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Abstract—Embedded DSP computing is currently shifting
towards manycore architectures in order to cope with the ever
growing computational demands. Actor based dataflow languages
are being considered as a programming model. In this paper we
present a code generator for CAL, one such dataflow language.

We propose to use a compilation tool with two intermediate
representations. We start from a machine model of the actors
that provides an ordering for testing of conditions and firing
of actions. We then generate an Action Execution Intermediate
Representation that is closer to a sequential imperative language
like C and Java. We describe our two intermediate representa-
tions and show the feasibility and portability of our approach by
compiling a CAL implementation of the Two-Dimensional Inverse
Discrete Cosine Transform on a general purpose processor, on the
Epiphany manycore architecture and on the Ambric massively
parallel processor array.

Index Terms—dataflow languages; compilation framework;
code generation; manycore; CAL;

I. INTRODUCTION

High performance embedded computing is now shifting
towards manycore architectures in order to cope with the ever
growing computational demands of DSP applications together
with limited energy and power budgets. One of the most
interesting engineering problems that arise in this context
is targeting these architectures with application development
frameworks and compilation tools. To overcome this challenge
a number of parallel programming models have been proposed.
This is due to the fact that traditional programming languages,
like C, C++, or Java, lack high-level abstractions that can
reflect the inherently parallel nature of the applications and
the underlying parallel architecture. As stated by Fuller and
Millett [1], ”the era of sequential computing must give way
to a new era in which parallelism holds the forefront”.

In this new era of parallelism, actor-oriented dataflow pro-
gramming has gained acceptance. A number of such languages
have been proposed for developing streaming signal processing
applications at a higher level of abstraction; examples include
Erlang [2], SALSA [3] and E language [4]. Actor oriented
models encapsulate concurrent computation in components
called actors [5]. Each actor is an independent entity that

interacts with other concurrent actors via channels. This makes
an actor model naturally suitable for parallelism.

CAL is one such language that provides actor oriented
abstractions independent of the underlying hardware [6]. RVC-
CAL, a subset of CAL, has been adopted by MPEG and ISO
as a standard to specify video coding [7]. CAL actors take
computation step by firing actions that satisfy all the required
conditions. These conditions depend on the input tokens
and the actor’s internal state. CAL provides dependencies,
priorities, finite state machines and token rates to support
various models of computations (MoCs) such as Synchronous
Dataflow (SDF) [8], Cyclo-Static Dataflow (CSDF) [9], Kahn
Process Networks (KPN) [10], and Dataflow Process Networks
(DPN) [11].

Earlier work has suggested the use of Actor Machines (AM)
[12] as an execution model for actors i.e. to schedule the
testing of conditions and the execution of actions. In this paper
we demonstrate that AM in fact is a good source for generating
code for manycores. We do so by introducing Action Execution
Intermediate Representation (AEIR) to bridge the gap between
the abstract AM and an imperative implementation of the
scheduler and the actions. We believe that AM can be used
for high-level optimization such as, composing and splitting
actors and for dataflow optimizations, and AEIR can be used
for low-level optimizations, such as loop optimizations, dead
code elimination and inlining functions.

The paper describes the transformation of AM to AEIR,
and the translations and different techniques used to generate
sequential and parallel code. The portability of CAL appli-
cations is demonstrated by using three different platforms.
The paper also demonstrates the feasibility of our approach
through a case study. We program in CAL and provide two
interpretations of the application, as DPN and KPN. Using the
DPN interpretation we generate sequential C code for general
purpose (GP) processors and parallel C code for the Epiphany
manycore architecture[13]. From the KPN interpretation we
generate aJava and aStruct code for the Ambric processor
array [14].



II. BACKGROUND

A. The Programming Model

In general, a dataflow system is a collection of several
components, called actors, connected by channels. In this
work, we have used CAL Actor Language to define the actors
[6] and Network Language (NL) to express the communication
among the actors [15].

CAL is a domain-specific language that provides high-level
abstraction for dataflow programming. CAL actors may have
private variables to control the state of the actor, named in-
put/output ports to communicate with other actors and actions
to perform specific task. An actor does not have access to the
state of another actor. Thus, interaction among actors happens
only via input/output ports. Each actor is characterized by
a step-by-step executions of actions. Each execution step
may update the private state, consume tokens and/or send
tokens. During execution, an actor can take different actions
depending on (1) the availability of tokens on the input port,
(2) the actual values of the tokens and (3) the internal state of
the actor. These conditions are called the firing conditions of
an action. In addition, a CAL actor may also have an action
scheduler to order firing of actions and/or action priorities to
select an action with highest priority if there is more than one
eligible action. Listing 1 shows an actor with two actions that
produce tokens on different output port depending on the value
of the token read from the input port.

1 actor Split ( ) A ==> P, N:
2 A1 : action A: [ v ] ==> P: [ v ]
3 guard v >= 0
4 end
5 A2 : action A: [ v ] ==> N: [ v ]
6 guard v < 0
7 end
8 end

Listing 1. Split: A simple CAL actor.

The interconnection between actors is expressed using NL.
NL has three sections a variable declaration section to de-
fine variables that are used as attributes for actors and sub-
networks, an entity section to declare actors or sub-networks,
and a structure section to express channels that sketches the
dataflow network. In NL a programmer can add additional
information, like FIFO size, via annotations. Some manycore
architectures provide hardware channels, but usually a channel
is implemented as a stream of packets or a buffered FIFO.

B. Target Platform

1) Epiphany: Epiphany [13] is a power-efficient manycore
architecture constructed by 2D array of nodes that are con-
nected by a low-latency mesh network-on-chip. Each node
consists of a floating-point RISC processor that supports ANSI
C, 32KB local memory which is part of a distributed shared
memory system, network interface and DMA engine. The
network consists of three parallel networks which are used
individually for writing on-chip, writing off-chip, and all
reading requests, respectively. Due to the differences between
the networks, writes are approximately 16 times faster than

reads for on-chip transactions. The transactions are done by
using dimension-order routing (X-Y routing), which means
that the data first travels along the row and then along the
column. The DMA engine is able to generate a double-word
transaction on every clock cycle and has its own dedicated 64-
bit port to the local memory. The Epiphany memory system
uses a flat address space visible by every mesh node, and
supports up to 4096 mesh nodes. Even though all the internal
memory of each core is mapped to the global address space,
the cost of accessing individual address space is not uniform,
as it depends on the number of hops and contention in the
mesh network.

2) Ambric: Ambric [14] is an array of globally asyn-
chronous locally synchronous brics. Each bric is composed of
two pairs of Compute Unit and RAM Unit. The Compute Unit
consists of four 32-bit RISC processors, two SR (Streaming
RISC) processors and two SRD (Streaming RISC processors
with DSP extensions). The RAM Unit consists of four inde-
pendent banks of RAM with 512 words.

Ambric is designed to support KPN [10] with bounded
buffer execution. Ambric is programmed using structured ob-
ject programming model. Each process performs a sequential
execution an object programmed in an assembly language or
in aJava which is a subset of Java language. The structure of
each object and the communication among objects is defined
using aStruct language. Each object communicates via a
unidirectional, point-to-point, asynchronous and single word
width channel. aJava does not support some features of
standard Java e.g, continue, switch case statement and foreach
statement.

III. COMPILATION METHODOLOGY FOR CAL

To address portability, productivity and to provide a com-
mon compilation tool for various manycore architectures,
we propose to start with CAL Actor Language, and use a
compilation tool with two IRs. In the compilation process
each CAL actor is translated to an AM that is then translated
to AEIR. Finally, the AEIR is used to generate code for the
target platform. We expect that these IRs, offer support for
various dataflow languages that can model DPN and manycore
architectures that are suitable for DSP applications. Fig 1
sketches our framework that uses AM and AEIR to generate
efficient sequential execution of actions.

A. Actor Machines

An actor machine (AM) is an abstract machine model for
dataflow actors, which is explicit about how to test the firing
conditions of the actions [12]. An AM is a controller with a
set of states made from all firing conditions of actions together
with an action scheduler and action priorities. Each state in the
controller has knowledge about the conditions of the actor, and
a set of instructions that can be performed on the state in order
to proceed to the next state. An instruction can be a test on
one of the actor’s conditions (guard or availability of token on
input port), an exec for the execution of an action, or a wait
to remove knowledge about the test on availability of tokens.



Fig. 1. CAL-AM compilation framework.

The goal of the AM is to speed up the process of selecting
an appropriate action. There are several ways of translating an
actor to an AM, like Round Robin and Memorize Tests [16].
Round Robin tests all the conditions of an action at once. With
this translator conditions that are common among actions can
be tested repeatedly, even if they have the same value. For
example, in the split actor of Listing 1, since both actions
depend on the availability of a token on port A, this condition
has to be tested twice before action A2 is fired. Memorize
Tests avoids this problem by memorizing earlier test results.
With Memorize Tests the AM states represent information
about conditions of the action: X if the condition has not been
tested, 1 if the test is true, and 0 if the test is false. Fig. 2
shows the AM for the split actor from Listing 1, where

• states are represented by ellipses containing values of the
three conditons, i.e., a token in port A, guard of action
A1 and guard of action A2

• AM instructions are represented by diamond (test), rect-
angle (exec) and annular (wait)

The compiler translates CAL actors to AMs with the
Memorize Tests translator. The Memorize Tests starts from the
initial state where all the conditions are unknown. Next, for
eas instrucion, it adds a possible instruction and a destination
state. Finally, it repeats the process for the added states. On
the current state, if an action is eligible to be fired based on the
knowledge of the state, the translator adds an exec instruction.
The conditions in the destination state of the exec instruction
are set to unknown. If there is no eligible action and if there are

Fig. 2. Actor machine for Split actor.

actions that need additional testing, the translator adds a test
instruction. A test instruction has two destinations that reflect
the information gained by the test. If no instruction is added
and if the current state is the destination of a failed input test,
then a wait instruction will be added. The destination of wait
sets the information about absence of tokens to unknown.

In addition to the set of controller states, an AM also has
• a list of I/O ports to interconnect with other AMs,
• an internal state that can be updated during the execution

of an action,
• a list of parameters to store values passed to the actor

from NL, and
• functions and procedures to bundle reusable code seg-

ments.

B. Action Execution Intermediate Representation

An actor machine consists of AM states that have knowl-
edge about conditions and a set of AM instructions. These
have to be transformed to different programming language
constructs, such as function calls to execute the actions, if
statements to test the conditions and flow control structures
to traverse from the current AM state to the destination state.
These constructs have different implementations in different
programming languages and platforms. Thus, we have chosen
to introduce an IR that brings us closer to a sequential
action scheduler without having to choose a target language.
We call this IR the Action Execution IR (AEIR) a low-
level representation for actor oriented languages. AEIR keeps
the implicit parallelism which makes it suitable to recognize
both sequential and parallel optimization possibilities. AEIR
includes constructs for expressions, statements, function dec-
larations and function calls.

Currently, we plan to exploit the parallelism between actors.
To allow different implementations for the communication
among actors, AEIR includes communication primitives such
as operations for testing input/output ports and sending/re-
ceiving tokens. Given that different hardware platforms have
very different communication mechanisms, it is important to
keep these primitives available until the very last phases of



code generation. As can be seen in Section IV-C some of
the primitives are translated differently for the three different
implementations.

After performing some optimizations on the AM, such as
translating the AM to a single instruction actor machine, i.e.
one that has at most one instruction in each state [16], the AM
is translated to AEIR. Transitions of the AM, actions of the
CAL actor, are converted to functions, where

• action variables are translated to local variables
• input/output ports are converted to parameters
• input pattern to local variable declarations initialized by

ConsumeToken statements
• output patterns to SendToken statements situated at the

end of the function execution, and
• the body of the action becomes the body of the function.

However, the guards of the action are not incorporated in this
function, because they are evaluated before the action is fired,
in accordance with the schedule provided by the AM.

Furthermore, a function is introduced as an
action scheduler to implement the AM. This function
has parameters driven from the Input/Output pattern of the
AM. Its body is made up of statements translated from the
nodes of the AM. Additionally, the scheduler needs a scheme
to traverse from state to state.

AM test nodes are translated to if-statements. While trans-
lating tests on predicate conditions, if the expression uses
variables other than the state variables, then the required
variables are initialized before the predicate is tested.

AM exec nodes are translated to function calls to the
function that implements the action to be executed.

The translation of a wait node depends on the target
platform and on the number of actors mapped on a single
core. When there is more than one actor on a single core, then
wait is translated to a return statement to give control back
to the local actor scheduler. Otherwise, if there is one actor
per core, wait can be translated as block, deactivate, pause
or any other operation depending on the target architecture.
Therefore, to allow different implementations of a wait node,
AEIR introduces a primitive called wait().

To traverse through the AM states, initially we have used
two simple schemes. One of them labels each AM state and
uses a goto statement to jump to the label of the destination
state. The other scheme first assigns a unique number to
each state, and then connects all the states using a switch-
case or if-else statement that checks the state variable which
stores the unique number. These two schemes can result in
unreadable and unstructured code, especially for large AMs.
Usually AMs have a large number of states, for example, the
split AM in Fig. 2–which memorizes only three conditions–
has seven states. In our case study the average number of
states is 77. In addition, some architectures native tools do
not allow unstructured programming, which restricts both goto
and switch-case statements.

To meet these restrictions and to generate a readable code,
we used a different scheme that composes states with test
instructions until it comes to a state with either a wait or

an exec instruction. This new scheme can be seen as a set of
continuous test sequence broken by wait or exec instructions.
When a sequence is broken, a new test sequence is generated,
starting from the destination of the instruction that broke the
test sequence. Each test sequence begins with a statement that
can be translated either to a unique label or to a test on a
state variable. When the test sequence is broken by a wait
instruction, the destination state is stored in the state variable
before a call to the wait() primitive. If an exec instruction
breaks the sequence, a statement is added which can be
translated either to an assignment that stores the destination
state or to a goto statement that jumps to the destination state.
The choice of using goto, labels or state variables depends on
the constructs used to connect the test sequences. In 2D-IDCT,
the average number of test sequences is only six. This means,
the number of test sequences is small enough to generate
a readable code even if we use unstructured programming
constructs. Therefore, all test sequences can be connected by
using goto, switch-case and/or if-else statements, depending
on the target language.

Translation of the other constructs of the AM is straightfor-
ward. Internal states are converted to global variables. Func-
tions and procedures are converted to imperative functions.

IV. CODE GENERATION

Compilation now proceeds by generating a sequential action
scheduler from each AEIR and an actor scheduler from the
network of CAL actors. The path from here depends on the
target platform.

A. AEIR Transformations

The code generation from AEIR has two parts: code gen-
eration for the action scheduler and for the other constructs
in AEIR. Code generation of the constructs is straightforward.
The actor’s list of parameters and input/output ports are used
to generate C header files for Epiphany and aStruct files
for Ambric. These are used to capture the structure and the
interface of the actor. CAL functions and actions are translated
to target language functions. In the C code generator, since
each actor is translated into a separate C file, the global
variables and functions are declared as static. This will make
the internal states and the functions accessible from anywhere
in the current source file, but unreachable from other source
files. In case of Ambric, each actor is translated to an aJava
class, and global variables and functions are translated as
member variables and functions.

Most of the statements and expressions of CAL are standard
and find corresponding constructs in AEIR. However, some
CAL constructs are not supported by both C and aJava
code, so to handle this we have used imperative pass that
translate unsupported CAL constructs to imperative constructs.
For example CAL generators are handed by the imperative
pass. For a simple generator, as in

mem := [k*2 : for k in Integers(a, b)]

the members of the list are stored directly in the original array:



int k;
for(k = a; k <= b ; k ++)

mem[k-a] = k*2;

Compound generators are translated to temporary arrays in
order to find a way of sequencing the statements that compute
each element. When this is done, the resulting elements are
placed in the final array. The issue of variable initialization
is also handled by the imperative pass. In CAL, variables can
be initialized by constant values, by other variables, or by
any expression. On the contrary, in C, global variables can
be initialized only with compile time constants. To handle
this, all non-constant initializations are collected and pushed
to a function dedicated to initialization. Our translator does
not yet support the Set data type, lambda expressions, partial
application and generic types.

B. Building the network

NL defines instances of actors and creates channels that
connect outputs and inputs. In translating a CAL program,
the translation of actors as described above has to be com-
plemented with a translation of the NL description. This
proceeds by creating instances, flattening the network and
then connecting the instances of actors using channels. The
flattened network is used to generate

• a round-robin scheduler for the sequential C code,
• a top-level design file for Ambric to bind the aJava

objects that correspond to instances of CAL actor.
When creating instances, actual values are passed to pa-

rameterized actors. Every connection in the structure section
of the flattened network is used to generate a bounded buffer
and communication operations from the AEIR. The commu-
nication operations are TestInputPort to check the availability
of a token on the input port, TestOutputPort to check the
availability of place on the output port, ReadToken to read
a token, ConsumeToken to consume a token, SendToken to
send a token and EndTransmission to flush the buffer when
the sender stops sending tokens.

There is no well defined semantics for NL to guide an
implementation. In our work we have extended DPN to
generate C code for GP-CPU and Epiphany, and KPN for
Ambric. For DPN we have implemented a communication API
[17] that uses bounded buffers to connect output ports to input
ports: these are blocking for writing when the buffer is full,
but allows peeking at input ports without blocking. If there
are multiple actors on a single core, writing in a full buffer
blocks the running of the current actor and gives control to
the other actors.

C. Code Generation from AEIR

Code generation for the action scheduler deals with the
construct used to connect the test sequences mentioned in
Section III-B, and with the interpretation of AEIR primitives,
i.e wait() and the communication operations. Based on the
construct used to connect the test sequences and the inlining
of actions, we have two types of code generation: inlined and

non-inlined versions. In the inlined version, each test sequence
is labeled and a combination of goto and switch-case statement
is used to traverse through the test sequences. Listing 2 shows
the use of goto statements to jump to a test sequence and a
switch-case on a state variable to move to the current state of
the actor. Furthermore, the actions are inlined automatically.
The non-inlined version assigns a unique number to each test
sequence and uses if-else statements to connect the sequences.
Listing 3 shows the non-inlined code generation for the Split
actor.

int Scheduler_SplitTest() {
int v_ac0;
int v_ac1;
switch (next_state) {
case 0:

goto SplitTest_State0; break;
case 7:

goto SplitTest_State7; break;
}

SplitTest_State0:
if (TestInputPort(&A, 1)) {

v_ac0 = ReadToken(&A, 1);
if ((v_ac0 >= 0)) {

// body of action_0
goto SplitTest_State0;

}
else{

v_ac1 = ReadToken(&A, 1);
if ((v_ac1 < 0) {

// body of action_1
goto SplitTest_State0;

}
else {

next_state = 7;
wait();

}
}

}
else {

next_state = 0;
wait();

}
SplitTest_State7:

next_state = 7;
wait();

}

Listing 2. Inlined code generation for the Split actor.

int Scheduler_SplitTest() {
int v_ac0;
int v_ac1;
while(1){

if ((SplitTest_State == 0)){
if (TestInputPort(&A, 1)) {

v_ac0 = ReadToken(&A, 1);
if ((v_ac0 >= 0)) {

action_0();
SplitTest_State = 0;

}
else {

v_ac1 = ReadToken(&A, 1);
if ((v_ac1 < 0)) {

action_1();
SplitTest_State = 0;

}
else {

SplitTest_State = 7;
wait();

}



}
}
else {

SplitTest_State = 0;
wait();

}
}
else if ((SplitTest_State == 7)) {

SplitTest_State = 7;
wait();

}
}

}

Listing 3. Non-inlined code generation for the Split actor.

To demonstrate the portability of the compilation tool, we have
used our code generator to produce a completely sequential
version of a CAL program in C for a single GP processor,
parallel C code for the Epiphany [13] manycore architecture
and aJava and aStruct code for Ambric [14]. In the
case of Epiphany and Ambric, each actor runs on a separate
processor.

1) Sequential C: Here, the CAL application is considered
as a DPN where the vertices are coded in CAL. In the DPN
model of computation a set of firing rules are evaluated to map
input tokens into output tokens. CAL extends DPN by adding
a state to DPN vertices and guards to the firing rules. The
firing rules are scheduled by the AM, which is implemented
as an action scheduler. The action scheduler checks the avail-
ability of enough tokens, evaluates the predicate and fires an
action. The description of the network of actors is used to
organize in-memory queues that connect appropriate outputs
to inputs. In addition, the network is also used to generate
a sequential scheduler for the complete system. This can be
done with different degrees of sophistication. We have simply
implemented a round-robin strategy among the actors. The
whole application is mapped on a single GP-CPU.

We have implemented two sequential passes to generators
either inlined (Listing 2) or non-inlined (Listing 3) versions.
In both versions, since there are multiple actors running on
a single core, the wait() is translated to an API that gives
control to the other actors. We have used a state variable to
store the next test sequence that has to be tested when the
actor is active, i.e., the current state of the actor. Similarly,
writes on full buffer blocks the execution of the current actor
and gives control to the other actors.

2) Code Generation for Epiphany: For Epiphany we have
also used an extended DPN like the sequential C, but here each
actor is mapped to a separate mesh node and run concurrently
while communicating with buffered FIFOs. When implement-
ing these buffers on the Epiphany, two special features of
the architecture are considered. The first one is the speed
difference between read and write transactions. As mentioned
earlier, writes are faster. The second one is the potential use of
DMA to speed up memory transfer and allowing the processor
to do processing in parallel with the memory transfer.

These features are used as a guide when building the
communication library incrementally. The first implementa-
tion puts the FIFOs in the destination core memory so that

reading tokens happens on the local buffer. The source core
is blocked when the buffer is full. However, reading an empty
FIFO is non-blocking. The second implementation tries to use
DMA for transferring tokens between cores. While DMA is
performed, both source and destination cores are blocked for
synchronization. It is also possible to improve the performance
by introducing another pair of buffers so that both cores could
work on one pair of buffers while the DMA is working
on the other pair; this is what we have done in the third
implementation of the communication API.

3) Code Generation for Ambric: Ambric code generation
generate aJava object and aStruct code for each actor
and top level design file for the application. The aJava source
code is compiled into executable code by using Ambric’s com-
piler. Ambric’s proprietary tool comes with communication
API and mapping and scheduling protocols that support only
KPN. Thus, for Ambric we have adapted the code generation
in accordance with the existing support for KPN.

The flattened network is used to generate aStruct code
for the top-level design which builds the full structure of the
application using channels and instance declarations.

Due to the limitation of aJava and constraints of KPN, the
Ambric code generation has different interpretation for some
of AEIR primitives. Unlike DPN, we cannot check availability
of tokens or read a token without consumption. Like KPN,
in Ambric reading input is a blocking statement, as long as
there is no input to consume, the object blocks and waits for
an input token. Reading an input port consumes a token. In
CAL, reading an input port to evaluate a predicate in a guard
does not consume a token; tokens are consumed when an
action is fired. Therefore, for Ambric testing on input port
is removed from the firing conditions of an action. Because
of this, actors whose behavior is based on the arrival time
of tokens, cannot be implemented. Thus, the actions are fired
sequentially according to the finite state machine, priorities
and the evaluation of the guard predicates. This will give
us a deterministic sequential process that satisfy Kahn and
MacQueen semantics [10].

AEIR communication primitives are translated to the exist-
ing Ambric’s communication API, i.e ReadToken and Con-
sumeToken are translated to input_stream.read and
SendToken to output_stream.write operation. Because
the wait primitive is also associated with availability of to-
ken and is already handled by Ambric’s blocking reads, the
translation disregards the wait primitive. In KPN, each token
can be consumed exactly once, thus translation of ReadToken
an ConsumeToken may use an additional variable to store the
value of a token. If the predicates in the guard use a token
from an input port, like Listing 1, the token will be stored
in a global variable and the variable will be used when any
action that reads from the same input port is fired. In addition,
a flag is also used to indicate whether the variable is used by
an action or not. If the value is already used then a new value
is stored in the variable and the flag is set to true. The global
variables and flags are used only if a guard predicate uses a
token from an input port.



Fig. 3. Actors dataflow diagram for 2D-IDCT.

V. EXPERIMENTAL CASE STUDY

In this section, we present the implementation of the Two-
Dimensional Inverse Discrete Cosine Transform (2D-IDCT).
Our aim is to demonstrate the applicability of CAL for many-
core architectures and to verify the portability of applications
by using a framework with two IRs.

IDCT is a component of techniques used in video compres-
sion encoders, such as MPEG encoding, to transform an N × N
image block from the spatial domain to the DCT domain. The
2D-IDCT algorithm has been implemented using a streaming
approach in the CAL language and the dataflow diagram of
the implementation is shown in Fig. 3. The implementation is
based on a composition of two instances of 1D-IDCT, which
are interconnected via the Transpose actor, thus consisting of
a total of 15 actors communicating in a pipeline manner. We
have used a fine-grained version in order to test the framework
via a network of actors.

We used DPN as MoC to generate sequential C code,
which runs on a 2.8 GHz general purpose processor (GP-
CPU) and parallel C code mapped on the Epiphany chip
with 600 MHz RISC cores. Both versions use the same code,
with different implementations for AEIR primitives. For the
sequential version we used two types of code generation:
inlined (Listing 2) and non-inlined (Listing 3). The inlined
code generator performs function inlining and also analyses
the scope of a variable to remove unused initializations. The
non-inlined version does not perform any optimizations. For
Epiphany we have used only the non-inlined version because
it has smaller code memory foot-print. Similarly, for Ambric

TABLE I
AVERAGE RUNTIME FOR 8X8 IDCT BLOCK.

Sequntial C on GP-CPU Parallel Code on 15 cores
Non-inlined Inlined Epiphany@600MHz Ambric@300MHz
27µs/block 18µs/block 19µs/block 25µs/block

we have used the non-inlined version and adapted the code
generation in accordance with KPN.

Both parallel implementations map each actor on a separate
core, for a total of 15 cores. In Epiphany, consecutive actors
are mapped manually on adjacent cores. In case of Ambric,
we have used Ambric’s proprietary mapping tool.

Performance has been measured by execution on real hard-
ware. Since the clock speeds of the parallel architectures are
much slower than the one of the sequential CPU (close to 5
times slower for Epiphany and 10 times slower for Ambric)
the speedup that can be expected is quite limited. The fact that
the pipeline over the 15 cores is not balanced of course also
limits the possible speedup.

Preliminary performance results for 2D-IDCT with 64,000
samples are shown in Table I. For all versions the output is
verified against the output of the OpenDF1 simulator. For the
sequential code, the result shows that the inlining of actions
and the use of goto has improved the performance by 33%. The
Epiphany’s implementation has also improved the performance
of the non-inlined sequential version by 30%. However, the
performance of the optimized inlined version is still better than
the parallel implementations. This is because the performance
of the parallel codes is greatly affected by the communication
overhead, which is very common in fine-grained parallelism.

Additionally, the parallel versions are slowed down by
shared memory accesses. For example, the last node (Clip)
accesses the shared memory to read input for Signed port
and also to write the output on Out port, which makes it the
bottleneck of the application. Since Clip spends most of the
clock cycles in dealing with off-chip memory accesses, the
output buffer of Retranspose will be full. This full buffer leads
to backward pressure that affects the whole implementation,
making all the actors wait till there is room in the output buffer.

However, without any code optimization, and considering
the low clock frequency and the extra communication over-

1http://opendf.sourceforge.net/



head, both parallel implementations show a potential for per-
formance portability. In addition, the parallel implementations
are more power efficient.

VI. RELATED WORK

In prior works, CAL programs have been used as sources
when generating code in sequential imperative languages and
also to synthesize parallel systems. Wernlin [18] have com-
piled CAL actors to Java classes that extend Ptolemy atomic
actor and use Ptolemy framework to schedule actors and the
firing conditions of an actor. The Open-RVC CAL Compiler
(ORCC) [19] generates multi-threaded C-code that can execute
on a multicore processor using dedicated run-time system
libraries. Roquier et al. have presented the RVC framework
and Cal2C compilation tool that targets single-core processors
by generating sequential C-code [20]. In particular, [21], [22],
describe the use of the Cal2C tool and SystemC framework
to generate C code from a network of CAL actors. There are
two main differences between our work and this earlier work:

1) In our work, actors are mapped to physical cores, but in
[21], [22] actors are mapped to SystemC threads.

2) In our work, scheduling of action firing conditions and
execution of actions is done by AM, but in [21], [22] a
round robin scheduler is used.

In [23], a methodology is proposed for synthesizing multipro-
cessor systems starting from a CAL application program. In
[24] CAL applications have been used to design customizable
Transport Triggered Architecture processors on FPGA. In our
work CAL applications are mapped on manycores.

VII. SUMMARY AND FUTURE WORK

This paper proposes a new compilation framework with two
IRs for the CAL dataflow language. We have presented a brief
overview of the methodologies used to translate CAL actors
and NL into parallel and sequential imperative code. We have
described our approach to map CAL application to one single,
and to two manycore architectures. The approaches have been
applied on 2D-IDCT to produce three final implementations:
sequential C for GP-CPU, parallel C for Epiphany, and aJava
and aStruct for Ambric. We expect that the generated code
will be able to meet the performance requirement of many
demanding DSP applications. If not, the generated code is
effortlessly readable in order to be tuned by hand.

For the future, we will make further evaluation of the
approach using the whole MPEG-4 SP decoder. We have also
planned to develop mapping and scheduling solutions that
explore the dataflow graphs of relatively complex applications
and that consider constraints and architecture specific features
of the underlying parallel architecture.
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