Symmetry Assessing Finite Expansion,
SAFE, descriptor for keypoints as the ratio comprised of K×N
elements, denoted by

SAFEkn =
ckn
ek
∈ C with k ∈ N+, n ∈ Z (17)
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The descriptor elements represent thus the projection of the
orientation field in the k’th torus, onto the n’th harmonic basis
function, as a “fraction” of the contrast of the torus. The quote
is motivated by that ckn is complex and the term actually refers
to the (real and non-negative) fraction |ckn|/ek. Because the
basis set ψkn is complete, the space and symmetry dimension
can be varied systematically to adapt the description power
of its finite subsets to the application at hand. The argument
∠SAFEkn = ∠ckn is real and it therefore (continuously)
points out which member of the symmetry family (pointed at
by the integer n) stands for the explanation.

D. Rotation invariance by steering the features–not the image

The continuous descriptor suggested above allows for ro-
tation invariance of the feature without rotating neither the
original image, nor the orientation field. One feature vector
can be rotated towards another7 directly in the feature space

SAFE′kn = ei(n+2)ϕ′SAFEkn (18)

if the original image is rotated with the angle ϕ′. Projection
on the spiral pattern n = −2 requires thereby no rotation
compensation, which is correct, since neither ck,−2 nor ek
change when the keypoint rotates.

As an example, drawn from forensic fingerprint images, the
minutiae directions will be available between the keypoints of
the reference and the query images. To match both minutiae
(keypoints) one can match their SAFE vectors. However,
before doing that, one of the SAFE vectors can be rotation
steered towards the other (with the difference of their minutiae
angles as ϕ′). If such directions are not available in other
applications, one can use an intrinsic orientation of a key point
which can be defined to be one of the angles deduced from
a component, ∠ckn. The intrinsic angle that corresponds to
patterns resembling parabolas is ∠SAFEk,−1, and is unique
as opposed to delta pattern which has 3-folded ambiguity in
orientation. Its direction coincides with the minutia direction in
the smallest tori, representing the scale of the ridge ending or
bifurcation, i.e. if this direction is not automatically extracted
for tenprints by other means, it can be extracted by ∠ck,−1 in
an appropriate scale, [33].

E. Built-in quality measurements by tight inequalities

Applying the triangle inequality to (16), and remembering
that ‖ψkn‖2 = 1 and |IL20| ≤ 1, the inequality

|ckn| ≤ 1 (19)

can be obtained. The inequality is tight because |ckn| = 1 iff i)
the orientation field is reliable, i.e. |IL20| = 1 everywhere in the
entire torus area, and ii) ψkn can explain the orientation field
I
(kn)
20 without error, nϕ = ∠IL20. Thus, by way of example,

if |ckn| = 1, all orientation field data in the torus (support)
are reliable, and the n’th symmetry basis e−inϕ can explain
them fully. However, if |ckn| = 0.5, we can not know if this
is due to lack of reliable data in half of the torus (support) or
if it is because n’th symmetry basis cannot fully explain the

7Alternatively both are rotated towards the same reference angle.

orientation field within the torus. Accordingly, |ckn| stands
for the amount of reliable orientation field data within the
torus which can be explained by n’th symmetry basis, 1
being full explanation of the entire torus. To disambiguate the
interpretation, we use ek for depicting the amount of reliable
orientation within torus, 1 being the entire torus.

Using the inequalities, (ek ≤ 1), (|IL20| ≤ 1) and (19) yields

|SAFEkn| ≤ 1 (20)

The inequality is tight, thus |SAFEkn| represents the amount
of reliable orientation field within a subset of the torus k,
explained by the n’th symmetry basis, 1 being full explanation.

F. Matching descriptors

To match two keypoints, the reference keypoint with a test
keypoint, their respective complex descriptor arrays, SAFEr

and SAFEt can be matched, assuming that rotation compen-
sation was made if necessary, Sec. III-D. Using an ordinary
scalar product for the complex Euclidean space,

< SAFEr, SAFEt >=
∑

kn

SAFEr
∗
kn · SAFEtkn (21)

a complex matching score MS can be defined by

MS =
< SAFEr, SAFEt >

< |SAFEr|, |SAFEt| > ⇒ |MS| ≤ 1 (22)

The inequality concerning its magnitude holds and is tight
due to the triangle inequality. The equality |MS| = 1
holds iff SAFEr = z0SAFE

t with z0 being a non-trivial
complex constant, i.e. ∠SAFErkn = ∠z0 + ∠SAFEtkn and
|SAFErkn| = |z0||SAFEtkn|, for all components k, n. In
order for two descriptors to match the angle between them
should vanish, ∠z0. Therefore, we must require that |MS| is
high and ∠MS = 0. This is achieved by using the real part
of MS score to embody both magnitude and angle into the
final matching score

<(MS) = |MS|cos(∠MS) ∈ [−1, 1] (23)

where 1 represents full match, -1 full miss-match, 0, uncer-
tainty. Low or zero certainty happens when the certainties in
one of the respective descriptor components (their magnitudes)
are zero, because of low quality data in torus or if the
orientation data of reliable sectors of torus cannot be explained
by the respective symmetric pattern, n. Full miss-match, −1,
occurs when reliable sectors |MS| = 1 of all components
point at member patterns that are locally orthogonal.

IV. EXPERIMENTS

First, we report on the specifics of the filters. Then we
present our results based on two applications illustrating the
performance of the suggested image descriptors.
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A. Filters

The filters we used for extracting SAFE features were
designed empirically but guided by the application. First, we
determined 10 tori peak-locations as a geometric progression
rk = r0α

k with k = 1 · · · 9. This determines the peak
locations of the 9 tori without ambiguity (including α = 1.54),
see Appendix. For fingerprint application the range is fixed to
be from r0 = 2 to r9 = 97 while for periocular application it
is tested in proportion to sizes of pupil and sclera.

Second, we fixed the attenuation constant as τε = 0.01, Fig.
10, to assure that all (but one) filters were in practice vanishing
by the next tap of torus peaks. Fixing attenuation, rather than
fixing the intersection height of filters with neighbors, was
more practical from implementation point of view. The torus
parameters were then available (as µ = 20, and σk = rk/

√
µ),

Appendix Lemma 1. The expression of µ is independent of
k which is a consequence of the suggested construction of
filter series ψkn with negligible overlap between them. Finally,
we have determined the 9 pattern families deduced from a
systematic change of the symmetry index n ∈ [−4, 4].

B. Application to Forensic fingerprints

Justice courts do not accept automatic identification of
fingermarks, but rely on forensic examiners. Such an expert
extracts keypoints such as minutiae, cores or deltas manually
from a fingermark and verifies them against those of tenprints
suggested by an automatic matcher. Currently, only keypoint
constellation (keypoints locations, directions, and types when
available) are used in the automatic matching subserving the
experts.

We report results of matching via statistics of False Ac-
ceptance (FA) rate, False Rejection (FR) rate, Equal Error
Rate, and Cumulative Matching Curve (CMC). The first three
represent a verification scenario, whereas the last represents
an identification scenario. There is a theoretical connection
of FA+FR rates with CMC curves [34], e.g. the latter can
be obtained from the first, but not vice-versa. Also, CMC
statistics are percentages of the background database whereas
(derivatives of) FA and FR are impostor and client score
distributions. This makes the CMC statistics to scale with the
size of the background dataset whereas FA and FR tend to
remain less sensitive, since distributions are normalized with
the size of the data sets.

We have tested SAFE feature vectors for keypoints to
quantify their description power independent of keypoint con-
stellation using the SD27 database of NIST, USA, [35]. It is a
data set where keypoints have been annotated by fingermark
experts in USA on 258 genuine (matching) tenprint-fingermark
pairs. Although the details of the annotation (concerning the
matching keypoints) are available by displaying them and vi-
sually inspecting them on images of tenprint-fingermark pairs,
the (same) correspondence is not available (to computers) at
the keypoint level in the original dataset of NIST.

We remedied this by isolating the corresponding keypoints
and attributing unique labels to them, (keypoint identities)
in a recent study, [36]. The thus established (ASCII) corre-
spondence of 5,449 minutiae pairs and 262 cores (match set)

distributed over 201 (out of 258) tenprint-fingermark pairs,
have been used in the present study as groundtruth. The
number of cores is different than the fingerprint pairs because
some fingerprint pairs had several cores, whereas some had
none in common.

Despite that SD27 has “only” 258 fingerprint pairs, this is
a large and important database because i) it offers groundtruth
to thousands of keypoint identities ii) it is the visual charac-
teristics of a keypoint which represent the source of identity
establishment by fingermarks experts, and iii) it is time-
consuming to annotate tenprint-fingermark pairs demanding
considerable expert resources.

Our experimental results indicate that SAFE features are
stable when computed for large tori, where more vectors
”vote” and therefore the resulting features are less noisy. We
have therefore used the 3 outermost filters with magnitude
peaks at ri = [27, 41, 63] pixels resulting in 3×9 elements
in the descriptor. Applying rotation compensation with angle
of keypoints obtained automatically (by SAFE features with
n = −1) or by the manually marked angles (by expert)
have demonstrated similar recognition performance in our
experiments. This indicates that SAFE can extract the intrinsic
directions of the keypoints reliably and suggest it to the
expert for verification in fingermarks, if the expert marks their
locations. Automatic location of key points can be done by
means of GST too, [37].

We have used cores as keypoints in the first experiment,
[38]. The verification and identification performance were
thus for individual core identities, and are given in Fig. 6
Black. The FA and FR rates are summarized by the EER
of 25%. The latter means that 75% of the totality (of the
possible) 33,092 imposting cores were correctly found to
be so, based only on the image information around them.
Using the same decision threshold, 75% of the total 262
cores in the fingermarks were correctly matched. In previous
studies only [36] reports on verification performance which
can be summarized as 36% EER, using the Bozorth3 [39]
based on only minutiae of SD27, Fig. 6. Since orientation
in core neighborhood and minutiae constellations are highly
complementary, if not strictly independent, these figures can be
seen as a support for that keypoint orientations have significant
potentials to improve minutiae constellations, and vice-versa.

We have also implemented an identification experiment on
cores using SAFE features summarized by the CMC graph,
Fig. 6 Right. The CMC Black displays an identification range
of 16% to 58% for the rank range of 1-20 and uses all
fingermark cores against all tenprint cores, implying 33,092
impostors, upon trying to pull-out each of the 262 (client)
cores based on their orientation maps only. The study of
[36] reported the identification range of 55-78% by using k-
plet matcher [40] for ranks 1-20 based on the minutiae set
provided by the SD27, ideal set, Fig.6. This set is composed
of machine generated minutiae for the tenprints and minutiae
of fingermarks provided by human experts (without seeing
tenprints, therefore “ideal”). The CMC graph is based on one
fingermark against all tenprints in SD27, i.e. it contains 258
client (authentic) verifications and 66,048 (256×258, since
one tenprint corresponds to two fingermarks) impostor veri-
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fications. Similarly, the study [17] reports the corresponding
identification rate interval of 63-83% using the same protocol.
However, they used a different matcher (the greedy minutiae
matcher suggested in the paper) and the minutiae of tenprints
were not the same. Their tenprint minutiae were extracted by a
commercial software (undisclosed algorithm) for the tenprints,
and a subset of the minutiae provided by the human experts
of SD27 for the fingermarks were deleted.

Support for a similar conclusion, has been provided also by
[41], but using different identification protocols than those of
our experiments, involving a commercial software. Nonethe-
less, the study reports 35% and 50% rank-1 identification,
when using minutiae constellation alone and when additionally
using core points, respectively. They have not reported rank-20
identification for the same experiment. By including additional
features such as cores, deltas, quality maps and orientation,
significant gains in recognition performance were found by
another study as well, [42], albeit in the context of tenprint-
tenprint matches.

We extended our experiments in two ways, [43]. First, we
have merged two SAFE feature sets yielding 6×9 elements,
one set describing the orientation field (3×9 as above) around
a keypoint, and another (also 3×9) describing the ridge fre-
quency (density) field around the same point, Sec. II. Second,
we have chosen the keypoints as minutiae (instead of cores),
to evaluate if SAFE descriptors could be useful even if cores
were not available. As in our previous experiments, we used
one or two keypoints (i.e. minutiae instead of cores) per
tenprint-fingermark pair in the experiments, resulting in 320
client and 50,978 impostor comparisons in both verification
and identification scenarios. It was possible to use SAFE
features to describe ridge frequency fields because they can
be encoded by complex fields, similar to orientation fields,
[28]. The minutiae were chosen such that they were having
high orientation variation in their neighborhoods. Distances
of the chosen minutiae to cores, if these were present, varied
between 2-50 pixels. Additionally the distances of (chosen,
expert marked) minutiae to cores did not always agree well
between tenprints and fingermarks, varying between 0-250
pixels, mainly due to non-linear distortion in fingermarks.
Nonetheless, we have included at least one minutia from all
258 pairs of fingerprint images in the experiment, (resulting in
320 pairs), that is even if a fingermark did not include cores
nor had significant orientation variation otherwise.

These experiments showed an improvement in the FA, FR
performance summarized by a lower EER, 19% (down from
24%), Fig. 6 Left. The identification experiments showed an
improvement with the rank-20 correct identification rate of
74% (up from 58%), Fig. 6 Right. The outcome indicates
that i) SAFE features are not critically dependent on finding
cores in fingermarks, and ii) they can be computed for, and
merged with other vector fields than genuine orientation fields.
It is important to highlight that CMC curves for core and
minutia experiments have different data size, therefore we
neither can compare identification percentage between each
other nor plot curves together on the same coordinate system.
All percentages are given to show the tendency, nevertheless,
we cannot claim performance improvement as compared to
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Fig. 6. Performance with Equal Error Rate (EER) and Cumulative matching
curve (CMC) on SD27 forensic fingerprint database. Black. Matching core
points of the fingerprint by orientation based SAFE descriptor. We display
CMC of the core experiment together with minutiae ones for brevity. Red.
Matching minutiae by orientation (Green) and frequency (Blue) based SAFE
descriptors

other algorithms because they have reported only CMC curves.
The study of [18] is conceptually relevant and has results

using SD27, but they are more difficult to relate to our results.
This is because they have not presented pure minutiae constel-
lation performance. Their CMC reporting is based on minutia
plus image information extracted by commercial software
(undisclosed). Neither they have reported these without and
with onset cores, or image neighborhood information.

C. Application to iris images for periocular recognition

In this section, the SAFE feature extractor is tested for
periocular recognition on high quality close-up iris images
from the BioSec database [44]. We select 1,200 iris images
originated from 75 individuals and acquired in 2 sessions
(4 images of each eye per person, per session). Images are
acquired with a LG IrisAccess EOU3000 close-up infrared iris
camera with resolution of 480×640 pixels. BioSec database
has been annotated manually [45] such that positions of the
center of the pupil/sclera circles and their radius are known.
Iris images possess different sources of noise as compared to
fingerprints, e.g. eyelashes and eyelids, as well as variations
in lighting or view angle [46].

SAFE features are extracted on a grid of points in the
periocular area. The grid has rectangular geometry, with
sampling points distributed uniformly, and located in the iris
center as pictured in Fig. 7 Left. This setup is inspired by
our previous works on periocular recognition [47]. Matching
between two images is done by computing the matching
score <(MS), eq. (23) between corresponding points of the
sampling grid. All matching scores are then averaged, resulting
in a single matching score between two given images. Due to
the nature of iris close-up acquisition, there is no significant
rotation variation between different captures. As a result, we
have observed that rotation compensation has no significant
improvement with such grid applied to close-up iris images
[47], therefore no rotation compensation is used in this case.
Each eye of the database is considered as different user, thus
having 150 different users. Genuine matches for each user are
obtained by comparing all images of the 1st session to all
images of the 2nd session. Impostor matches are obtained by
comparing the 2nd image of the 1st session of a user to the 2nd
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image of the 2nd session of the remaining users. This leads
to 150×4×4=2,400 genuine and 150×149=22,359 impostor
comparisons.

We have compared SAFE features with the Gabor-based
periocular system proposed in [47], which uses the same sam-
pling grid as in Fig. 7. In this system, the local power spectrum
of the image is sampled at each point of the grid by a set of
Gabor filters organized in 5 frequency channels and 6 equally
spaced orientation channels, thus resulting in 5×6 = 30 filter
responses per sampling point. Gabor filter wavelengths span
from 16 to 60 pixels. This covers approximately the range
of pupil radius, as given by the ground-truth [45], see Fig.
7 Right. The Gabor responses from all points of the grid
are grouped into a single complex vector, which is used as
identity model. Matching between two given images is done
via χ2 distance of the magnitude of complex values. Prior
to matching with magnitude vectors, they are normalized to
a probability distribution (PDF) by dividing each element of
the vector by the sum of all vector elements. Some fusion
experiments are also done between different matchers. The
fused distance is computed as the mean value of the distances
due to the individual matchers, which are first normalized to
be similarity scores in the [0, 1] range using tanh-estimators
as s′ = 1

2

{
tanh

(
0.01

(
s−µs
σs

))
+ 1
}

. Here, s is the original
distance score and s′ is the normalized similarity score, µs
and σs are respectively the mean and standard deviation of
the genuine score distribution [48].

Performance of SAFE features (‘PP’) is given in Fig. 8
Left. We also provide results (Right) of the Gabor-based
periocular (‘PG’) and the fusion of both matchers (‘PP+PG’).
The corresponding EERs are given in Table I. The size of
the torus has been varied according to average size of the
iris, as given by the ground-truth [45], see Fig. 7 Right. The
smallest filter radius is set proportional to 30 (average pupil
radius), and the biggest filter radius is set proportional to 100
(slightly smaller than the average sclera radius). This leads to
the combinations ‘15-100’ and ‘30-200’, or a ‘big size torus’.
We have also tested a ‘small size torus’ by setting the largest
filter radius proportional to 30, with the smallest filter radius
reduced accordingly. This leads to the combinations ‘5-30’,
‘5-60’, and ‘10-60’.

Results of Fig. 8 Left show some differences between big
and small toruses, but they are not very significant, with EER
varying from 12.8% to 14%. These are competitive verification
rates in comparison with existing periocular approaches [20],
[13], [21], which are between 7% and 22% (depending on the
features used). The tendency observed with SAFE features
is that performance is slightly better with a smaller torus,
with the best configuration corresponding to ‘5-60’. Only
when the top-end of the range of radii is made large in
comparison with the iris size (i.e. ‘30-200’), the performance
shows an appreciable worsening. When compared with the Ga-
bor periocular system (‘PG’), SAFE features perform worse.
However, the fusion of the two systems (‘PP+PG’) shows an
improvement of up to nearly 14%. By being (sampled local)
Fourier Transform magnitudes, Gabor magnitude features are
invariant to small translations [49], whereas SAFE features
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BioSec database [44]. Right: histograms of pupil and sclera radius of the
BioSec database, as given by the groundtruth [45].
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Fig. 8. Left: DET curve demonstrating performance of SAFE features on the
BioSec database for filters of different sizes. Right: DET curve as comparison
to the other periocular matcher based on Gabor filters, as well as of fusion
experiments.

are translation sensitive by design. This different behavior can
explain the improvement, via the complementarity between
these two features observed in our fusion experiments (recall
that the two features are extracted from exactly the same points
of the image).

V. DISCUSSION

A. Automatic features and forensic experts

We suggested a model driven approach for feature extraction
which incorporates the quality of the extracted information
at the output level of the features. Even at the input level,
the dense orientation image, the model admits use of quality
measures. In our study, we have used automatic extraction
of orientation, even for fingermarks, [28] and reported the
various performances accordingly. In a real scenario, the
forensic expert may examine the automatically suggested
dense orientation image as a color image, overlay/display
it on the original, and issue a few mouse clicks to correct
the erroneously estimated orientations, or reduce their quality
(down to possibly zero) if they are unreliable. However, this is
not done here for the benefit of repeatability, and comparisons,
but it is an intended way of using the suggested features.

The SD27 database contains forensic fingerprints represent-
ing genuine orientation blended with background orientation.
It means several orientations may occur jointly at certain
locations, e.g. a fingermark on a banknote full of graphics
drawings. An automatic software may impose a continuous
model to make an intelligent guess to capture only the
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BioSec database (NIR)
Periocular

filter Proposed Gabor Fusion
configuration (PP) (PG) PP+PG

5-30 13.07 9.35 (-13.20%)
5-60 12.81 9.28 (-13.87%)

10-60 13.12 10.77 9.44 (-12.33%)
15-100 13.47 9.82 (-8.84%)
30-200 13.96 9.89 (-8.21%)

TABLE I
VERIFICATION RESULTS IN TERMS OF EER. THE BEST CASE OF EACH
COLUMN IS MARKED IN BOLD. FUSION RESULTS: THE RELATIVE EER

VARIATION WITH RESPECT TO THE BEST INDIVIDUAL SYSTEM IS GIVEN IN
BRACKETS (ONLY WHEN THERE IS PERFORMANCE IMPROVEMENT).

1

432

Fig. 9. Left: Extraction area with highlighted key points. Middle: Feature
extracted from center of delta and neighbouring points highlighted on the left.
Horizontal: The SAFEkn features (as 9x8 matrix) extracted from the marked
points (1...4) and represented as complex pixels. Right Mosaic of dense maps
centered around Point 1 and representing SAFEkn for n = −4 · · · 3 (in
reading order) extracted in the (same) torus k = 7. All color pixels are
complex with angle being hue (estimated parameter) and magnitude being
brightness (quality).

fingerprint orientations, [50], attempting to reject banknote
drawings. This is left as future work, to focus the study, since a
fingermark expert can correct the orientations too, as explained
above.

We think that the reported results are significant in that
without using minutiae constellation information, but by using
only (automatically obtained) orientation information around
key points (mostly one per fingermark) we were able to obtain
a performance similar to constellation of minutiae. Evidently
the problem of the interfering background orientation is not
attempted to be resolved. However, we think that the features
contribute to this in our results, because as said, an expert in
the real scenario will be able to assess/correct the orientations
around the few key points she/he deems important, before the
composite of automatic and manual orientations are encoded
into our descriptors.

B. Object nature of neighborhoods

The suggested SAFEkn features are complex valued and
their magnitudes represent the share of a highly symmetric
family in explaining the orientations of an image neighbor-
hood. Examining the iso-curves of a symmetric family n, it
can be shown that, Fig. 3, except for the symmetric family
of n = 0, they are singular only at the origin, i.e. their
orientations are undefined, at the reference point itself. It
means that the filters corresponding to SAFEkn with n 6= 0,

are characterized by that they seek for evidence of presence of
iso-curves which admit the point where the filter is placed, as
their sole singularity point. Regardless of n, moving the filter
to a nearby point will provoke a significantly diminished mag-
nitude of the features |SAFEkn| since there is only one such
singularity in the neighborhood. The fact that all symmetric
families (n 6= 0) agree on where this singularity point is (the
origin) makes SAFEkn with n 6= 0 sensitive to the “object
nature” of an image neighborhood of a neighborhood. Such
neighborhoods have an intrinsic origin making their locations
precise and unique. Even their global orientation is unique, but
up to n folded ambiguity including the patterns with n = 0
(ordinary lines sharing an orientation) but excluding those with
n = −2 (log-spirals are invariants of rotation and zooming).
Thus, the features, n 6= 0, should be particularly good in giving
an intrinsic identity to a point, supposing that it is not a texture
point, via finite expansion, and locate it by the virtue of the
singularity of the underlying iso-curves.

The quantity |SAFEk0| is large no matter where the
corresponding filter is placed inside line patterns sharing a
common direction, texture points, Fig. 9. There is no unique
point, intrinsic to the pattern, where the magnitude is large
and small elsewhere. It is large everywhere, by the nature of
textures. Thus SAFEk0, the ordinary structure tensor deliver-
ing orientation estimates, captures the “texture nature” of the
neighborhood since the it is translation invariant. However, it
is not as good as describing the “object nature” since there is
only one component, SAFEn0. To use symmetry derivatives
of Gaussians as texture descriptors is possible, [51], but it is
outside the scope of the present paper since we are interested in
what makes points unique, not what makes them anonymous.

We illustrate how feature extraction differs for “object
nature” from the “texture nature” by a fingerprint, Fig. 10. We
extract SAFEkn at the center of the delta, 1, and at points 2,
3 and 4. The green column in image 1 has highest quality, i.e.
SAFEkn with n = 1 (delta type iso-curves) is the largest in
all 9 tori around the point. By contrast, for other points (the
images 2, 3, and 4), it is the column with n = 0 which is the
brightest, at least within small tori (k=1,2,3), i.e. these points
have texture properties (n = 0). If we would move points 2,
3 and 4 around point 1 we should have the same quality (no
reduction of brightness), but only change of the hue. This is
observable in the fifth image (reading order) of the image of
the mosaic on Right. It displays the dense map of n = 0 (for
the 7’th torus) at each image point (zoomed on Point 1). The
centre is dark i.e. point 1 is not a good texture point. If we
would translate point 1, SAFEkn with n = 1 (delta type iso-
curves) should signal a lower quality (become darker) since
the point has object property (of type n = 1) rather than a
texture. This is observed in the sixth zoomed image (where
n = 1) on Right, as a bright yellowish spot.

VI. CONCLUSION

We have presented a model-based feature vector to rep-
resent the neighborhoods of keypoints via their orientation
fields, for recognition purposes. Being model-based allows to
have built-in quality measurements for individual descriptors.
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Fig. 10. Left: Construction of geometrically positioned series of filters Right:
Radial functions of filters. Due to normalization larger rings will have the
same area (importance) as small ones.

Experimentally we could obtain support for its promising
recognition power in isolation from other features, using
publicly available data sets in fingerprint forensics as well as
periocular biometrics, both subserving identity recognition.

The results are encouraging beyond ROC/CMC curves since
the features are generic i.e. not application specific. The basis
functions of the model can be adapted to novel applications
thanks to the design friendly tori, enabled by the lemmas. The
descriptors (except n = 0) encode location sensitive object
properties, offering complementarity to translation invariant
texture properties, which prevail current generic feature vec-
tors. The feature space can also be made rotation invariant
or rotation compensated easily by complex multiplication,
without rotating the input data.

Descriptors having symmetry index n = −2 are rotation
invariant as they are (no rotation compensation). The GST
theory suggests that this feature is scale invariant too. However
we have not exploited here to compensate the features against
severe scale changes due to our applications, although this is
possible by further processing of the descriptors.

APPENDIX A
FILTER SUPPORT PROPERTIES

The filter function ψkn, (8), is a polar separable 2D function.
Defining the radial part as t,

t(r, µ, σ2) = rµe−
r2

2σ2 (24)

its maximum C is reached at r =
√
µσ

C = sup
r
t(r, µ, σ2) = t(

√
µσ, µ, σ) = (

√
µσ)µe−

µ
2 . (25)

For our experiments we used a set of filters with peak loca-
tions rk, growing in geometric progression with the constant
factor α so that rk = r0α

k with k ∈ 0 · · ·K−1, Fig. 10 Right.
The purpose is two folded: i) to achieve spatial completeness
by increasing K in a bounded area around a keypoint, and
ii) to preserve more of the orientation variations close to the
keypoint via thinner tori, since a torus with a small k is both
closer to the keypoint and thinner than one far away. The
location of a filter peak rk is thus controlable via σ = σk

rk =
√
µkσk =⇒ σk =

r0α
k

√
µk

(26)

if µk is known, in addition to the design parameters K, r0
and α.

The peak locations are possible to determine only if µk are
known. What property of the filter does a choice of µk steer
then? The answer to this is given by the following lemma and

amounts to that µk determines the degree of overlap between
subsequent filters and can be controlled by fixing τε and α.

Lemma 1. The values of a sequence of peak-normalized
filter magnitudes t(r, µk, σ2

k)/Ck depreciate to the same value
(height) τε at the location of the next filter peak, rk+1,
independent of k, provided that the peak locations are in
geometric progression with a constant factor α = rk+1

rk
. This

(common) height τε determines the real constant µ > 0 and
vice-versa via

µ =
log τε

logα− α2−1
2

, (27)

so that µk = µ, and µ/ log τε is constant for all k.

Proof. Calling a peak normalized filter magnitude
t̃(r, µk, σ

2
k) = t(r, µk, σ

2
k)/Ck and fixing its peak location at

rk =
√
µkσk determines σ = σk, (25) and (26). This filter’s

magnitude τε at rk+1 is then given by

τε = t̃(r, µk,
r2k
µk

) =
rµke

−µkr
2

2r2
k

rµkk e−
µk
2

= (
r

rk
)µke

µk
2 e
−µk2 ( rrk

)2

However, at r = rk+1 the quotient r
rk

= α is given as constant.
The value of t̃ is then

τε = αµke−
µk
2 (α2−1) = (αe−

α2−1
2 )µk (28)

Inverting the equation w.r.t. µk, whereby µk becomes inde-
pendent of k since τε is constant, achieves the remainder of
the proof.

There exist situations in which steering the amount of over-
lap is more convenient via τ than τε, Fig. 10 Left, for example
when they are to be used in conjunction with subsampling in
pyramid processing. The question is if τ too can steer µk freely
and yet the latter is independent of k. The answer is yes as
precised by the next lemma which furthermore concludes that
µk even determines the amount of overlap between subsequent
filters.

Lemma 2. The values of a sequence of peak-normalized filter
magnitudes t(r, µk, σ2

k)/Ck with peak locations rk, depreciate
to the same height at the intersection with the next filter in the
sequence, provided that the peak locations are in geometric
progression with a constant factor α = rk+1

rk
. This height τ

determines the real constant µ > 0 and vice-versa via

µ =
log τ2

log[log(ββ−1)] + 1
, where β = α

2
α2−1 (29)

so that µk = µ, and µ/ log τ2 is constant for all k.

Proof. Assuming µk = µ i.e. a constant independent of k, the
equation t̃(ρk, µ,

r2k
µ ) = t̃(ρk, µ,

r2k+1

µ ) is established to obtain
the intersection location ρk

Ck
Ck+1

= exp[−µ ρ
2
k

2r20
(

1

α2k
− 1

α2k+2
)] (30)

from which ρk is solved as

ρk = r0

√
logα2

α2 − 1
αk+1. (31)
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Accordingly, the intersection locations are in geometric pro-
gression with the same factor α as the peak locations.

Next, ρk is substituted into t̃ to obtain the filter magnitudes
at the intersections as

τ = t̃(ρk, µ,
r2k
µ

) = rµ0 (
logα2

α2 − 1
)
µ
2 αµ(k+1)e

−µ2
ρ2k
r2
k

which simplifies to

τ = (
α

2
α2−1 logα2

α2 − 1
)
µ
2 e

µ
2 (32)

By inverting the expression w.r.t. µ, eq. (29), wherein τ and
α are constants, confirming existence of µ independent of k,
is obtained.
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