Kraftspelsanalys av transportstag

Prefabricerade väggelement i betong

Amy Lilja 19900704–2147
Sebastian Rosén 19850211–0011
2012-05-09

Handledare: Göran Nilsson
Handledare Abetong: Göran Östergaard
Abstrakt

Abstract

Currently there’s no finished analytical model for transporting rods for prefabricated concrete, nor is there any standard for the design of those transporting rods. The purpose of this paper is to develop, with Abetong, a standardization of their use of transporting rods. This is to reduce production times in both the factory and on the construction site. The goal for the transporting rods is to be simple, convenient and economically viable in comparison to the rods that are available today. An Excel program has been developed to simplify for the engineers in their choice, and to calculate the loads which affect the transportation rods.

Förord

Vi vill tacka Göran Östergaard från Abetong, Göran Nilsson från HH och Andreas Lidö från Neofac för god handledning samt övriga personer som hjälpit oss.

Amy Lilja Sebastian Rosén
Innehållsförteckning

1.1 Bakgrund ... 1
1.2 Syfte ... 1
1.3 Metodbeskrivning ... 1
1.4 Avgränsningar ... 1

2. Beteckningar .. 2
 2.1 Geometriska parametrar .. 2
 2.2 Kapaciteter ... 3
 2.3 Lasteffekter .. 3
 2.4 Dimensioneringsvärden ... 4
 2.5 Övriga .. 4

3. Bakgrundsfakta ... 5
 3.1 Problem ... 5
 3.2 Transport och lyft ... 5

4. Beräkningsmodell .. 6
 4.1 Kraftjämvikt .. 6
 4.2 Beräkningsmodell ... 6
 4.3 Väggmodeller till beräkning... 8
 4.4 Dynamisk faktor .. 9
 4.5 Fönster ... 10

5. Stagberäkningar .. 12
 5.1 Material för transportstaget ... 12
 5.1.1 Transportstagets olika delar .. 12
 5.1.2 Svetsar .. 12
 5.1.3 Infästning i väggen .. 13
 5.2 Fördelar och nackdelar med de justerbara transportstagen ... 15
 5.3 Tryckkraftskapacitet .. 16
 5.4 Dragkraftskapacitet ... 16

6. Excel-program ... 17
 6.1 Synligt för användaren .. 17
 6.1.1 Grunddata .. 17
 6.1.2 Utskrift .. 21
 6.2 Dolt för användaren .. 24
 6.2.1 Beräkningar .. 24
6.2.2 Stagberäkningar .. 27
6.2.3 Tabell 2 .. 28
7. Slutf diskussion .. 29

Bilagor

Bilaga A. Beräkningsmodell
 Bilaga A.1. Genomräknat exempel: Prefabvägg med ett symmetriskt placerat hål
 Bilaga A.2. Genomräknat exempel: Prefabvägg med ett osymmetriskt placerat hål

Bilaga B. Transportstagsberäkningar
 Bilaga B.1. Genomräknat exempel: Knäckning VKR 50x50x3
 Bilaga B.2. Genomräknat exempel: Knäckning Föränderlig sektion, konstant normalkraft
 Bilaga B.1. Genomräknat exempel: Transportstagens dragkraftskapacitet

Bilaga C. Genomräknat exempel: Jämförelse mellan ren tryckkraft och knäckning
1.1 Bakgrund
I dagens samhälle där det blir allt vanligare att använda sig av prefabricerade väggelement är det viktigt att tänka på vad som händer med elementen under transport och lyft av element.

1.2 Syfte
Syftet med det här arbetet är att tillsammans med Abetong ta fram samt standardisera deras transportstag för prefabricerade betongväggar. Detta för att minska produktionstiderna både i fabrik och ute på byggarbetsplassen. Målet för transportstagen är att de ska vara enkla, smidiga samt ekonomiskt hållbara i jämförelse med de transportstag som finns idag. Ett Excel-program har tagits fram för att förenkla för konstruktörer vid deras val av transportstag samt för att räkna fram de laster som påverkar transportstagen.

1.3 Metodbeskrivning
Inledningsvis fördes flertalet diskussioner med Abetong om hur transportstag används idag och dess betydelse vid lyft. Senare togs en statisk modell fram av betongelementen vid lyft för att räkna ut de krafter som påverkar svagare delar av elementet så som dörröppningar.

For att komma fram till en bra utformning av transportstag var även Neofac, som tillverkar stålprodukter till flera företag, inblandade i diskussionen. Detta för att få en insikt i vad som var viktigt att tänka på under montering och demontering samt för att se vad som var möjligt att skapa rent praktiskt.

Efter att en berägningsmodell för att räkna ut krafterna som kommer verka i transportstaget tagits fram har sedan beräkningar gjorts för att se om transportstaget klarar av dessa krafter. Även en utformning av transportstag har gjorts med hänsyn till det som diskuterats under möten tillsammans med Neofac och Abetong.

1.4 Avgränsningar
Våra beräkningar bygger endast på modeller av prefabricerade väggar. Vi har inte tagit hänsyn till armering och styvhet i elementen när vi gjort våra beräkningar. Vi har inte heller tagit hänsyn till några kostnader vid designen av transportstagen.
2. Beteckningar

2.1 Geometriska parametrar

- x_1: Väggens bredd
- x_2: Avståndet ifrån väggens vänstra kant fram till dörröppningen
- x_3: Dörröppningens bredd
- y_1: Väggens höjd
- y_2: Dörröppningens höjd
- z_1: Väggens tjocklek
- XT_p: Avståndet från väggens vänsterkant till dess tyngdpunkt i x-led.
- XT_{p2}: Avståndet från punkt A till snittets tyngdpunkt i x-led
- XT_{pV}: Avståndet från väggens vänsterkant till vänstra snittets tyngdpunkt i x-led
- XT_{ph}: Avståndet från väggens vänsterkant till högra snittets tyngdpunkt i x-led
- s: Avståndet mellan de två lyftpunkterna.
- s_1: Avståndet från snittet till lyftpunkten som ligger närmast snittet
- s_2: Avståndet från snittet till den lyftpunkten som ligger längst bort från snittet
- A: Den punkt snittet utgår ifrån, ligger i centrumlinjen mellan dörrhål och väggens övre kant, samt i den dörrkant som snittet dras i.
- h_{1v}: Den vänstra horisontala lyftkraftens hävarm till centrumlinjen
- h_{1h}: Den högra horisontala lyftkraftens hävarm till centrumlinjen
- h_2: Avståndet ifrån punkt A ner till den punkt transportstaget verkar i
- v: Vinkeln mellan väggen och kedjan som lyfter elementet
Längden på transportstagets VKR rör: \(L_1 \)

Längden på transportstagets gängade rundstång: \(2L_2 \)

Totala längden på transportstaget: \(L \)

Rundstångens diameter: \(\phi_d \)

Bredden på VKR rörets tvärsnitt: \(b_v \)

Tjockleken på VKR rörets tvärsnitt: \(t \)

Yttröghetsmoment för sträckan \(L_1 \): \(I_1 \)

Yttröghetsmoment för sträckan \(2L_2 \): \(I_2 \)

Knäcklängd: \(l_c \)

Tröghetsradien: \(i \)

2.2 Kapaciteter

\(N_{b,Rd} \) Dimensioneringsvärdet för bärförmågan vid instabilitet för den tryckta bärverksdelen

\(N_{pl,Rd} \) Dimensionerande dragkraftskapacitet

\(N_{cr} \) Teoretiska Eulerknäckningslasten

2.3 Lasteffekter

\(H_{Ed} \) Den kraft tryck eller dragkraft som belastar transportstaget

\(G_k \) Den karakteristiska egentyngden som verkar i väggen

\(G_{kv} \) Den karakteristiska egentyngden som verkar neråt i vänstra snittet

\(G_{kh} \) Den karakteristiska egentyngden som verkar neråt i högra snittet

\(G_{dv} \) Den dimensionerande egentyngden som verkar neråt i vänstra snittet

\(G_{dh} \) Den dimensionerande egentyngden som verkar neråt i högra snittet

\(G_{kf,lyft} \) Den karakteristiska lyftkraften i fabrik som verkar uppåt i snittet

\(G_{kb,lyft} \) Den karakteristiska lyftkraften på byggarbetsplats som verkar uppåt i snittet

\(G_{df,lyft} \) Den dimensionerande lyftkraften i fabrik som verkar uppåt i snittet

\(G_{db,lyft} \) Den dimensionerande lyftkraften på byggarbetsplats som verkar uppåt i snittet
2.4 Dimensioneringsvärden

f_{yd} Sträckgränsen

E Elasticitetsmodulen 210 GPa

f_{u} Den nominella brottgränsen

2.5 Övriga

α En korrektionsfaktor vid knäckning

γ_{M0} Partialkoefficient = 1,0

γ Koefficient som används för att sammanbinda de olika tvärsnitten på transportstaget

γ_{g} Den dynamiska faktorn som används för att få fram dimensionerande laster. 1,5 ute på byggarbetsplats, 2,0 i fabrik

l Slankhetsparameter

C Reduktionsfaktor
3. Bakgrundsdata

3.1 Problem
Idag använder konstruktörerna på Abetong flera olika typer av transportstagn. Eftersom olika konstruktioner av transportstagn används så kan inte produktionen standardiseras då formarna måste anpassas efter transportstagen. De olika transportstagen försvarar både vid produktion samt montering av elementen då varje transportstag kräver olika sätt att fästas i väggen. Även ute på byggarbetsplatsen kan det krävas olika verktyg vid demontering av transportstagen vilket tar tid. Som det ser ut idag så slängs transportstagen ofta på byggarbetsplatsen vilket leder till ekonomiska förluster för företaget.

3.2 Transport och lyft

![Bild 3.1 Lyft av väggelement](image)

Lyft av prefabricerade betongelement sker redan vid avformning och även i fabriken när elementen ska lastas på en lastbil som sedan ska ta det till byggarbetsplatsen. Vid montage av elementet på byggarbetsplatsen används en kran vid utplacering se bild 3.1. De två lyftpunktarna placeras alltid kring elementets tyngdpunkt för att det ska uppstå jämvikt. Avståndet mellan lyftpunkterna kan variera från 1m upp till och med 4,5m. I fabrik lyfts väggarna på ett sätt som gör att väggen endast utsätts för vertikala krafter upptåt. Eftersom väggen vid utplacering på byggarbetsplatsen lyfts med hjälp av kran utsätts väggen för horisontella och vertikala krafter vid sneda lyft, vilket för enkelhetens skull beräknas i rapporten med en vinkel som ligger på 45°.
4. Beräkningsmodell

4.1 Kraftjämvikt

En kraftspelsanalys görs där det klarläggs vilka krafter som verkar på väggelementet. Krafterna verkar som i figur 4.1.1 vid lyft i fabrik, då det endast blir vertikala krafter att ta hänsyn till i momentjämvikten förutom H_{Ed}. I figur 4.1.2 illustreras hur krafterna verkar vid lyft ute på byggarbetsplats då det även finns horisontella lyftkrafter att ta hänsyn till.

Krafterna H_{Ed} gör att elementet vill spricka och för att förhindra att detta inträffar sätts ett transportstag in.

4.2 Beräkningsmodell

Vald beräkningsmodell för att bestämma stagkraften H_{Ed} bygger på att ett snitt görs i kanten på dörren, både högerkant och vänsterkant, sedan beräknas varje del för sig.\(^1\) Se figur 4.2.1

\(^1\) Bilaga A. Beräkning av H_{Ed}
Den punkt i vertikalled som momentjämvikten utgår ifrån ligger i centrumlinjen för sträckan ovanför dörren. Punkt A i figur 4.2.2 illustrerar var i y-led denna punkt ligger. Anledningen till att punkten inte ligger i ovankant av väggeelementet är för att hänsyn ska kunna tas till de horisontella lyftkrafter som verkar i elementet. Dessa krafter hade gått rakt igenom den punkt vars momentjämvikt i beräkningar görs, och hade således inte räknats med i jämvikten. Vid en momentjämvikt i centrumlinje har de horisontella krafterna en hävarm till punkten och kan därför användas till beräkningarna.

Snittet görs i dörrkanten därför att egentvingen av väggdelens om endera sidan av snittet blir som störst i detta fall. Det är denna egentving som ger upphov till störst tryckkraft i transportstaget och därför är det på säkra sidan att snitta i dörrkanten. Anledningen till att snittet sker i dörrkanten och inte mitt i öppningen är för att det ger en större egentving som verkar i snittet och det är den som ur knäckningssynpunkt påverkar transportstaget negativt.

Normalkraften N som verkar i punkten A används inte i beräkningarna eftersom det inte kontrolleras om väggen ovanför dörrhålet håller.

Modellen bygger på att momentkapaciteten kring A sätts till noll, dvs eventuell armering i snitt försammars. Detta i sin tur innebär att beräkningsmodellen är på säkra sidan. Figur 4.2.3 beskriver hur denna momentjämvikt ställs upp.
4.3 Väggmodeller till beräkning

Utifrån vald modell görs beräkningar för väggtvärn med v=90 och v=45 grader eftersom transportstaget ska hålla både för lyft i fabrik och ute på byggarbetsplats. På arbetsplatsen kan, beroende på krantyp och andra faktorer, vinkeln v variera mellan 45 och 60 grader. Anledningen till att v är vald till 45 vid lyft ute på byggarbetsplats är att denna vinkel ger störst horisontella lyftkrafter. Figur 4.3.1 illustrerar vad som menas med att lyfta med v = 90 och figur 4.3.2 visar v = 45°.

För att kontrollera vilket avstånd mellan lyftpunktarna som är ur lastsynpunkt sämst beräknas alla avstånd mellan 1000mm till 4500mm.

En jämförelse görs mellan lyft ute på byggarbetsplats och i fabrik för att bestämma vilket som blir dimensionerande.²

² Bilaga A.1. samt bilaga A.2
4.4 Dynamisk faktor

En dynamisk faktor finns med i beräkningarna för att förebygga de skador som kan uppstå under rörelse vid lyft av väggelementen.

Vid dimensionering för lyft av prefabricerade betongväggar används faktorn $\gamma_g = 2,0$ vilket motsvarar 4-faldig säkerhet respektive 1,5 som då motsvarar 3-faldig säkerhet. Den 4-faldiga säkerhetsfaktorn används ute på byggarbetsplatsen eftersom det är större risk för skador både på väggelementet, samt för personskador.¹

Skulle ett transportstag utsättas för sådan kraft att den mot förmodan skulle gå sönder är risken för personskador väldigt låg. Dock medför brott en ekonomisk förlust för företaget. En 3-faldig säkerhet anses därför motiverad. γ_g sätts till 1,5 både på byggarbetsplats samt i fabrik. Bestämning av dimensionerande laster som finns i väggelementet bestäms genom ekvation 4.4.

\[G_d = 1,2 G_k + (\gamma_g - 1,0) 1,5 G_k \]

ekv 4.4⁴

¹ Svenskt förord till SIS-CEN_TR15728 Oct 2011
⁴ Byggkonstruktion
4.5 Fönster

![Diagram av vägg med fönsterhål](image)

Figur 4.4 Vägg med fönsterhål

När det program som ska underlätta för konstruktören togs fram fattades ett beslut att det inte skulle vara möjligt för användaren att lägga till fönster. Detta för att minska antal värden som måste läggas in. Istället har användaren möjligheten att lägga in en manuell tyngdpunkt och egentyngd.
Tabell 4.5 Exempelberäkning hur fönster påverkar stagkraften.

<table>
<thead>
<tr>
<th>Medräknat fönster i egenvikt och tyngdpunkt</th>
<th>MAX: 27,89878 kN</th>
<th>MIN: -26,7065 kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utan fönster i egenvikt men medräknat i tyngdpunkt</td>
<td>MAX: 26,07595 kN</td>
<td>MIN: -32,1697 kN</td>
</tr>
</tbody>
</table>

Datorprogrammet:

| MAX: 29,43381 kN | MIN: -20,8645 kN |

Tabell 4.5 visar resultaten av en exempelberäkning där man jämför resultaten från en vägg där man tar hänsyn till fönsterhålen och en vägg där man endast tar hänsyn till fönsterhålen då elementets tyngdpunkt beräknas. De negativa siffrorna innebär att det är dragkraft och positiva innebär tryckkraft. I exemplet har man låtit fönsterhålet vandra från en sida till den andra med 100mm intervall för att få en inblick i vilka värden som uppkommer. De som presenteras i tabell 4.5 är de högsta värdena. Tabell 4.5 med hänsyn till fönster utsätts transportstagen för en högre dragkraft än det vanligtvis blir i programmet. Men då dragkraftskapaciteten är så mycket större än transportstagens kapacitet mot knäckning togs beslutet att inte ta hänsyn till fönster.
5. Stagberäkningar

5.1 Material för transportstaget

5.1.1 Transportstagets olika delar

Transportstaget ska kunna återanvandas och vara enkelt att använda. Det innebär bland annat att det inte får innehålla några som helst lösa delar. Därför används två VKR-rör med en gängstång i mitten. Detta innebär att gängstången skruvas in i VKR-rören och på så sätt kan samma transportstag anpassas för den längd som krävs. Gängstången måste vara vänstergängade i ena halvan och högergängad i den andra för att VKR-rören ska kunna sammanfalla när det skruvas ihop. I ytterändarna på VKR-rören svetsas gängstänger, nedan kallade ändstänger, som ska skruvas in i dörröppningarnas sidor. Två varianter har studerats, ett transportstag som klarar öppningar mellan 800mm till 1500mm. Detta transportstag består av två VKR-rör 40x40x2,5 samt en gängstång med diameter 30mm. Det andra transportstaget klarar öppningar från 1500mm till 3000mm och består av två VKR-rör 50x50x5 och en gängstång med diameter 36mm. Både VKR rören och gängstången är av kvalité S355 vid båda varianterna.\(^5\) Se figur 5.1.1

5.1.2 Svetsar

På VKR-rören där gängstången ska skruvas in svetsas en tjock täckplåt fast med en stum svets, vilket innebär att det inte krävs några beräkningar på svetsningen. I denna görs ett hål som sedan gängas för att det ska gå att skruva in gängstången i VKR röret. Figur 5.1.2 illustrerar hur detta ser ut.

5 Bilaga B. Transportstagsberäkningar
5.1.3 Infästning i väggen

För att fästa transportstaget i väggen gjuts det in en förankring, en gängad hylsa i väggen där det är tänkt att transportstaget ska sitta. Transportstaget är gängat i ändarna så att det enkelt går att skruva in transportstaget i hylsan. När transportstaget sedan ska monteras av ute på byggarbetsplatsen skruvas det loss och öppningen med hylsan gjuts igen. Detta innebär att transportstaget kan återanvändas till flera väggar.

En BTK används som hylsa finns i bild 5.1.3.1. BTK är en massiv cirkulär stång med ena änden fastsattsad i en massiv cirkulär förankringsplatta och i den andra änden har man svetsat på en gängad hylsa. Vald dimension på BTK är BTK-M30x90-250 Hur ingjutningen av BTKn i väggen ser ut beskrivs i figur 5.1.3.3.

Bild 5.1.3.1 BTK

Figur 5.1.3.3 Ingjutning av BTK sett uppifrån

För att fästa transportstaget i väggen används en ändstång som är fastsattsad i VKR-röret. Längden på denna bestäms av vilken dimension som valts på BTK. Änden ska skruvas in i BTKn och därför måste ändstången vara tillräckligt lång. I figur 5.1.3.2 illustreras l_f som är den minsta inskruvningslängden för att skruven ska kunna belastas till sin brottlast utan att gängorna spricker. Den inskruvade längden blir därför l_h-l_f.

Figur 5.1.3.2 l_f och diamater på BTK.
Ändstängerna svetsas fast på VKR-rören med hjälp av en tjock täckplåt som svetsas på VKR-rören med stum-svets som man sedan svetsar på en ändstång med hjälp utav kälsvets. Se figur 5.1.3.3. Det finns även en andra möjlighet att fästa ändstängerna där man också svetsar på en tjock täckplåt men som man sedan gör hål i så att man kan föra in ändstången och svetsa fast inuti se figur 5.1.3.4.

Figur 5.1.3.3 Fästning av ändstänger 1

Figur 5.1.3.4 Fästning av ändstänger 2
5.2 Fördelar och nackdelar med de justerbara transportstagen

Figur 5.2 Transportsstag 1 och 2
5.3 Tryckkraftskapacitet

I Eurokod finns det ingen beskrivning om hur beräkning av knäckning för en föränderlig sektion görs. Den metod som används för att beräkna Eulerknäcklasten har därför hämtats ur 'Allmänna grunder Bygg huvuddel 1A’. Parametern som kommer verka som sammanbindande av de olika tvärsnitten är γ.

Då transportstaget är så pass svagt i jämförelse med väggen räknas det som fritt upplagt även om det är fast inskruvat i väggen. Transportstaget kommer när det utsätts för tryckkraft vilja böja som i figur 5.3. Vid små dörröppningar kan det bli så att det är tryckkraftskapaciteten som blir dimensionerande. Det minsta av de justerbara transportstagen blir dock aldrig kortare än 800 mm vilket innebär att det är knäckningskapaciteten som blir dimensionerande. Beräkningar på detta återfinns i bilaga C.

![Figur 5.3 hur transportstag 1 och 2 böjer.](image)

5.4 Dragkraftskapacitet

Det krävs en kontroll av dragkraftskapaciteten för en stång med föränderlig sektion, och då beräknas det tvärsnitt som har minst area eftersom det är det minsta tvärsnittet som klarar av minst dragkraft i detta fall.

6 Bilaga B.1 Knäckning VKR 50x50x3
6. Excel-program

6.1 Synligt för användaren

6.1.1 Grunddata

<table>
<thead>
<tr>
<th>Mått</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1:</td>
<td>6000 mm</td>
</tr>
<tr>
<td>X2:</td>
<td>2500 mm</td>
</tr>
<tr>
<td>X3:</td>
<td>1000 mm</td>
</tr>
<tr>
<td>Y1:</td>
<td>3000 mm</td>
</tr>
<tr>
<td>Y2:</td>
<td>2000 mm</td>
</tr>
<tr>
<td>Z1:</td>
<td>150 mm</td>
</tr>
</tbody>
</table>

Bild 6.1.1.1 Översikt för fliken Grunddata

Mått:

<table>
<thead>
<tr>
<th>Mått</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X1:</td>
<td>6000 mm</td>
</tr>
<tr>
<td>X2:</td>
<td>2500 mm</td>
</tr>
<tr>
<td>X3:</td>
<td>1000 mm</td>
</tr>
<tr>
<td>Y1:</td>
<td>3000 mm</td>
</tr>
<tr>
<td>Y2:</td>
<td>2000 mm</td>
</tr>
<tr>
<td>Z1:</td>
<td>150 mm</td>
</tr>
</tbody>
</table>

Bild 6.1.1.2 Mått
Det första en användare måste göra är att skriva in måtten så att de stämmer överens med den vägg som ska produceras. Denna del av programmet kan ändras helt av användaren. Bild 6.1.1.2 visar hur detta skrivs in.

Tyngdpunkt:

![Tyngdpunkt](image1)

Bild 6.1.1.3 Tyngdpunkt

Programmet räknar automatiskt ut tyngdpunkten i väggen baserat på indata som fyllts i under rubriken mått. Då väggen kan ha en annan tyngdpunkt så har användaren en möjlighet att lägga in en manuell tyngdpunkt. Det görs i rutan under den automatiska tyngdpunkten. Detta är lämpligt ifall väggen t.ex. har ett fönster vilket påverkar tyngdpunkten. Hur det ser ut visas i bild 6.1.1.3

Egentyngden:

![Egentyngd](image2)

Bild 6.1.1.4 Egentyngd

Programmet räknar automatiskt ut väggens egentyngd baserat på den indata som fyllts i under rubriken mått. Användaren kan dock lägga till en manuell egentyngd. Det görs i rutan under den automatiska egentyngden. Detta är lämpligt ifall väggen t.ex. har ett fönster vilket påverkar egentyngden. Hur det ser ut visas i bild 6.1.1.4

Transportstagets position:

![Transportstagets position](image3)

Bild 6.1.1.5 Transportstagets position

Transportstagets position är ett mått på hur långt upp transportstaget kommer sitta från underkanten. Måttet är låst för användaren så att denne inte kan ändra på det. Se bild 6.1.1.5
Transportstaget utsätts för:

<table>
<thead>
<tr>
<th>Staget utsätts för:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryck: 29,80 kN</td>
</tr>
<tr>
<td>Lyftpunkternas avstånd är då: 1000 mm</td>
</tr>
</tbody>
</table>

Bild 6.1.1.6 Staget utsätts för.

Här kan användaren se vilken kraft transportstaget utsätts för. Programmet har gjort beräkningar för de olika avstånden mellan lyftpunkterna och det fall där transportstaget utsätts för störst kraft visas. Utöver detta visas också vilket avstånd mellan lyftpunkterna detta sker. Här kan användaren inte ändra på något. Se bild 6.1.1.6

Transportstaget klarar av:

<table>
<thead>
<tr>
<th>Staget klarar av:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryck: 84,18 kN</td>
</tr>
<tr>
<td>Välj Stag 1</td>
</tr>
</tbody>
</table>

Bild 6.1.1.7 Staget klarar av

Här står det vad transportstaget klarar för kraft och det jämförs med det värsta fallet och från det kommer en rekommendation om vilket transportstag som bör väljas. Se bild 6.1.1.7.

Diagram:

Vid ett dörrhål med placeringen 25 dm från väggens vänsterkant och ett lyftavstånd på 1000 mm är det lämpligt att först gå till 25 dm. Se diagram 6.1.1.2

![Diagram 6.1.1.2 Krafter som staget utsätts för](image)

Diagram 6.1.1.2 Krafter som staget utsätts för

För att sedan gå upp till lyftavstånd 1000 mm och avläsa vilken stagkraft det ger.

![Diagram 6.1.1.3 Krafter som staget utsätts för](image)

Diagram 6.1.1.3 Krafter som staget utsätts för

Här kan till exempel avläsas att kraften som transportstaget utsätts för är lite mindre än 30 kN. Detta jämfört med vad Excelprogrammet räknat ut 29,80 kN visar att diagrammet ger en god översikt av kraften. Se diagram 6.1.1.3.
6.1.2 Utskrift

| Övrigt utrymmelse för mått på ljudställen (m²) | 6.3 |

Transportstag 1

| Max N_{maj} | 35,06 kN |
| Max N_{maj} | 111,52 kN |

Bild 6.1.2.1 Utskrift transportstag

Även här kommer användaren att se hur stor kraft som transportstaget utsätts för. Här finns dock den stora skillnaden att det finns en möjlighet att ändra lyftpunkternas position. Stagkraften räknas om baserat på det nya förhållandet och rätt typ av transportstag visas i den undre delen av figuren. Se bild 6.1.2.1.
Kraftspelsanalys av transportstag

Halmstad Högskola
Vårterminen 2012

Bild 6.1.2.2 Utnyttjandegrad vid 1000 mm mellan lyftpunkterna

En jämförelse kallad utnyttjandegrad finns mellan den kraft transportstaget utsätts för samt vad det klarar av vid aktuell längd. Programmet tar hänsyn till om transportstaget utsätts för en dragkraft eller en tryckkraft. Se bild 6.1.2.2 samt Bild 6.1.2.3

Transportstag 1 och 2

V KR-rör

Transportstag 3

Max. N_{bad}: 41,64 kN

Max. N_{bad}: 178,68 kN

Figur 6.1.2.6 Transportstag 3

Det fasta VKR-rör är som tidigare beskrivet till för de fall då konstruktören inte har möjlighet att välja ett lyftavstånd där de justerbara transportstagen klarar av kraften det utsätts för. Transportstag 3 är inte begränsad till något mått, men för att det ska vara möjligt att jämföra med de justerbara stagen är knäcklasterna som programmet räknar ut, och som visas i figur 6.1.2.6 på de största respektive minsta längder som de justerbara transportstagen kan ha.
6.2 Dolt för användaren

6.2.1 Beräkningar

Lyftkraft:

<table>
<thead>
<tr>
<th>Lyftkraft G_{\delta, lyp}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Med säkerhetsmarginal:</td>
<td>58,5 kN</td>
</tr>
</tbody>
</table>

Bild 6.2.1.1 Lyftkraft

Egentyngd:

<table>
<thead>
<tr>
<th>Egentyngd Vänster</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Utan säkerhetsmarginal:</td>
<td>31,875 kN</td>
</tr>
<tr>
<td>Kraftens position i x-led:</td>
<td>1455,88 mm</td>
</tr>
<tr>
<td>Med säkerhetsmarginal:</td>
<td>62,1563 kN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Egentyngd Höger</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Utan säkerhetsmarginal:</td>
<td>31,875 kN</td>
</tr>
<tr>
<td>Kraftens position i x-led:</td>
<td>4544,12 mm</td>
</tr>
<tr>
<td>Med säkerhetsmarginal:</td>
<td>62,1563 kN</td>
</tr>
</tbody>
</table>

Bild 6.2.1.2

7 Kap 4.4. Dynamisk faktor
8 Bilaga A.II. Lyftkrafter
9 Se figur 4.2.1 och 4.2.3
Bild 6.2.1.3 Byggarbetsplats

Bilden 6.2.1.3 visar två av fyra olika beräkningstabeller som programmet innehåller, dessa visar uträkningarna för ett lyft på byggarbetsplats. Då lyften sker med lutande lyftstroppar, se figur 4.1.2 så finns här även en horisontalkraft som kan påverka.

De olika krafternas position i de olika snitten beräknas. Då användaren har möjlighet att ändra på måtten så måste positionerna anpassa sig efter det mått som snittet får. När det står 0 för en position så är kraften mitt i snitten och dess verkningslinje går rakt genom momentpunkten och kommer därför inte att räknas med. Negativ position betyder att lyftpunkten är bortom snittet och då inte kommer med i momentjämvikten.

Kolumnerna längst till höger är till för att underlätta vid beräkningarna och de räknar ut det moment som lyften ger i snittet.

\(F_y(v+h) \): Visar momentet av den vertikalkraft som påverkar snittet.
\(F_x(v-h) \): Visar momentet av den horisontalkraft som påverkar snittet.

Ifall båda vertikala krafterna verkar i samma snitt kommer de vid ett moment runt punkt A att samma håll. Detta gör att krafterna inte tar ut varandra vid momentjämviktkberäkning. Två horisontala krafter i samma snitt verkar i motsatt riktning till varandra, de kommer på så sätt att vid en momentjämviktkberäkning ta ut varandra. Se bilaga A.2.3
Fabrik:

Den enda skillnaden mellan lyft i fabrik och på byggarbetsplats är avsaknaden av horisontalkraften, eftersom väggarna i fabrik alltid lyfts med vertikala lyftstroppar. Se bild 6.2.1.4

Krafterna mot transporttaget:

Efter att programmet har räknat ut vilka krafter som transporttaget utsätts för i fabrik och på byggarbetsplats, både i det högra och vänstra snittet så jämförs dessa resultat och programmet väljer ut det värsta fallet vid varje lyftpunkt. Resultatet visas i bild 6.2.1.5. Detta kommer senare användas för att visa användaren vilket snitt som är värst och vid vilket lyftavstånd det sker.
6.2.2 Stagberäkningar

<table>
<thead>
<tr>
<th>(\frac{L_1}{L_2})</th>
<th>(L_1/L_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>0.15</td>
<td>0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>0.35</td>
<td>0.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>0.45</td>
<td>0.0</td>
</tr>
<tr>
<td>0.475</td>
<td>0.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Baserat på figur 355i sida 651.10

För att programmet ska räkna ut knäcklasten för transportstaget behövs en tabell som är baserad på diagrammet i Bilaga B.II.

Sedan används superposition för att ta fram värdet \(\Upsilon \). Värdet \(\Upsilon \) multipliceras med den vanliga formeln för att räkna ut Eulerknäckningslasten \(N_{cr} \). Ur detta räknas transportstagets tryckkraftskapacitet ut.

Då transportstagen inte gäller för alla fall så har programmet möjlighet att välja ett rent VKR-rör. Programmet kommer dock i de fallen rekommendera användaren att ändra lyftpunkter så att de återanvändningsbara transportstagen kan användas.

<table>
<thead>
<tr>
<th>Drag/Tryck-kraftskapacitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gångstång: 198,77 kN</td>
</tr>
<tr>
<td>VKR: 130,64 kN</td>
</tr>
</tbody>
</table>

Bild 6.2.2.1 Dragkraftskapacitet

Utöver detta räknar programmet även fram transportstagens drag- samt tryckkraftskapacitet där även det lägsta väljs. Detta visas i bild 6.2.2.1 . Risken att dock väldigt liten att \(H_{Ed} \) någonsin uppnår detta.

10 Allmänna grunder Bygg huvuddel 1A
6.2.3 Tabell 2

<table>
<thead>
<tr>
<th>Maximal kraft för båda snitt</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3500</th>
<th>4000</th>
<th>4500</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>1500</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>2000</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>2500</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>3000</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>3500</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>4000</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
<tr>
<td>4500</td>
<td>0,19</td>
<td>-4,56</td>
<td>-6,17</td>
<td>-7,78</td>
<td>-9,35</td>
<td>-10,94</td>
</tr>
</tbody>
</table>

Bild 6.2.3.1 Maximal kraft för båda snitt

För att på ett enkelt sätt kontrollera vilka krafter som transporttaget utsätts för gjordes en tabell som låter dörröppningen vandra från vänster till höger. Se bild 6.2.3.1. De olika lyftavstånden finns även med för att kontrollera var kraften är som störst. Tabellen påverkas av de val som görs på första sidan i avseende till mått, tyngpunkt samt egentyngd. Dock tillåter tabellen endast att väggen blir 10 m lång. Beräkningarna i dessa tabeller görs endast som underlag till diagrammet o fig 6.1.1.1

Tabellen stannar halvvägs då det inte blir någon större skillnad på krafterna efter den punkten.

<table>
<thead>
<tr>
<th>6.2.3 Tabell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>1500</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>2000</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>2500</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>3000</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>3500</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>4000</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
<tr>
<td>4500</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Bild 6.2.3.2 Hed Vänster och Hed Höger.

Ur tabellen som visas i bild 6.2.3.2 kan sedan programmet ta fram en max- och en minpunkt. Där maxpunkten representerar den största tryckkraft och minpunkten representerar den högsta dragkraft transporttaget kan utsättas för.

Dessa tabeller görs endast för att ge underlag till diagrammet i fliken Grunddata som visas i figur 6.1.1.1. Detta för att användaren ska få en överblick över de olika lyftpunkternas inverkan på transporttaget. Tabellen tar även hänsyn till manuellt inlagd egentyngd.
7. Slutförstudie

I detta examensarbete har det utformats en teoretisk beräkningsmodell för att ta fram den last som kommer påverka transportsstg samt en tänkbar lösning av ett transportslag. Modellen är framtagen utan hänsyn till betongens styvhet eller väggens armering, detta medför dock att lasterna som påverkar transportslagen i beräkningarna kan vara överdimensionerade vilket i detta fall kan ses som något positivt då risken att staget går sönder och att väggen är tvungen att kasseras blir mindre. Att armeringens inverkan försummas är således på säkra sidan.

Slutsatsen som kan dras av beräkningarna av H_{Ed} är att placering på lyftpunkterna är avgörande. En skillnad på endast 500 mm kan ha stor inverkan på vilken kraft transportlagen utsätts för. Med detta i åtanke kan det vara klokt att tänka på hur lyftpunkterna placeras.

När det kommer till transportslagen är slutsatsen att det är en beräkningsmodell som fungerar. Även om de föreslagna justerbara trasportstagen tryckkraftskapacitet är begränsad i jämförelse med de redan befintliga transportslagen så överväger fördelarna med detta transportslag. Eftersom dess längd kan modifieras finns möjligheten för återanvändning, vilket medför att även om kostnaden för tillverkning kan vara hög kommer företaget tjäna på det i längden. Betongväggarnas formar behöver inte heller modifieras för transportstaget då det inte behöver gjutas in från början, vilket är en stor fördel i de fall då formarna är av metall. Dessutom kommer det på byggarbetsplats gå snabbare att demontera transportslagen eftersom det inte behöver kapas. Allt detta resulterar i tidvinst både vid tillverkning som vid montering av väggelement.

Totalt bedöms de återanvändningsbara transportslagen leda till både ekonomiska och miljömässiga vinster då en mindre mängd stål behöver användas.

Allt i rapporten är teoretiskt framtaget vilket innebär att det inte är säkerställt att det fungerar. Något som borde ha gjorts är praktiska experiment för att se att de teoretiskt framtagna värden överensstämmer med verkligheten. Dessutom borde intervjuer med de montörer och arbetare som i sin vardag arbetar med de befintliga transportstagen. Dessa intervjuer skulle kunnat ge en annan infallsvinkel än den som diskussioner med nämnda företag har lätt fram till.
8. Källförteckning

Normer

Eurokod 3: Dimensionering av stålkonstruktioner – Del 1-1: Allmänna regler och regler för byggnader, SS-EN 1993-1-1:2005, Utgåva 1

Svenskt förord till SIS-CEN_TR15728 Oct 2011

Tryckta källor

Tord Isaksson, Annika Mårtensson, Sven Thelandersson Byggkonstruktion Upplaga 2:2

Paul Johannesson, Bengt Vretblad Byggformler och tabeller Tionde upplagan

Bengt Wahlström Allmänna grunder Bygg Huvuddel 1A
Bilagor
Tyngdpunktsberäkning

Börjar med att räkna ut tyngdpunkten för hela elementet. Tyngdpunktsberäkning räknas genom formeln:

\[X_{TP} = \frac{\sum X_i \cdot A_i}{\sum A_i} \] (mm)

För väggen kan \(X_{TP} \) beräknas enligt:

\[X_{TP} = \frac{x_1 \cdot y_1 \cdot 0.5x_1 - y_2 \cdot x_3 \cdot (x_2 + 0.5x_3)}{x_1 \cdot y_1 - y_2 \cdot x_3} \] (mm)
Lyftkrafter

Sedan räknas den lyftkraft ut som kommer verka. Lyftkraften $G_{k,\text{lyft}}$ beräknas som tyngden av elementet.

$$G_{k,\text{lyft}} = (x_1 \cdot y_1 - x_3 \cdot y_2) \cdot z_1 \cdot 25$$ \hspace{1cm} \text{(kN)}

För att få fram den dimensionerande lyftkraften måste det tas hänsyn till den dynamiska faktorn 11 samt Lastfall. Eftersom lyftet sker i två punkter och varje punk tar upp halva tyngden. De blir lika stora då elementet ska hamna i jämvikt.

$$G_{d,\text{lyft}} = \frac{1.2 \cdot G_{k,\text{lyft}} + \left(Y_\varepsilon - 1 \right) G_{k,\text{lyft}}^{1.5}}{2}$$ \hspace{1cm} \text{(kN)}

På byggarbetsplats lyftes väggen med vinkel som inte är 90º och då kommer det även att finnas en horisontell kraft som verkar på transportstaget. Denna räknas ut med hjälp av trigonometri enligt formel:

$$a = b \tan \alpha \rightarrow b = \frac{a}{\tan \alpha}$$ \hspace{1cm} 12

![Figur A2 Trigonometri](image)

Enligt bild ovan kan sedan $G_{d,ho}$ räknas ut enligt:

$$G_{d,ho-\text{lyft}} = \frac{G_{d,\text{lyft}}}{\tan \nu}$$ \hspace{1cm} \text{(kN)}

Krafterna $G_{k,lyft}$, $G_{d,lyft}$ och $G_{d,ho-lyft}$ ändrar inte värde beroende på vilket snitt som väljs utan de är konstanta. Vid 45 grader på ν blir den horisontella kraften lika stor som den vertikala och ger en större kraft än vid 60 grader.

11 Svenskt förord till SIS-CEN_TR15728 Oct 2011

12 Byggsformler och tabeller
Börjar med att räkna ut tyngden på snittet eftersom detta kommer vara den kraft som verkar nedåt. För att få fram den dimensionerande kraft som verkar neråt i snittet måste även här tas hänsyn till dynamisk faktor och lastfall. Då det gäller själva transportstaget används en dynamisk faktor på 1,5.

\[G_{kv} = \left((x_3 + x_2) \cdot y_1 - x_3 \cdot y_2 \right) \cdot z_1 \cdot 25 \quad \text{(kN)} \]

\[G_{dv} = 1,2 \cdot G_{kv} + \left(\gamma_e - 1 \right) \cdot G_{kv} \cdot 1,5 \quad \text{(kN)} \]

Kraften \(G_{dv} \) kommer verka i snittets tyngdpunkt \(X_{tpv} \) som beräknas enligt

\[X_{tpv} = \frac{(x_3 + x_2) \cdot y_1 \cdot \frac{x_3 + x_2}{2} - x_3 \cdot y_2 \cdot \left(\frac{x_3 + x_2}{2} \right)}{(x_3 + x_2) \cdot y_1 - x_3 \cdot y_2} \quad \text{(mm)} \]
Sträckan från snittet till den lyftkraft som angriper närmast snittet, $s_{1,1}$, beräknas enligt formel nedan. Om $x_2 + x_3$ är mindre än $X_{TP} - \frac{s}{2}$ så ligger det ingen lyftkraft i det vänstra snittet.

$$s_{1,1} = (x_2 + x_3) - \left(X_{TP} - \frac{s}{2} \right)$$

(mm)

$s_{2,1}$ som är den sträcka från snittet till den lyftkraft som angriper längst bort i snittet beräknas enligt formel nedan:

$$s_{2,1} = s_{1,1} - \frac{s}{2}$$

(mm)

Om $\frac{s}{2}$ är större än $s_{1,1}$ ligger inte den andra lyftkraften i detta snitt utan i det högra snittet.

Figur A4 Lyftkrafter i samma snitt

Det kan vara så att det inte finns någon lyftkraft i ett snitt. Om elementet inte är symetriskt och det är ett relativt kort avstånd mellan lyftpunkterna kan det vara så att båda lyftkrafterna hamnar i samma snitt. Detta innebär att ett snitt blir utan lyftkrafter.

Det kan även bli så att båda lyftkrafterna hamnar i samma snitt och då har en positiv inverkan på tryckkraften mot transportstaget.
Nästa steg är att göra en momentjämvikt kring A för att bestämma kraften som påverkar transportstaget H_{Ed}.

Momentjämvikt kring punkten A för det vänstra snittet

I fabrik:

$$A : G_{d,v} \cdot (s_{1,1} + s_{2,1}) - G_{dv} \cdot X_{tp2} + H_{Ed} \cdot h = 0$$

På byggarbetsplats:

$$A : G_{d,v} \cdot (s_{1,1} + s_{2,1}) + G_{d,h} \cdot (h_{iv} - h_{ih}) - G_{dv} \cdot X_{tp2} + H_{Ed} \cdot h = 0$$

Ur ekvationen löses sedan ut H_{Ed} som är den kraft som kommer påverka transportstaget. Om H_{Ed} är negativ innebär det att transportstaget kommer belastas för en dragkraft. Om H_{Ed} istället är positiv betyder det att transportstaget kommer belastas med en tryckkraft.

I fabrik:

$$H_{Ed} = \frac{G_{dv} \cdot X_{tp2} - G_{df,lyf} \cdot (s_{1,1} + s_{2,1})}{h}$$

På byggarbetsplats:

$$H_{Ed} = \frac{G_{dv} \cdot X_{tp2} - G_{db,lyf} \cdot (s_{1,1} + s_{2,1}) - G_{db,lyf} \cdot (h_{iv} - h_{ih})}{h}$$

Beroende på hur lyftkrafterna är placerade försvinner vissa termer i momentjämvikten. Exempelvis behöver inte båda lyftkrafterna verka i samma snitt vilket innebär att en lyftkraft och en horisontell lyftkraft inte räknas med i momentjämvikten, som det ser ut i bilden.
Snitt 2

Figur A5 Momentjämviktn

Principen är den samma för snitt 2 som för snitt 1.

\[G_{R, Lyft} = (x_1 \cdot y_1 - x_3 \cdot y_2) \cdot z_1 \cdot 25 \] (kN)

\[G_{dv} = 1,2 \cdot G_{kv} + \left(\gamma_g - 1 \right) \cdot G_{kv} \cdot 1,5^2 \] (kN)

\[s_{1,2} = \left(X_{\text{TP}} + \frac{s}{2} \right) - x_2 \] (mm)

Om \(x_2 \) större än \(X_{\text{TP}} + \frac{s}{2} \) så ligger det ingen lyftkraft i det högra snittet

\[s_{2,2} = \left(\left(X_{\text{TP}} + \frac{s}{2} \right) - x_2 \right) - s \] (mm)

Om \(s \) är större än \(s_{1,2} \) ligger inte den andra lyftkraften i det högra snittet
Momentjämvikt kring punkten A för det högra snittet

I fabrik:

\[A : G_{d,hf} \cdot (s_{1,2} + s_{2,2}) - G_{dh} \cdot X_{tp2} + H_{Ed} \cdot h_{2} = 0 \]

På byggarbetsplats:

\[A : G_{d,hf} \cdot (s_{1,2} + s_{2,2}) + G_{d,hf} \cdot (h_{1h} - h_{1v}) - G_{dh} \cdot X_{tp2} + H_{Ed} \cdot h_{2} = 0 \]

I fabrik:

\[
H_{Ed} = \frac{G_{dv} \cdot X_{tp2} - G_{df,lyft} \cdot (s_{1,1} + s_{2,1})}{h_{2}}
\]

På byggarbetsplats:

\[
H_{Ed} = \frac{G_{dh} \cdot X_{tp2} - G_{db,lyft} \cdot (s_{1,2} + s_{2,2}) - G_{db,lyft} \cdot (h_{1h} - h_{1v})}{h_{2}}
\]
Bilaga A.1. Genomräknat exempel - Prefabvägg med ett symmetriskt placerat hål

![Diagram](image)

Figur A6 Symmetriskt tvärsnitt

Grunddata

Först och främst ska tyngdpunkten x_{tp} tas fram ur väggen eftersom lyftpunkterna placeras utifrån den. Tyngdpunkterna räknas från väggens vänstra sida.

$$x_{tp} = \frac{x_1 \cdot y_1 \cdot x_2 - x_3 \cdot y_2 \cdot \left(\frac{x_3}{2} + x_2\right)}{x_1 \cdot y_1 - x_3 \cdot y_2} = \frac{6 \cdot 3 \cdot 6}{6 \cdot 3 - 1 \cdot 2} = 3 \text{ m}$$

Lyftkraften kommer ur väggens tyngd och måste således räknas ut

$$G_{k,lyft} = (x_1 \cdot y_1 - x_3 \cdot y_2) \cdot z_1 \cdot 25 = (6 \cdot 3 \cdot -1 \cdot 2) \cdot 0,15 \cdot 25 = 60 \text{ kN}$$

Sedan läggs det på en säkerhetsmarginal vid lyft. Att det delas på två beror på att det vid lyft används två lyftpunkter och att kraften delas lika på båda.

I fabrik:

$$G_{df,lyft} = \frac{1,2 \cdot G_{k,lyft} + (1,5 - 1) \cdot G_{k,lyft} \cdot 1,5}{2} = \frac{1,2 \cdot 60 + (1,5 - 1) \cdot 60 \cdot 1,5}{2} = 58,5 \text{ kN}$$

På byggarbetsplats:

$$G_{db,lyft} = \frac{1,2 \cdot G_{k,lyft} + (1,5 - 1) \cdot G_{k,lyft} \cdot 1,5}{2} = \frac{1,2 \cdot 60 + (1,5 - 1) \cdot 60 \cdot 1,5}{2} = 58,5 \text{ kN}$$

Kraften som transporttaget ska klara kallas H_{eb}. Det är placerat 2,3 m ifrån momentpunkten A och hävarmen betecknas h_2.

A.8
Snitt vänster

Då väggen är symmetrisk kommer krafterna bli lika på båda sidor snittet och därför kommer det i bilagan endast ett snitt beskrivas.

Snittets tyngdpunkt x_{tpv} måste räknas ut för att få hävaren till snittets egentyngd G_{kv}

$$ x_{tpv} = \frac{(x_3 + x_2) \cdot y_1 + x_3^2 - x_3 \cdot y_2 \cdot (x_3^2 + x_2^2)}{(x_3 + x_2) \cdot y_1 - x_3 \cdot y_2} = \frac{(1 + 2.5) \cdot 3 \cdot 1 + 2.5 - 1 \cdot 2 \cdot (1 + 2.5)}{(1 + 2.5) \cdot 3 - 1 \cdot 2} = 1.46 \text{ m} $$

Avståndet mellan tyngpunkt x_{tpv} och snittet blir således

$$ X_{TP2} = (x_3 + x_2) - x_{tpv} = (1 + 2.5) - 1.46 = 2.04 \text{ m} $$

Egentyngden:

$$ G_{kv} = ((x_3 + x_2) \cdot y_1 - x_3 \cdot y_2) \cdot x_1 \cdot 25 = \left((1 + 2.5) \cdot 3 - 1 \cdot 2\right) \cdot 0.15 \cdot 25 = 31.875 \text{ kN} $$

Sedan läggs det på en säkerhetsmarginal vid lyft. Här delas det inte med två eftersom det endast räknas på snittets egentyngd.

I fabrik och på byggarbetsplats:

$$ G_{dv} = 1.2 \cdot G_{kv} + (1.5 - 1) \cdot G_{kv} \cdot 1.5 = 1.2 \cdot 31.875 + (1.5 - 1) \cdot 31.875 \cdot 1.5 = 62.156 \text{ kN} $$

Avstånd mellan lyftpunkterna: 1 m

I fabrik:

$$ H_{Ed} = \frac{G_{dv} \cdot X_{TP2} - G_{df,lyft} \cdot (s_{1,1} + s_{2,1})}{h_2} = \frac{62.156 \cdot 2.04 - 58.5 \cdot (1 + 0)}{2.3} = 29.81 \text{ kN} $$

På byggarbetsplats:

$$ H_{Ed} = \frac{G_{dv} \cdot X_{TP2} - G_{db,lyft} \cdot (s_{1,1} + s_{2,1}) - G_{db,lyft} \cdot (h_{1v} - h_{1h})}{h_2} = \frac{62.156 \cdot 2.04 - 58.5 \cdot (1 + 0) - 58.5 \cdot (0.5 - 0.5)}{2.3} = 29.81 \text{ kN} $$
Avstånd mellan lyftpunkterna: 2,5 m

I fabrik:

\[H_{Ed} = \frac{G_{dv} \cdot X_{Tp2} - G_{df,lyft} \cdot (s_{1,1} + s_{2,1})}{h_2} = \frac{62,156 \cdot 2,04 - 58,5 \cdot (1,75 + 0)}{2,3} = 10,73 \text{kN} \]

På byggarbetsplats:

\[H_{Ed} = \frac{G_{dv} \cdot X_{Tp2} - G_{db,lyft} \cdot (s_{1,1} + s_{1,2}) - G_{db,lyft} \cdot (h_{1w} - h_{1h})}{h_2} = \frac{62,156 \cdot 2,04 - 58,5 \cdot (1,75 + 0) - 58,5 \cdot (0,5 - 0)}{2,3} = -1,99 \text{kN} \]

Figur A8 Osymmetriskt tvärsnitt

Grunddata
Först och främst ska tyngdpunkten x_{tp} tas fram ur väggen eftersom lyftpunkterna placeras utifrån den. Tyngdpunkterna räknas från väggens vänstra sida.

$$x_{tp} = \frac{x_1 \cdot y_1 \cdot \frac{x_2}{2} - x_3 \cdot y_2 \cdot \left(\frac{x_3}{2} + x_2\right)}{x_1 \cdot y_1 - x_3 \cdot y_2} = \frac{6 \cdot \frac{6}{2} - 1 \cdot 2 \cdot \left(\frac{1}{2} + 1\right)}{6 \cdot 3 - 1 \cdot 2} = 3,188 \text{ m}$$

Lyftkraften kommer ur väggens tyngd och måste således räknas ut

$$G_{k,Lyft} = (x_1 \cdot y_1 - x_3 \cdot y_2) \cdot z_1 \cdot 25 = (6 \cdot 3 \cdot -1 \cdot 2) \cdot 0,15 \cdot 25 = 60 \text{ kN}$$

Sedan läggs det på en säkerhetsmarginal vid lyft. Att det delas på två har med att det vid lyft används två lyftpunkter och att kraften delas lika på båda.

I fabrik:

$$G_{df,Lyft} = \frac{1,2 \cdot G_{k,Lyft} + (1,5 - 1) \cdot G_{k,Lyft} \cdot 1,5}{2} = \frac{1,2 \cdot 60 + (1,5 - 1) \cdot 60 \cdot 1,5}{2} = 58,5 \text{ kN}$$

På byggarbetsplats:

$$G_{db,Lyft} = \frac{1,2 \cdot G_{k,Lyft} + (1,5 - 1) \cdot G_{k,Lyft} \cdot 1,5}{2} = \frac{1,2 \cdot 60 + (1,5 - 1) \cdot 60 \cdot 1,5}{2} = 58,5 \text{ kN}$$

Kraften som transportstaget ska klara kallas H_{ed}. Det är placerat 2,3 m ifrån centrumlinjen och kallas i uträkningarna h_2.

A.11
Snitt vänster

Snittets tyngpunkt x_{tpv} måste räknas ut eftersom för att få hävarmen till snittets egentyngd G_{kv}

$$x_{tpv} = \frac{(x_3 + x_2) \cdot y_1 \cdot \frac{x_3 + x_2}{2} - x_3 \cdot y_2 \cdot \left(\frac{x_3 + x_2}{2}\right)}{(x_3 + x_2) \cdot y_1 - x_3 \cdot y_2} = \frac{(1 + 1) \cdot 3 + \frac{1 + 1}{2} - 1 \cdot 2 \cdot \left(\frac{1}{2} + 1\right)}{(1 + 1) \cdot 3 - 1 \cdot 2} = 0,75\,m$$

Avståndet mellan tyngpunkten x_{tpv} och snittet blir således

$$X_{Tp2} = (x_3 + x_2) - x_{tpv} = (1 + 1) - 0,75 = 1,25\,m$$

Egentyngden:

$$G_{kv} = ((x_3 + x_2) \cdot y_1 - x_3 \cdot y_2) \cdot z_1 \cdot 25 = ((1 + 1) \cdot 3 \cdot -1 \cdot 2) \cdot 0,15 \cdot 25 = 15\,kN$$

Sedan läggs det på en säkerhetsmarginal vid lyft. Här delas det inte med två eftersom det endast räknas på snittets egentyngd.

I fabrik och på byggarbetsplats:

$$G_{dv} = 1,2 \cdot G_{kv} + (1,5 - 1) \cdot G_{kv} \cdot 1,5 = 1,2 \cdot 15 + (1,5 - 1) \cdot 15 \cdot 1,5 = 29,25\,kN$$
Avstånd mellan lyftpunkterna: 1 m

I fabrik:

\[H_{Ed} = \frac{G_{dv} \cdot X_{Tp2} - G_{df,lyft} \cdot (s_{1,1} + s_{2,1})}{h_2} = \frac{29,28 \cdot 1,25 - 58,5 \cdot (0 + 0)}{2,3} = 15,90 \, kN \]

På byggarbetsplats:

\[H_{Ed} = \frac{G_{dv} \cdot X_{Tp2} - G_{db,lyft} \cdot (s_{1,1} + s_{2,1}) - G_{db,lyft} \cdot (h_{1v} - h_{1h})}{h_2} = \frac{29,25 \cdot 1,25 - 58,5 \cdot (0 + 0) - 58,5 \cdot (0 - 0)}{2,3} = 15,90 \, kN \]

Avstånd mellan lyftpunkterna: 2,5 m

I fabrik:

\[H_{Ed} = \frac{G_{dv} \cdot X_{Tp2} - G_{df,lyft} \cdot (s_{1,1} + s_{2,1})}{h_2} = \frac{29,25 \cdot 1,25 - 58,5 \cdot (0 + 0,0625 + 0)}{2,3} = 14,30 \, kN \]

På byggarbetsplats:

\[H_{Ed} = \frac{G_{dv} \cdot X_{Tp2} - G_{db,lyft} \cdot (s_{1,1} + s_{2,1}) - G_{db,lyft} \cdot (h_{1v} - h_{1h})}{h_2} = \frac{29,25 \cdot 1,25 - 58,5 \cdot (0,0625 + 0) - 58,5 \cdot (0,5 - 0)}{2,3} = 1,59 \, kN \]
Snitt Höger

Avståndet mellan tyngdpunkten \(x_{tpv} \) och snittet blir således
\[
X_{Tp2} = x_{Tp} - x_2 = 3,808 - 1 = 2,808 \text{ m}
\]

Egentyngden:
\[
G_{kh} = \left((x_1 - x_2) \cdot y_1 - x_3 \cdot y_2 \right) \cdot z_1 \cdot 25 = \left((6 - 1) \cdot 3 \cdot -1 \cdot 2 \right) \cdot 0,15 \cdot 25 = 48,75 \text{ kN}
\]

Sedan läggs det på en säkerhetsmarginal vid lyft. Här delas det inte med två eftersom det endast räknas på snittets egentyngd.

I fabrik och på byggarbetsplats:
\[
G_{ah} = 1,2 \cdot G_{kh} + (1,5 - 1) \cdot G_{kh} \cdot 1,5 = 1,2 \cdot 48,75 + (1,5 - 1) \cdot 48,75 \cdot 1,5 = 95,06 \text{ kN}
\]
Avstånd mellan lyftpunkterna: 1 m

I fabrik:

\[H_{Ed} = \frac{G_{dh} \cdot X_{Tp2} - G_{df,lyft} \cdot \left(s_{1,2} + s_{2,3}\right)}{h_2} = \frac{95,06 \cdot 2,808 - 58,5 \cdot (1,687 + 2,687)}{2,3} = 4,77 \text{kN} \]

På byggarbetsplats:

\[H_{Ed} = \frac{G_{dh} \cdot X_{Tp2} - G_{db,lyft} \cdot \left(s_{1,2} + s_{2,3}\right) - G_{db,lyft} \cdot (h_{1h} - h_{1v})}{h_2} = \frac{95,06 \cdot 2,808 - 58,5 \cdot (1,687 + 2,687) - 58,5 \cdot (0,5 - 0,5)}{2,3} = 4,77 \text{kN} \]

Avstånd mellan lyftpunkterna: 2,5 m

I fabrik:

\[H_{Ed} = \frac{G_{dh} \cdot X_{Tp2} - G_{df,lyft} \cdot \left(s_{1,2} + s_{2,3}\right)}{h_2} = \frac{95,06 \cdot 2,808 - 58,5 \cdot (0,937 + 3,437)}{2,3} = 4,77 \text{kN} \]

På byggarbetsplats:

\[H_{Ed} = \frac{G_{dh} \cdot X_{Tp2} - G_{db,lyft} \cdot \left(s_{1,2} + s_{2,3}\right) - G_{db,lyft} \cdot (h_{1h} - h_{1v})}{h_2} = \frac{131,63 \cdot 2,808 - 58,5 \cdot (0,937 + 3,437) - 58,5 \cdot (0,5 - 0,5)}{2,3} = 4,77 \text{kN} \]
Bilaga B. Transporttagsberäkningar

Bild B1 Transportstag
Yttröghetsmoment

Börjar med att räkna ut yttröghetsmomenten för de olika tvärsnitten i transportstaget.

I_2 är det tröghetsmoment som används för gängstången och I_1 som är yttröghetsmomentet för VKR och kan finnas på diverse tillverkarens hemsidor och därför tas det inte upp här hur det räknas ut.

$$I_2 = \frac{\pi d^4}{64}$$ \hspace{1cm} (mm^4)

Sammanbindning av de olika tvärsnitten

Eftersom stagkonstruktionen består av två olika tvärsnitt innebär det att hänsyn måste tas till båda tvärsnitten för att få en korrekt tryckkraftskapacitet. Detta görs genom att bestämma γ som är den parameter som kommer sammanbinda de olika tvärsnitten.

$$\gamma = \frac{\sqrt{I_2}}{I_1}$$

Dessa två värden används sedan i diagrammet nedan och får då fram parametern γ.

$$P_1 = \gamma \frac{\pi^2 \cdot E \cdot I_1}{L^2} = N_{cr}$$ \hspace{1cm} (kN)

13 Byggformler och tabeller
14 Allmänna grunder Bygg huvuddel 1A
15 Allmänna grunder Bygg huvuddel 1A ekv. på Fig: 353i
Dimensionerande tryckkraft

Den dimensionerande tryckkraften $N_{b,Rd}$ som en tryckt bärverksdel klarar av att ta upp bestäms genom formeln:

$$N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{M1}}$$

(kN)

Där χ är reduktionsfaktorn för relevant instabilitetsmod.

Knäckningskurvor

Värdet på χ och tillhörande värde på slankhetsparametern λ bestäms med lämplig knäckningskurva enligt:

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda^2}} \text{ dock } \chi \leq 1,0$$

Där

$$\phi = 0,5 \cdot (1 + \alpha (\lambda - 0,2) + \lambda^2)$$

Vid det sammansatta transportstaget används sedan för att få fram slankhetsparametern

$$\lambda = \sqrt{\frac{A \cdot f_y}{N_{cr}}}$$

Samt att det för ett rent VKR-rör används

$$\lambda = \frac{l_c}{i \cdot \lambda_1}$$

Detta gör att det vid beräkningar ser lite olika ut. Skillnaden mellan de båda sätten visas i bilaga B.1 samt B.2

Knäckningskurvan som är relevant för detta transportstag är a, då det vid en knäckning av en föränderlig sektion endast är VKR-rörets tröghetsmoment som används. Hänsyn till gängstången tas istället endast vid sammanbindningen av tvärsnitten. Vilket värde α får ses i tabell nedan

16 Allmänna grunder Bygg huvuddel 1A Fig: 157:353i.
17 SS-EN 1993-1-1:2005(Sv) ekv (6.47)
18 SS-EN 1993-1-1:2005(Sv) ekv (6.49)
19 SS-EN 1993-1-1:2005(Sv) ekv (6.51)
Tabell B.1

<table>
<thead>
<tr>
<th>Knäckningskurva</th>
<th>a₀</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperfektionsfaktor</td>
<td>0,13</td>
<td>0,21</td>
<td>0,34</td>
<td>0,49</td>
<td>0,76</td>
</tr>
</tbody>
</table>

Om slankheten λ är $\leq 0,2$ eller om $\frac{N_{Ed}}{N_{cr}} \leq 0,004$ kan inverkan av instabilitet försummas.

Dragkraftskapacitet

Då transportstaget även kan utsättas för en dragkraft måste det kontrolleras att transportstaget klarar av de dragkrafter som det utsätts för under lyft. Dragkraftskapaciteten $N_{pl,Rd}$ bestäms genom

$$N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} \quad \text{(kN)}$$

f_y är beroende av vilken typ av stål som transportstaget är uppbryggt av

γ_{M0} är en partialkoefficient som har värdet 1,0

Där A_1 som är arean för transportstagets VKR och kan därför hämtas från tillverkare.

$$A_2 = \frac{\pi \phi^2}{4} \quad \text{(mm}^2)$$

$$A = \min(A_1, A_2) \quad \text{(mm}^2)$$

20 SS-EN 1993-1-1:2005(Sv) Tabell 6.1
21 SS-EN 1993-1-1:2005(Sv) (6.49) punkt (4) knäckningskurvor.
22 Bilaga B.3. Dragkraftskapacitet
Bilaga B.1. Genomräknat exempel - Knäckning VKR 50x50x3

Då inte transportstagen klarar av alla krafter som kan uppkomma används ett alternativ till. Ett rent VKR som klarar all de krafter som transportstaget kan tänkas utsättas för.

Grunddata:
A = 554 mm2
I = 202000 mm4
L = 3000 mm
α = 0,21
f$_{yd}$ = 355 MPa

Sedan räknas knäckningslängden ut:
$l_c = L \cdot \beta = 3000 \cdot 1,0 = 3000 \text{ mm}$

Tröghetsradien:
$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{202000}{554}} = 19,1$$

Nästa del används till slankheten:
$$\varepsilon = \frac{235}{f_y} = \frac{235}{355} = 0,663$$

$\lambda_1 = 93,9 \cdot \varepsilon = 93,9 \cdot 0,663 = 76,4$

Transportstagets slankhet:
$$\lambda = \frac{l_c \cdot 1}{i \cdot \lambda_1} = \frac{3000}{19,1} \cdot \frac{1}{76,4} = 2,056$$

$\phi = 0,5 \cdot [1 + \alpha \cdot (\lambda - 0,2) + \lambda^2] = 0,5 \cdot [1 + 0,21 \cdot (0,6855 - 0,2) + 0,6855^2] = 2,809$

Reduktionsfaktorn med hänsyn till knäckning:
$$\chi = \frac{1}{\phi + \sqrt{\phi^2 + \lambda^2}}$$

$$\chi = \frac{1}{0,7859 + \sqrt{0,7859^2 + 0,6855^2}}$$

Transportstagets bärförmåga med hänsyn till knäckning:
$$N_{b,Rd} = \chi \cdot A \cdot f_y = 0,2118 \cdot 554 \cdot 355 \cdot \frac{1,0}{1,0} = 41,64 \text{ kN}$$
Bilaga B.2. Genomräknat exempel: Knäckning Föränderlig sektion, konstant normalkraft

Transportstag 1:

Grunddata VKR 40x40x2,5:
- \(A = 368 \text{ mm}^2 \)
- \(I_1 = 85400 \text{ mm}^4 \)
- \(L_1 = 400 \text{ mm} \)
- \(\alpha = 0.21 \)

Grunddata Gängstång:
- \(\phi_d = 26.7 \text{ mm} \)
- \(A = 559.9 \text{ mm}^2 \)
- \(I_2 = 24947 \text{ mm}^4 \)
- \(2L_2 = 700 \text{ mm} \)
- \(\alpha = 0.49 \)

Grunddata, gemensam:
- \(E = 210 \text{ GPa} \)
- \(f_{yd} = 355 \text{ MPa} \)

Då det är en föränderlig sektion så räknas knäcklängden ut på annat sätt än i bilaga C.

För att kunna använda Fig: 353i i bilaga B behövs dessa värden:

\[
\frac{L_1}{L} = \frac{400}{2 \cdot 400 + 700} = 0,2667 \text{ mm}
\]

\[
\sqrt{\frac{I_2}{I_1}} = \sqrt{\frac{24947}{85400}} = 0,54048
\]

Med hjälp av dessa fås ur diagramet värdet:

\(Y = 0.357 \)

Ur detta kan sedan den teoretiska Eulerknäckningslasten \(N_{cr} \) räknas ut:

\[
N_{cr} = \gamma \cdot \frac{\pi^2 \cdot E \cdot I_1}{(L)^2} = 0,357 \cdot \frac{\pi^2 \cdot 210 \cdot 85400}{(2 \cdot 400 + 700)^2} = 28,058 \text{ kN}
\]

Transportstagets slankhet:

\[
\lambda = \sqrt{\frac{N_{pl}}{N_{cr}}} = \sqrt{\frac{A \cdot f_{yd}}{N_{cr}}} = \sqrt{\frac{368 \cdot 355}{28,058}} = 2,1578
\]

\[
\phi = 0.5 \cdot [1 + \alpha \cdot (\lambda - 0.2) + \lambda^2] = 0.5 \cdot [1 + 0.49 \cdot (2,1578 - 0.2) + 2,1578^2] = 3,0336
\]

B.6
Reduktionsfaktorn med hänsyn till knäckning:

\[\chi = \frac{1}{\phi + \sqrt{\phi^2 + \chi^2}} = \frac{1}{3,0336 + \sqrt{3,0336^2 + 2,1578^2}} = 0,1936 \]

Transportstagets bärförmåga med hänsyn till knäckning:

\[N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{ml}} = \frac{0,1936 \cdot 368 \cdot 355}{1,0} = 25,289 \text{ kN} \]

\[N_{b,Rd} = 25,289 \text{ kN} \]
Transportstag 2:

Grunddata VKR 50x50x5:

A = 873 mm²
I₁ = 289000 mm⁴
L₁ = 750 mm
α = 0,21

Grunddata Gängstång:

ϕₕ = 32,7 mm
A = 839,82 mm²
I₂ = 56126 mm⁴
2L₂ = 1500 mm
α = 0,49

Grunddata, gemensam:

E = 210 GPa
f₀₉ = 355 MPa

Då det är en föränderlig sektion så räknas knäcklängden ut på annat sätt än i bilaga C.

För att kunna använda Fig: 353 i bilaga B.II behövs dessa värden:

\[L₁ \]
\[L = \frac{750}{2 \cdot 750 + 1500} = 0,2500 \text{ mm} \]

\[l₁ \]
\[l₂ = \sqrt{\frac{56126}{289000}} = 0,44069 \]

Med hjälp av dessa fås ur diagramet värdet:

Y = 0,241

Ur detta kan sedan den teoretiska Eulerknäckningslasten \(N_{cr} \) räknas ut:

\[N_{cr} = \gamma \cdot \frac{\pi² \cdot E \cdot I₁}{(I)^2} = 0,241 \cdot \frac{\pi² \cdot 210 \cdot 289000}{(2 \cdot 750 + 1500)^2} = 16,019 \text{ kN} \]

Transportstags slankhet:

\[\lambda = \sqrt{\frac{N_{pl}}{N_{cr}}} = \sqrt{\frac{A \cdot f₀₉}{N_{cr}}} = \sqrt{\frac{873 \cdot 355}{16,019}} = 4,3985 \]

\[\Phi = 0,5 \cdot [1 + \alpha \cdot (\lambda - 0,2) + \lambda²] = 0,5 \cdot [1 + 0,49 \cdot (4,3985 - 0,2) + 4,3985²] = 10,614 \]
Reduktionsfaktorn med hänsyn till knäckning:

\[\chi = \frac{1}{\phi + \sqrt{\phi^2 + \lambda^2}} = \frac{1}{10,614 + \sqrt{10,614^2 + 4,3985^2}} = 0,0493 \]

Transportstagets bärförmåga med hänsyn till knäckning:

\[N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{mi}} = \frac{0,0493 \cdot 873 \cdot 355}{1,0} = 15,29 \text{ kN} \]

\(N_{b,Rd} = 15,29 \text{ kN} \)
Bilaga B.2. Genomräknat exempel - Knäckning Förändring sektion, konstant normalkraft

Transportstag 1:

\[N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_M} \]

VKR 40x40x2,5:
A = 368 mm²
\(f_y = 355 \text{ MPa} \)
g\(M_0 = 1,0 \)

\[N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_M} = \frac{368 \cdot 355}{1,0} = 130,64 \text{ kN} \]

Gängstång M30:
A = 561 mm²
\(f_y = 355 \text{ MPa} \)
g\(M_0 = 1,0 \)

\[N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_M} = \frac{561 \cdot 355}{1,0} = 198,77 \text{ kN} \]

Det som sedan blir det dimensionerande är det som är lägst:
\(N_{pl,Rd} = 130,64 \text{ kN} \)

Transportstag 2:

\[N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_M} \]

VKR 50x50x5:
A = 873 mm²
\(f_y = 355 \text{ MPa} \)
g\(M_0 = 1,0 \)

\[N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_M} = \frac{873 \cdot 355}{1,0} = 309,92 \text{ kN} \]

Gängstång M36:
A = 817 mm²
\(f_y = 355 \text{ MPa} \)
g\(M_0 = 1,0 \)

\[N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_M} = \frac{817 \cdot 355}{1,0} = 290,89 \text{ kN} \]

Det som sedan blir det dimensionerande är det som är lägst:
\(N_{pl,Rd} = 309,92 \text{ kN} \)
Bilaga C. Genomräknat exempel: Jämförelse mellan ren tryckkraft och knäckning.

V KR-rör: 40x40x2,5
A = 368 mm²
γ_M0 = 1,0
L = 800 mm

Bärförmåga med hänsyn till knäckning:

\[N_{B, Ru} = \frac{\chi \cdot A \cdot f_y}{\gamma_{mi}} = \frac{0,8536 \cdot 3568 \cdot 355}{1,0} = 111,51 kN \]

Ren tryckkraftkapacitet:

\[N_{c, Rk} = \frac{A \cdot f_y}{\gamma_{M0}} = \frac{368 \cdot 355}{1,0} = 130,64 kN \]

Dimensionerande värde: **111,51 kN**