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Abstract. A model which possesses both spatial and time dependence is the
Markov chain Markov field [7]. Here inference about the parameter for spatio-
temporal interaction of a special case of a Markov chain Markov field model
is considered. A statistic which is minimal sufficient for the spatio-temporal
interaction parameter and its asymptotic distribution are derived. A condition
for stationarity of the sufficient statistic process and the stationary distribution
are given. Likelihood based inference methods such as estimation, hypothesis
testing and monitoring are briefly examined.

Keywords: asymptotic distribution, interaction, Markov chain Markov field, perfect

simulation, stationarity, sufficient statistic

AMS Subject Classification: Primary 37A60, 60J25, 82C22, Secondary 62M40,

92C55

1. Introduction

Spatio-temporal interaction models are relevant in a broad variety of ap-
plication areas such as biometrics (epidemic propagation of infectious diseases),
econometrics (influence of trading attitudes in a stock market), computer science
(computer virus attacks in large computer networks), forestry (maintenance of
large planted forests) and more. In the model of this paper the state of a site in
a lattice is depending on the states of its nearest neighbours (in the Markovian
sense) to an extent which is proportional to the global degree of clustering of
the previous pattern. The interpretation will be further mentioned at the end
of this section after having defined the model. The model was also considered
for an ophthalmology study by Ibáñez and Simó [10].
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In this section the model is formally presented and in Section 2 a statis-
tic which is sufficient for the interaction parameter (the only parameter in the
model) is derived. Inference regarding this parameter is made based upon the
asymptotic distribution of the sufficient statistic which is treated in Section 3
and simulation perfectly according to the stationary distribution is briefly men-
tioned in Section 4. Inference matters such as estimation, hypothesis testing
and monitoring are dealt with in Section 5, and finally in Section 6 the results
are discussed. All proofs of results are deferred to the Appendix.

The spatio-temporal interaction model of this paper is a special case of the
Markov chain Markov field [7]. Let S be a finite set consisting of n2 positions,
called sites, symbolically denoted by i ∈ {1, 2, . . . , n2}, forming a finite square
lattice in Z2.

The configuration space is a product space with a σ-algebra, D, of all possible
subsets of D = {−1, 1}n2

. Let XS,t = {Xi,t : i ∈ S} be a random field on a
probability space (D,D,PX). If S′ ⊂ S, we denote {Xi,t : i ∈ S′} by XS′,t. We
consider the case where given the state of the neighbourhood at time t, x∂i,t,
and the state of a statistic Q, qt−1, (which is a function of the lattice state at
time t−1, xS,t−1), the random variable at site i and time t, Xi,t is conditionally
independent of all other sites at time t and all previous configurations XS,s,
s ≤ t − 2. We assume that, for each t ∈ Z+, XS,t fulfils a positivity condition:
P(XS,t = xS,t) > 0, see [4]. For the sake of simplicity we denote {Xi,u : i ∈
S, 1 ≤ u ≤ t} by {X}t.

Definition 1.1. The sites i and j are called (spatial, first order) neighbours,
denoted by i ∼ j, if i and j are at unity Euclidean distance from each other.
The neighbourhood of a site i is the set ∂i = {j ∈ S : i ∼ j}.

To avoid edge problems, we map our square study region onto a torus. In
practise, however, the size of edge effects vanishes as the lattice size n → ∞.
Due to the Hammersley – Clifford Theorem (see [4]), {XS,t : t ∈ Z+} is Gibbs
distributed.

Definition 1.2. The global conditional distribution of the model of this paper
is transition probability pX(x | x′) in the Markov chain XS,1, XS,2, . . .. It is
defined by

pX(x | x′) = p(XS,t = x | XS,t−1 = x′) = Z−1
x′ exp

(

ϕn−2Q(x)Q(x′)
)

where Zx′ =
∑

y∈D exp(ϕn−2Q(y)Q(x′)) is a normalising constant and Q(x) =
∑

i∼j xixj is an energy function where summation with index i ∼ j means
summing over all i ∈ S, j ∈ ∂i : j < i. ϕ is the spatio-temporal interaction
parameter on some parameter space Φ ⊆ R.

Observe that pX(x | x′) = pX(x | q′) whenever q′ = Q(x′). The notation
Zq′ will be used alternatively for denoting the normalising constant Zx′ where
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Q(x′) = q′. Since the lattice size is finite, the existence and uniqueness of a
stationary distribution of Xt is guaranteed for all values of ϕ.

Theorem 1.1. The process {XS,t : t ∈ Z+} is time-reversible and has station-

ary distribution πX(x) = c−1Zx, where c =
∑

x∈D Zx is a normalising constant.

Conditional on the states of the spatial neighbourhood of site i and the
previous lattice pattern, the distribution of the random variable at site i is

P(Xi,t = xi | X∂i,t = x∂i, XS,t−1 = x′) = Z−1
i exp

(

ϕn−2Q(x′)xi
∑

j∈∂i

xj

)

where Zi = 2 cosh(ϕn−2Q(x′)
∑

j∈∂i xj) is the local normalising constant. Due
to the positivity condition, this conditional probability takes its values on (0, 1)
for all values of the neighbourhood. Denoting the local distribution function,
P(Xi,t = xi | X∂i,t = x∂i, XS,t−1 = x′), by ρi(xi), the model may be expressed
as a logistic linear model

log
( ρi(1)

1 − ρi(1)

)

= 2ϕn−2Q(x′)
∑

j∈∂i

xj .

The interpretation of this model may be that an individual of a society of
some kind (maybe a voter in a public vote deciding to vote, say, democratic or
republican, or an agent in a stock market deciding whether to buy or sell for
instance) is influenced by the opinion of who he or she communicates to at the
present time-point to the extent of the general degree of determination of the
whole population at the previous time-step. When people/agents decide how
to vote/trade, they are influenced by general mood of the whole society from
previous time-steps, a mood which affects how much they themselves should
depend on their own neighbours. The model might as well be relevant in forestry:
trees in a planted forest might well be growing according to a square lattice in
a forestry disease model — the binary states corresponding to a tree being
“contaminated” or “not contaminated” where the tree disease spreads from
tree to tree, present to a small extent when there is no epidemic, while an
epidemic break-out is reflected by a change in the interaction parameter, or
in a forestry storm damage model — the binary states corresponding to trees
being “upright” or “fallen” since trees are more likely to fall if they are isolated
(i.e. surrounded by fallen trees) rather than surrounded by upright trees and also
by strong attraction in the previous time-step indicating strong wind which in
turn implies that the states of the neighbouring trees are even more important.

2. Sufficient statistic

For many inference matters about the interaction parameter ϕ, we are sat-
isfied with observations of a statistic which is sufficient for ϕ. Conditional on
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the previous state, Qt−1, the current value, Qt, is sufficient for ϕ (since the
transition probability pQ(q | q′) is in the exponential family). Unconditionally
{Q}t is sufficient for ϕ.

It is easily checked that the state-space of Qt is DQ = {±2n2 and 4`− 2n2,
2 ≤ ` ≤ n2 − 2}. Further, let us introduce the number mq = #{x ∈ D : Q(x) =
q} of distinct patterns, x ∈ D, that result in a certain state q = Q(x).

Theorem 2.1. {Q} is a time-homogeneous Markov chain.

As mentioned previously the lattice size is finite and thus the existence and
uniqueness of a stationary distribution is guaranteed for all values of ϕ. However,
for large lattices phase transition effects will become visible; for instance the
variance of the statistic Qt will become exceedingly large close to values of ϕ
(namely ±0.5 log(

√
2 + 1)) which correspond to points of phase transition in an

infinite lattice.

Theorem 2.2. {Q} is time-reversible and has stationary distribution πQ(q) =
c−1mqZq where c =

∑

q∈DQ
mqZq is a normalising constant (which is the same

as in Theorem 1.1). When n is even, eπ(Qt) = 0 regardless of ϕ.

This result is striking in the sense that regardless of ϕ, eπ(Qt) = 0 in contrast
to the Ising model. Trivially Vπ(Qt) = 2n2 if ϕ = 0.

3. Asymptotics

The expectation and variance of Qt given Qt−1 = q′ for finite lattices are
quite computationally intractable since for calculating the normalising constant
one has to calculate the sum of 2n

2

terms. Instead a way to treat large lattice
systems is by using approximations deriving from asymptotic behaviour.

Due to the relation between moments of Qt conditional on Qt−1 = q′, the
derivatives of the log normalising constant (see e.g. [14]) are

d

dα
logZ(α)

∣

∣

α=ϕn−2q′
= eϕ(Qt | Qt−1 = q′),

d2

dα2
logZ(α)

∣

∣

α=ϕn−2q′
= Vϕ(Qt | Qt−1 = q′)

for finite lattice sizes n. When n is even S is a bigraph implying the following
symmetry property.

Proposition 3.1. When n is even eϕ(Qt | Qt−1 = q′) is odd and Vϕ(Qt |
Qt−1 = q′) is even in ϕ.
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Assuming |ϕ| < 0.5 log(
√

2 + 1) we have, due to the isotropy of the model,
that there is a constant κ ∈ (−2, 2) such that limn→∞ q′/n2 = κ. Defining
ζ(α) = limn→∞(1/n2) log

∑

x∈D exp(αQ(x)) we have that [16]: as n→ ∞,

1

n2
eϕ(Qt | Qt−1 = q′) − ζ ′(

ϕq′

n2
) → 0,

i.e.

1

n2
eϕ(Qt | Qt−1 = q′) → ζ ′(ϕκ)

and

1

n2
Vϕ(Qt | Qt−1 = q′) − ζ ′′(

ϕq′

n2
) → 0,

i.e.

1

n2
Vϕ(Qt | Qt−1 = q′) → ζ ′′(ϕκ).

These limit functions are plotted in Figure 1 and some values are given in
Tables 1 and 2.

ζ ′(ϕκ) ζ ′′(ϕκ)

ϕκ ϕκ
−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2

−1.0 −0.5 0.0 0.5 1.0

0

2

4

6

8

Figure 1. Asymptotic conditional moments of Qt. Left picture:
ζ ′(ϕκ) = limn→∞ n−2eϕ(Qt | Qt−1 = q′) as a function of ϕκ. Right picture:
ζ ′′(ϕκ) = limn→∞ n−2Vϕ(Qt | Qt−1 = q′) as a function of ϕκ. In both pictures
κ = limn→∞ q′.

Proposition 3.2. For some ε ∈ (0, ϕκ),

lim
n→∞

1

n2
e(Qt | Qt−1 = q′) = 2ϕκ+ O(ε3),

lim
n→∞

1

n2
V (Qt | Qt−1 = q′) = 2 + O(ε2).
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Conditional asymptotic expected values of Qt

ϕκ +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 0.000 0.020 0.040 0.060 0.080 0.100 0.121 0.141 0.162 0.182
0.1 0.203 0.225 0.246 0.267 0.289 0.312 0.334 0.357 0.380 0.404
0.2 0.428 0.453 0.478 0.504 0.530 0.557 0.585 0.614 0.643 0.673
0.3 0.705 0.737 0.770 0.805 0.842 0.880 0.920 0.962 1.007 1.054

Table 1. Values of ζ ′(ϕκ) = lim
n→∞

n−2eϕ(Qt | Qt−1 = q′) as a function of ϕκ

where κ = lim
n→∞

q′.

Conditional variances of Qt

ϕκ +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 2.000 2.001 2.004 2.009 2.016 2.025 2.036 2.050 2.065 2.083
0.1 2.102 2.124 2.149 2.176 2.205 2.237 2.272 2.310 2.350 2.394
0.2 2.441 2.492 2.547 2.606 2.670 2.739 2.814 2.894 2.982 3.077
0.3 3.182 3.296 3.422 3.563 3.720 3.899 4.102 4.339 4.619 4.960

Table 2. Values of ζ ′′(ϕκ) = limn→∞ n−2Vϕ(Qt | Qt−1 = q′) as a function of
ϕκ where κ = limn→∞ q′.

Immediately from the central limit theorem of the Ising model (see [18]) we
have that conditional on Qt−1 = q′,

Qt − eϕ(Qt | Qt−1 = q′)
√

Vϕ(Qt | Qt−1 = q′)
−→ N(0, 1) as n→ ∞.

This means that approximately for large n, Qt
D
= N(n2ζ ′(ϕn−2q′), n2×

ζ ′′(ϕn−2q′)) and thus, according to Proposition 3.2,

Qt
D
= N(2ϕq′, 2n2) conditional on Qt−1 = q′. (3.1)

According to (3.1) we have for larger lattices the following result about
stationary distribution of {Q}.

Theorem 3.1. Approximately for large lattices

Qt
π∈ N(0, n2/(0.5− 2ϕ2)).

Further, (3.1) implies that approximately for large lattices the Markov chain
{Q} is asymptotically an AR(1) process satisfying the recursive relationship
Qt+1 = 2ϕQt + εt for all t ∈ Z+ where {εt} is white noise with εt ∈ N(0, 2n2)
and Q0 ∈ N(0, n2/(0.5−2ϕ2)). Thus, for instance, {Q} has covariance function
rQ(τ) = 2|τ |+1n2ϕ|τ |/(1−4ϕ2) and spectral density function RQ(f) = 2n2/(1+
4ϕ2 − 4ϕ cos(2πf)), −1/2 ≤ f < 1/2.
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4. Perfect simulation

The technique to simulate exactly according to the stationary distribution
is called perfect simulation (introduced by Propp and Wilson [19]). It is used in
this paper with the modification for the anti-monotone case by Häggström and
Nelander [9].

Figure 2. Three 100×100 square lattice patterns at times 1, 2, 3 simulated per-
fectly according to the stationary distribution of the spatio-temporal interaction
model. In the top row {x}∗3 with ϕ=−0.3, and in the bottom row {x}∗∗3 with
ϕ= 0.3. Observe how hard it is to tell these patterns apart in respect of clus-
tering by the mere eye. This stresses the importance of statistical methodology
in order to distinguish clustering (ϕ > 0) or regularity (ϕ < 0).

The method of perfect simulation of the Ising model is applicable in the
case with the spatio-temporal interaction model conditional on the initial lat-
tice state. As well the initial q0 state may be simulated using the approx-
imate stationary distribution of {Q} (see Theorem 3.1) and then the lattice
state x(0) may be chosen among {x ∈ D : Q(x) = q0} each with probability
m−1
q0 . Thus we may simulate samples according to the stationary distribution

without bias introduced by approximating stationarity from sampling after a
long run-in period. Apart from being nice for illustrations this way of getting
perfect samples is important for the accuracy of results based on simulations.
Two sequences, {x}∗1000 and {x}∗∗1000, were simulated with interaction parameter
ϕ = −0.3 and ϕ = 0.3 respectively. In Figure 2 are the patterns {x}∗3 and
{x}∗∗3 and in Figure 3 are the sequences {q}∗1000 and {q}∗∗1000 of the statistic
qt = Q(x(t)) plotted. The fact that the lattice is bipartite illustrated by the
bottom image in Figure 3.
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5. Inference

5.1. Estimation

Maximum likelihood estimation of the interaction parameter in the Ising
model used to be regarded as an awkward task because of the tedious calculation
of the normalising constant (e.g. [1] and [2]). Instead approximations (e.g. [15])
and other estimators, such as the pseudo-likelihood estimator and the gener-
alised pseudo-likelihood estimator (e.g. [8] and [7]) have been suggested. The
calculation of the approximations of maximum likelihood estimates is compu-
tationally heavy though, and the pseudo-likelihood estimator was shown biased
towards underestimation in case of strong interaction [23]. However, for large
lattices approximations using the asymptotic distribution and moments gives a
good accuracy away from the points of phase transitions [11].

0 200 400 600 800 1000

−500

0

500

0 200 400 600 800 1000

−500

0

500

0 100 200 300 400 500

−500

0

500

qt

qt

qt

t

t

t

Figure 3. The two top plots show simulations {q}∗1000 and {q}∗∗1000 of
{Qt : t = 1, 2, . . . , 1000} based on simulations {x}∗1000 and {x}∗∗1000 of 100×100
square lattice sequences simulated perfectly according to the stationary distri-
bution of the spatio-temporal interaction model. Values of time, t, are on the
horizontal axis and corresponding values of the statistic, Qt are on the vertical
axis. In the top image ϕ=−0.3, and in the middle ϕ=0.3. Switching the sign
of qt deletes the effect introduced by a negative value of the interaction param-
eter. Thus a simulation of {Qt} for a value ϕ < 0 (ϕ > 0) may be obtained by
simulating {Qt} for ϕ > 0 (ϕ < 0) and then switching the sign at even times
t = 2, 4, 6, . . .. The bottom plot shows the same simulation as above of {Qt}
with ϕ = 0.3 except that it is plotted at odd times (indicated by a solid line)
which thus is the same values as for the simulation with ϕ = −0.3. The dots
indicate the values of {Qt} at even times.



An Ising-type model for spatio-temporal interactions 543

Having made observations x0, x1, . . . , xt of {X}, the log likelihood function,
under stationarity, is

l(ϕ) = log

(

πQ(Q(x0))

t
∏

s=1

pQ(Q(xs)|Q(xs−1))

)

. (5.1)

Using the observations q0, q1, . . . , qt thus yields the maximum likelihood estima-
tor ϕ̂ML as the value of ϕ which maximises (5.1), i.e. the value of ϕ which solves
the score equation

2ϕ eπ(Q
2
0) +

t
∑

s=2

qs−1e(Qs | Qs−1 = qs−1;ϕ) =
t

∑

s=1

qsqs−1. (5.2)

Example 5.1. Suppose that we are given the two simulated sequences {x}∗1000
and {x}∗∗1000 (of which {x}∗3, {x}∗∗3 and {q}∗1000, {q}∗∗1000 were shown in Figures 2
and 3 in Section 4) where 1: {x}∗1000 was simulated with ϕ = −0.3 and 2:
{x}∗∗1000 with ϕ = 0.3. Using Proposition 3.2, approximate solutions to equation
(5.2) are zeros of the score function

4ϕn2

1 − 4ϕ2
+ 2ϕ

1000
∑

s=2

q2s−1 −
1000
∑

s=1

qsqs−1 (5.3)

with respect to ϕ. For the two cases the expression in (5.3) is plotted in Figure 4.
From looking at values of this expression for different ϕ we have in four decimals
accuracy:

1: ϕ̂∗
ML = −0.2943 in the case when ϕ = −0.3,

2: ϕ̂∗∗
ML = 0.3025 in the case when ϕ = 0.3.

−0.2944 −0.2942 −0.2940

−10000

0

10000

20000

0.3020 0.3025 0.3030

−20000

0

20000

Figure 4. Plots of score functions, ∂l/∂ϕ (vertical axis), against ϕ (horizontal
axis). The scores are based on samples {x}∗1000 and {x}∗∗1000 that were simulated
with respectively ϕ=−0.3 (left picture), ϕ=0.3 (right picture). The dotted lines
indicate the estimates (i.e. zeros of the score) at −0.2943 and 0.3025 respectively.
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5.2. Hypothesis testing

Since the sequence {Q}t is sufficient for ϕ, the log likelihood of {Q}t may
be used as a test statistic for hypotheses regarding ϕ. Suppose that we want to
test

{

H0 : ϕ = ϕ0,
H1 : ϕ 6= ϕ0.

A test statistic based on the log likelihood function is

T (ϕ) =
q20(1 − 4ϕ2)

2n2
+

t
∑

s=1

(qs − 2ϕqs−1)
2

2n2
(5.4)

for large n. This test statistic is approximately distributed χ2(t) under H0

and thus the null hypothesis should be rejected for large values of the statistic
T (ϕ0). For the special case ϕ0 = 0 the test statistic is reduced to T (ϕ) =
(2n2)−1

∑t
s=0 q

2
s where T (ϕ) ∈ χ2(t0) under H0 : ϕ = 0 with approximations

only due to using asymptotics for finite lattices.

Example 5.2. For the two sequences {q}∗1000 and {q}∗∗1000 plotted in Figure 3
in Section 4 we may test at level α = 0.01 of significance

Test 1 Test 2

for the sequence for the sequence{

H0 : ϕ = 0
H1 : ϕ 6= 0

{q}∗1000 simulated

{

H0 : ϕ = 0.2
H1 : ϕ 6= 0.2

{q}∗∗1000 simulated
with ϕ = −0.3, with ϕ = 0.3.

Here n = 100, t = 1000 and respectively for case 1: ϕ0 = 0, 2: ϕ0 = 0.2.
Calculating the value of the test statistic T (ϕ0) according to (5.4) for these
cases we get

1: T ∗(0) = 1547.2 > 1105.9 = χ2
0.01(1000) so H0 : ϕ = 0 is rejected.

2: T ∗∗(0.2) = 1237.0 > 1105.9 = χ2
0.01(1000) so H0 : ϕ = 0.2 is rejected.

5.3. Monitoring

There are many different approaches (monitoring, surveillance, change de-
tection etc.) to the task of detecting a shift in a parameter of a distribution.
Here we consider the case where the data accumulates in time and it is de-
cided “on-line” whether or not a change has occurred. For further reading see
e.g. [5, 6, 11, 12] or [22].

Consider the situation of lattice pattern observations, XS,1, XS,2, . . ., being
made consecutively with interaction parameter ϕ0. At a random time-point, τ ,
the parameter changes to a new constant value, ϕ1. In other words,

P
(

XS,t = xt | XS,t−1 = xt−1

)

=

{

p(xt | xt−1;ϕ0) when t ≤ τ,
p(xt | xt−1;ϕ1) when t > τ.
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The problem is to decide when this change occurs.
A method to this end is a stopping rule, e.g. T = inf{t : a({X}t) > c},

where a({X}t) is called alarm function and c threshold.
The Markov chain {Q}t is sufficient for ϕ so by using the approximations

of Proposition 3.2 the approximate initial likelihood ratio under stationarity is
lr(q20n

−2(ϕ2
1 − ϕ2

0)) and the conditional likelihood ratio is clr(t) ≈ exp(qt−1n
−2

×(qt(ϕ1 −ϕ0)− qt−1(ϕ
2
1 −ϕ2

0))). According to this a method, corresponding to
the frequently used Cusum method [17], is defined by the recursive relationship

a({q}t) =

{

(log lr)+ when t = 0,
(log clr(t) + a({q}t−1))

+ when t = 1, 2, 3, . . .

A method, that corresponds to the Shiryaev method [21], is defined

a({q}t) =

{

lr when t = 0,
clr(t)(1 + a({q}t−1)) when t = 1, 2, 3, . . .

A method, corresponding to the EWMA method [20], is defined

a({q}t) =

{

λ log lr when t = 0,
λ log clr(t) + (1 − λ)a({q}t−1) when t = 1, 2, 3, . . . ,

where λ ∈ (0, 1) is a weighting parameter. To get an idea of how well a mon-
itoring method performs one may consider general quality measures such as
expected time till a false alarm, ARL0 = e(T | τ = ∞), expected delay of a
motivated alarm, e(T − τ | T ≥ τ = t), or probability of motivated alarm,
P (T = t | τ = 1). Calibrating the thresholds of the Cusum, Shiryaev and
EWMA (with λ = 0.1) methods such that ARL0 = 100, values of expected
delay and values of probability of motivated alarm, when the interaction pa-
rameter changes from ϕ0 = 0 to ϕ1 = 0.1 and ϕ1 = 0.2 respectively, are plotted
in Figure 5. (These simulations were based on a sample size of 10 000 sequences
of 100× 100 patterns simulated by using perfect simulation.)

6. Discussion

Interaction systems in several dimensions sometimes possess instability prop-
erties that need to be included in the model for inference results to be correct.
In this paper a spatio-temporal interaction model is examined. At large it is
the proceedings of [11]. Applications could be e.g. in econometrics or forestry
and it has recently been considered in an ophthalmology study by Ibáñez and
Simó [10].

Means for perfect simulations of the spatio-temporal interaction model are
indicated. It is shown that the sequence statistic which is sufficient for the
spatio-temporal interaction parameter in the model, is a Markov chain. For large
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E(T −τ |T ≥τ = t) P (T = t | τ =1)
ϕ0 =0 and ϕ1 =0.1 ϕ0 =0 and ϕ1 =0.2 ϕ0 =0 and ϕ1 =0.1 ϕ0 =0 and ϕ1 =0.2
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Figure 5. Expected delay and detection probabilities. In all four pictures are
values of the conditional Cusum (squares and solid lines), Shiryaev (circles and
dashed lines), and EWMA (triangles and dotted lines) methods. On the hor-
izontal axes: time t. From left to right: the first two pictures show expected
delay, E(T − τ | T ≥ τ = t), and the last two show probability of motivated
alarm, P(T = t | τ = 1). The first and the third pictures show change from
ϕ0 = 0 to ϕ1 = 0.1, and the second and fourth pictures show change from
ϕ0 = 0 to ϕ1 = 0.2.

lattices the stationary distribution and transition probabilities of this Markov
chain are derived by approximations from asymptotics immediately accessible
due to similarity to the Ising model. Methods for estimation, hypothesis testing
and monitoring are indicated.

Further studies are needed for investigating the ergodicity and mixing prop-
erties. Adjustments of the model (such as e.g. adding inhomogeneity of spatio-
temporal interaction, dividing the parameter space into regions interacting wea-
kly or strongly) for being useful for potential applications, also remain for future
studies.

Appendix.

Theorem A.1. The process {XS,t : t ∈ Z+} is time-reversible and has station-

ary distribution πX (x) = c−1Zx, where c =
∑

x∈D Zx is a normalising constant.

Proof. Solving the equation πX(x)pX (y | x) = πX(y)pX(x | y) with respect to
πX we have that πX (x)/Zx = πX(y)/Zy since exp(ϕn−2Q(x)Q(y)) is positive
for all x, y ∈ D. This implies that πX(x) = c−1Zx where c is some constant
with respect to x. Further

∑

y∈D πX(y) = c
∑

y∈D Z
−1
y = 1 so let c =

∑

x∈D Zx.

Since Z−1
x > 0 for all x ∈ D and c =

∑

x∈D Z
−1
x , we have that 0 ≤ πX (x) =

cZ−1
x ≤ 1 for all x ∈ D. 2

Theorem A.2. {Q} is a time-homogeneous Markov chain.
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Proof. Let Xt = {{x}t ∈ Dt : Q(xS,1) = q1, . . . , Q(xS,t) = qt}. Then

pQ
(

{q}t | q0
)

=
∑

x∈Xt

pX(xS,1 | q0) pX(xS,2 | xS,1) · · · pX(xS,t | xS,t−1)

=
∑

x∈Xt

Z−1
q0 exp

(

ϕn−2Q(xS,1)q0
)

· · ·Z−1
qt−1

exp
(

ϕn−2Q(xS,t)qt−1

)

=
mq1

Zq0
exp

(

ϕn−2q1q0
)

· · · mqt

Zqt−1

exp
(

ϕn−2qtqt−1

)

.

This implies that

pQ({q}t | q0)
pQ({q}t−1 | q0)

=
mqt

Zqt−1

exp
(

ϕn−2qtqt−1

)

=
∑

x:Q(x)=qt

Z−1
qt−1

exp
(

ϕn−2Q(x)qt−1

)

= pQ(qt | qt−1).

Clearly, for any t and s, pQ(qt | qt−1) = pQ(qs | qs−1) whenever qt = qs and
qt−1 = qs−1, which is to say that {Q} is time-homogeneous. 2

Lemma A.1. If Ψ : E → F ⊂ R is a function, E is finite, {Y } is a Markov

chain on E such that the transition probabilities satisfy the condition pY (y |
y′) = pY (y | Ψ(y′)) for all y, y′ ∈ E, {Y } has stationary distribution πY (y), and

{Ψ(Y )} is a Markov chain, then {Ψ(Y )} has stationary distribution πΨ(ψ) =
∑

y∈E:Ψ(y)=ψ πY (y). If {Y } is time-reversible, then so is {Ψ(Y )}.

Proof. Since the sequence {Y } is a Markov chain with stationary distribution
πY = [πY (e1)πY (e2) . . . πY (eN )], πY satisfies the unity eigenvalue equation
πY PY = πY where PY is the transition matrix of {Y }. Now, pY (y | y′) =
pY (y | Ψ(y′)) meaning that ∃ 0 ≤ N1 < N2 < . . . < Nk−1 ≤ N such that
p(e` | eNj−1+1) = . . . = p(e` | eNj

) and Ψ(eNj−1+1) = . . . = Ψ(eNj
) =: Ψj for

j = 1, . . . k, and ` = 1, . . . , N where N0 := 0 and Nk := N . Therefore the
transition probabilities for Ψ(Y ) are (with 1 ≤ i, j ≤ k)

pΨ(ψj | ψi) =

Nj
∑

r=Nj−1+1

pY (er | es) whenever ψi = Ψ(es).

This defines the transition matrix, PΨ, of {Ψ(Y )}. Also Ψ(e`) 6= Ψ(em) ⇒ e` 6=
em since Ψ is a function. Thus, given that πY PY = πY , i.e.

N
∑

m=1

πY (em)pY (e` | em) = πY (e`) for each `, (A.1)
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we must show that πΨ is the eigenvector of PΨ. By using (A.1), we have

k
∑

i=1

πΨ(ψi)pΨ(ψj | ψi) =

k
∑

i=1

( Ni
∑

r=Ni−1+1

πY (er)

)( Nj
∑

s=Nj−1+1

pY (es | er)
)

=

Nj
∑

s=Nj−1+1

( k
∑

i=1

Ni
∑

r=Ni−1+1

πY (er) pY (es | er)
)

=

Nj
∑

s=Nj−1+1

πY (es) = πΨ(ψj).

To see that {Ψ(Y )} is time reversible we need to check that

pΨ(ψ | ψ′)πΨ(ψ′) = pΨ(ψ′ | ψ)πΨ(ψ) for all ψ, ψ′ ∈ F.

Due to time reversibility of {Y } we have that

pΨ(ψ | ψ′)πΨ(ψ′) =
(

∑

y∈E:Ψ(y)=ψ

pY (y | y′)
)(

∑

y′∈E:Ψ(y′)=ψ′

πY (y′)
)

=
∑

y,y′∈E:Ψ(y)=ψ,Ψ(y′)=ψ′

pY (y | y′)πY (y′)

=
∑

y,y′∈E:Ψ(y)=ψ,Ψ(y′)=ψ′

pY (y′ | y)πY (y)

=
(

∑

y′∈E:Ψ(y′)=ψ′

pY (y′ | y)
)(

∑

y∈E:Ψ(y)=ψ

πY (y)
)

= pΨ(ψ′ | ψ)πΨ(ψ).

2

Lemma A.2. Let the states of the statisticQ be denoted by q(`), ` = 1, . . . , n2−
1 andDQ be the set of possible values of Q. If n ≥ 2 is even, then q(`) = −q(n2−`)

for all ` = 1, 2, . . . , n2 − 1 and mq = m−q for all q ∈ DQ.

Proof. Clearly q(1) = −2n2 = −q(n2−1) and 2 ≤ ` ≤ n2 − 2, q(`) = 4`− 2n2 so
q(n2−`) = 2n2 − 4(n2 − `) = −2n2 + 4` = −q(`) for all integers n ≥ 2.

For proving that mq = m−q for even n ≥ 2, we may consider the lattice S as
a bigraph consisting of the sub-lattices S ′ and S′′ defined so that ∀i ∈ S′ ∃! ∂i ⊂
S′′ and vice versa. This means that S ′ = {i : i odd (even) at odd (even) rows}
and S′′ = {i : i even (odd) at odd (even) rows}. Let q(`) ∈ DQ be given and let
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x(1), . . . , x(r) be an enumeration of D` = {x ∈ D : Q(x) = q(`)} (implying that
r = mq(`)). Let T : D → D be the map defined by T (x)(k) = (x(k))S′ −(x(k))S′′ ,
where 1 ≤ k ≤ r, and construct the sequence T (x)(1), . . . , T (x)(r). Then

Q(T (x)(k)) =
∑

i∈S′

∑

j∈∂i:j>i

(x(k))i(−x(k))j +
∑

i∈S′′

∑

j∈∂i:j>i

(−x(k))i(x(k))j

= −
∑

i∈S

∑

j∈∂i:j>i

(x(k))i(x(k))j

= −Q(x(k))

There cannot be a pattern, T (x)(r+1) such that Q(T (x)(r+1)) = −q(`), because
then (T (x)(r+1))S′ − (T (x)(r+1))S′′ should have been in D`, but x(1), . . . , x(r) is
an enumeration of D`. Hence T (x)(1), . . . , T (x)(r) is an enumeration of {x ∈ D:
Q(x) = −q(`)} and thus

mq(`) = #D` = #{x ∈ D : Q(x) = −q(`)} = m−q(`) .

2

Theorem A.3. {Q} is time-reversible and has stationary distribution πQ(q) =
c−1mqZq where c =

∑

q∈DQ
mqZq is a normalising constant (the same as in

Theorem 1.1). When n is even, eπ(Qt) = 0 regardless of ϕ.

Proof. Since the mapQ : D → DQ is a function, it is immediate from Lemma A.1
that πQ(q) =

∑

x:Q(x)=q πX(x) is the stationary distribution of {Q} where πX (x)

is the stationary distribution of {X} in Theorem 1.1. To prove that even n
implies eπ(Qt) = 0, write

Zq = m0 + 2

n2/2−1
∑

`=1

mq(`) cosh(ϕn−2qq(`)).

Since both cosh and mq are even in q, by Lemma A.2, Zq is as well and thus

eπ(Qt) =
∑

q∈DQ

qπ(q) =

n2−1
∑

`=1

q(`)c
−1mq(`)Zq(`)

= c−1

n2/2−1
∑

`=1

q(`)mq(`)Zq(`) + c−1

n2/2−1
∑

`=1

q(n2−`)mq(n2
−`)
Zq(n2

−`)

= 0,

since q(n2/2) = 0, q(`) = −q(n2−`), mq = m−q (when n is even) and Zq = Z−q

for 1 ≤ ` ≤ n2 − 1 and for all q ∈ DQ. 2
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Proposition A.1. When n is even eϕ(Qt | Qt−1 = q′) is odd and Vϕ(Qt |
Qt−1 = q′) is even in ϕ.

Proof. We need show that eϕ(Qt | Qt−1 = q′) = −e−ϕ(Qt | Qt−1 = q′). The
map T in the proof of Lemma A.2 satisfies Q(T (x)) = −Q(x). Therefore

eϕ(Qt | Qt−1 = q′) =
∑

x∈D

Q(x)Z−1
q′ exp

(

ϕn−2Q(x)q′
)

=
∑

x∈D

Q(T (x))Z−1
q′ exp

(

ϕn−2Q(T (x))q′
)

= −
∑

x∈D

Q(x)Z−1
q′ exp

(

− ϕn−2Q(x)q′
)

= −e−ϕ(Qt | Qt−1 = q′).

Thus we have that Vϕ(Qt | Qt−1 = q′) is even since n−2eϕ(Q2
t | Qt−1 = q′) is

the derivative of (1/q′)eϕ(Qt | Qt−1 = q′) with respect to ϕ. 2

Proposition A.2. For some ε ∈ (0, ϕκ) where κ = limn→∞ q′/n2,

lim
n→∞

1

n2
e(Qt | Qt−1 = q′) = 2ϕκ+ O(ε3),

lim
n→∞

1

n2
V (Qt | Qt−1 = q′) = 2 + O(ε2).

Proof. This is an immediate consequence of [11] since by trading ϕ in the Ising
model for ϕn−2q′ we have the result claimed. 2

Theorem A.4. Approximately for large lattices

Qt
π∈ N(0, n2/(0.5− 2ϕ2)).

Proof. First let us see that πQ(q) = C exp(−q2(1 − 4ϕ2)/(4n2)) satisfies the
equilibrium equation. From Proposition 3.2 and from (3.1) in Section 3 we have
that approximately when n is large

πQ(q′)pQ(q | q′) = C exp
{

− (q′)2(1 − 4ϕ2)

4n2

} 1√
4π n

exp
{

− (q − 2ϕq′)2

4n2

}

=
C√
4π n

exp
{

− (q′)2

4n2
+

(q′)2ϕ

n2
− q2

4n2
+
ϕqq′

n2
− ϕ2(q′)2

n2

}

=
C√
4π n

exp
{

− q2

4n2
+
q2ϕ

n2
− (q′)2

4n2
+
ϕqq′

n2
− ϕ2q2

n2

}

= C exp
{

− q2(1 − 4ϕ2)

4n2

} 1√
4π n

exp
{

− (q′ − 2ϕq)2

4n2

}

= πQ(q)pQ(q′ | q).
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Evidently C =
√

(1 − 4ϕ2)/(4πn2) and πQ is the normal density function with
µ = 0 and σ2 = n2/(0.5− 2ϕ2). 2
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