US006389483B1

a2 United States Patent (0) Patent No.: US 6,389,483 B1
Larsson 5) Date of Patent: May 14, 2002
(54) SYSTEM AND METHOD FOR REDUCING WO PCT/SE 98/02073 8/1999

COUPLING BETWEEN MODULES IN A

TELECOMMUNICATIONS ENVIRONMENT OTHER PUBLICATIONS

Empirical Evaluation of Software Quality Attributes by

(75) TInventor: Tony Ingemar Larsson, Stockholm Murray Wood, Andrew Brooks, James Miller, and Marc
(SE) Roper; Empirical Foundations of Computer Science
. . . (EFoCS); Department of Computer Science, University of

(73) Assignee: Telefonaktiebolaget I. M Ericsson Strathclyde; Jun. 1995, pp. 1-19.

(pub)), Stockholm (SE) A Software Metric System for Module Coupling by A.

Jefferson Offutt, Mary Jean Harrold, and Priyadarshan
Kolte; Journal of Systems and Software; vol. 20, No. 3;
1993; Department of Computer Science, Clemson Univer-
sity, Clemson, South Carolina; pp. 295-308.

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 08/975,539 * cited by examiner
(22) Filed: Nov. 20, 1997 Primary Examiner—Alvin Oberley
Assistant Examiner—L_ewis A. Bullock, Jr.
Related U.S. Application Data (74) Attorney, Agent, or Firm—Jenkens & Gilchrist, P.C.
(63) Continuation-in-part of application No. 08/723,107, filed on G7) ABSTRACT
Sep. 30, 1996. . . . o
(60) Provisional application No. 60/005,337, filed on Oct. 17, A techmque. for. enhancing the modlﬁablllty an‘,i reuse of
1995, telecommunications software systems is described. The
5) problem domain is first partitioned into tasks that are
(51) Int. CL7 ool GO6F 9/54, GO6F 15/17 assigned to distinet software program modules. In one
(52) US. Cl oot 709/313 embodiment, each of the software modules have multiple
(58) Field of Search 709/300, 303, output ports. Each output port provides a mechanism to link
709/313, 310, 312, 315 the software module to a specific version of a different
. program module. The multiple output ports are used to
(56) References Cited selectively link the module to one of several versions of a
US. PATENT DOCUMENTS different program mpdule. The linking is performed as early
as system design time or as late as run-time, or at any
5,297,285 A 3/1994 Abrahamsson et al. 395/700 intermediate time between the two. The use of output ports
5,339,430 A : 8/1994 Lundin et al. 395/700 makes software modules less dependent on each other and
5,386,568 A * 1/1995 Woldetal. + 395700 a1c0 simplifies the “hot-swapping” or dynamic replacement
3,410,703 A 471995 Nilsson et al. ... e 395/700 of one module by another at run-time. In an alternative
5,485,617 A * 1/1996 Stutz et al.c........ 395/700)

embodiment, each of the software modules has a unitary
FOREIGN PATENT DOCUMENTS output port where each output port comprises an array of
linking records. Each linking record has as many linking

EP 0770 957 A2 5/1997

EP 0770957 A3 3/2000 variables as there are versions of the receiving module.
WO WO 94/01818 1/1994

WO WO 97/15003 4/1997 24 Claims, 27 Drawing Sheets

SVan sig(Sl <n)]B :

om=s F
NM=C C

sig(Sl 2 n)] H

U.S. Patent May 14, 2002 Sheet 1 of 27 US 6,389,483 B1

FIG. 1

(Prior Art)

51 66 61
\ BLOCKA 1 BLOCKB s

153
Ly — A 88 [soT
~— PSAg

PSAA

SST| GSN FOR S eI SSP

54
52 -
PRgggé\M SEND S RECEIVE
TO BNR S
GTSA
LSNFOR Sq
GSNFCR INB, BNR
Sy BNR
//

JB GSDT

U.S. Patent May 14, 2002 Sheet 2 of 27 US 6,389,483 B1

101y_| LOAD NEW VERSION

OF SOFTWARE
FIG. 2 :

P COPY DATAWITH
(Prior Art) 102~} SO AN LINK
TO NEW SOFTWARE

]

RUN TEST CALL WITH
103~_| NEW SOFTWARE AND
REGULAR TRAFFIC
WITH OLD SOFTWARE
AND OLD DATA

104

DOES NEW
SOFTWARE
WORK?

YES

RUN SAMPLES OF
ro7 . ACTUAL TRAFFIC
WITH NEW SOFTWARE

108

DOES NE
SOFTWARE
WORK ?

YES

RUN ALL NEW CALLS
109 <" WITH NEW SOFTWARE
AND DATA

HAS
TIME LIMIT
EXPIRED ?

110

105 DOES NEW

Y SOFTWARE

! WORK ?
REMOVE NEW TERMINATE OR
SOFTWAREAND | 44 YES TRANSFER

NEW DATA - REMAINING CALLS

OLD CALLs ™, NO "
END COMPLETE ? [
106 REMOVE OLD
SOFTWARE AND
OLD DATA

US 6,389,483 Bl

Sheet 3 of 27

May 14, 2002

U.S. Patent

1Z€ LA anjea ainqune
oot lo

ZZ€ CA eonjea ainquye
LO€ !d y10d ynduyj

ZLE ¢} uonouny

LLe by uonouny

€ old

U.S. Patent May 14, 2002 Sheet 4 of 27 US 6,389,483 B1

US 6,389,483 Bl

Sheet 5 of 27

May 14, 2002

U.S. Patent

Z0G sassepd So.aov

€0G soweu ainquy

"\ 105

sawieu uonoun4g

G Ol

U.S. Patent

May 14, 2002

Sheet 6 of 27

US 6,389,483 Bl

-
-
0
P
o
o
(@
LL
o
Q
0
c
°

US 6,389,483 Bl

Sheet 7 of 27

May 14, 2002

U.S. Patent

6LL USo

zZLL 5o

1L LSo

SI19A18S

L Ol

LoL ®o 100fq0
juaby

Sy

US 6,389,483 Bl

Sheet 8 of 27

May 14, 2002

U.S. Patent

208

£z8 €A

0d 3104 1ndinQ

oog lo

108 !d 104 Indu)

U.S. Patent May 14, 2002 Sheet 9 of 27 US 6,389,483 B1

04 904

09 902

US 6,389,483 B1

Sheet 10 of 27

May 14, 2002

U.S. Patent

100150 10alqQ paziervads

2001 Po 100lqQ ousuap

220l Cw

US 6,389,483 B1

Sheet 11 of 27

May 14, 2002

U.S. Patent

LELL 53

Lot LSo 10alqo pazyevads

2oLl B 109lqQ ou18UaY

L1

Old

LLiL Sid

tziitw

ziiL B

ZZLLCw

US 6,389,483 B1

Sheet 12 of 27

May 14, 2002

U.S. Patent

Lizl Sid

L0z 150 1908lqo paziervads
9Lzl Sod
RAARIY

rAAAXAN

gzzL€w

L1zt Bod

61
zozL Bo 100lqo ousuen z1z1 Bid

US 6,389,483 Bl

Sheet 13 of 27

May 14, 2002

U.S. Patent

4 |
zeeL Slo 1zeL Ho

(
00€lL © L tLet

€19l

Logl Lo

US 6,389,483 B1

Sheet 14 of 27

May 14, 2002

U.S. Patent

US 6,389,483 Bl

Sheet 15 of 27

May 14, 2002

U.S. Patent

vosL Vo

cosl €lo

00§l o L

LLgLo

G1l'Old

cosl Clo

LogL Lo

US 6,389,483 B1

Sheet 16 of 27

May 14, 2002

U.S. Patent

LO9L 6o 109[qQ jeiduan

\

Z091 5o 309lqQ pazijeroads

2

LLIL

LZ9l }

91 9ld

US 6,389,483 Bl

Sheet 17 of 27

May 14, 2002

U.S. Patent

Lozt Bo yoelqo _mhm:ow z0LL So uoc_ao pazijeioeds

=

L1794

Logl B

0 199[qQ |esauap z081L Yo 100lq0 payipopy

\)

LZ8l

US 6,389,483 B1

LL8L

Sheet 18 of 27

May 14, 2002

8L Ol

U.S. Patent

US 6,389,483 Bl

Sheet 19 of 27

May 14, 2002

U.S. Patent

L1061 Po 1008lqQ jesausp

\

zo6L Yo 199lqp payipon

),

LZ6lL

LL6L

6l Ol

US 6,389,483 B1

Sheet 20 of 27

May 14, 2002

U.S. Patent

£00zZ %0 109lqQ uoisuaixy 100z "o 100lqQ paypony

=

()
I

2002 mo 108lqQ |e13uaN) L

0Z Ol

US 6,389,483 Bl

Sheet 21 of 27

May 14, 2002

U.S. Patent

€012 %0 309fqQ uoisuslxy LoLz Wo 198lq0 paytpowy

S

=

20L2 bo 199lqQ |eisuan I\

L Ol

US 6,389,483 Bl

Sheet 22 of 27

May 14, 2002

U.S. Patent

£0zz S0 108[qQ pezijeioads

Lozz "o 1909lqQ payipopy

)

/

g ——

zozz Po 109lqQ 1nejeq ,L

¢C 9ld

U.S. Patent

May 14,2002 Sheet 23 of 27
FIG.23
AMs SMs RMs
I I IR
| I IR
| | |
]] f I
FIG.24
SV=n sig(Sl<n 5
_ g(Sl<n) I '

lom=s [
NM=C \ c
sig(S! > n)] H

FIG.25 FIG.26
] O n Ei<

US 6,389,483 Bl

U.S. Patent May 14, 2002 Sheet 24 of 27 US 6,389,483 B1

FIG.27
SV=n 6SDT sig(S|<n)%B 8
A
Jom=5
NM=C sig(Sl > n) ¢
i
. FIG.28
sn(i) il ' io(m2
— = 0 j1;; GSDT y Ip(m2)
| mod(m2),gsn(1) y{ =3 mod(m2), Isn (k1) |
- :___: o }___{ —
o —
21
i I ,
mod(m3) gsn(j2) VL mod(m3), sn (k2 PAm3)
I
|

Nl ___i_ia__
-

._
-

—

U.S. Patent May 14, 2002 Sheet 25 of 27 US 6,389,483 B1

FIG.29

PS
S RS —\PS_
op [\
mn,gsn ma,lsn, data
ip GSOT 3
DS ia
| |
: : [\
: | N\ da
Sn RO | | SEERS
ERLEE JIsn,
:‘:?;Cﬂ &Tﬁers L__' fin,fsn,data
SV
- mn,gsn,da_t_gm ~__ B

FIG.30 FIG.31

old version
] O E/
O] 3 E\
] il = = new version

U.S. Patent May 14, 2002 Sheet 26 of 27 US 6,389,483 B1

FIG.32
SV=n sig(S! <) B
A J f
Nom=g
NW=C E\C
sig(Sl > n) ™~ F
H
FIG.33
op
i «
op(i),sn(j) JL I ip(m2)
[_ip(m2), sn(]) J';:?. '
=
ip(m3)

U.S. Patent May 14, 2002 Sheet 27 of 27 US 6,389,483 B1
PS RS PS
gg% ipa,sn, data
ip1 pn e
ip2 Job buffers DS :
ip3 =3
- _ da
0PN\ R PSEL3ES
e
BRI
ipn,sn,data
T ~
AMs SMs RMs
H E\
I o T ¢
! i
| | '
| | |
|
I : I
: F
]
; T 1

US 6,389,483 B1

1

SYSTEM AND METHOD FOR REDUCING
COUPLING BETWEEN MODULES IN A
TELECOMMUNICATIONS ENVIRONMENT

PRIORITY UNDER 35 US.C. § 119(e) & 37 C. FR. §
1.78(a)(1) This Nonprovisional U.S. Patent Application is a
continuation in-part of Nonprovisional U.S. patent
application, Ser. No. 08/723,107, entitled SYSTEM AND
METHOD FOR REDUCING COUPLING IN AN OBJECT-ORIENTED
PROGRAMING ENVIRONMENT, filed on Sep. 30, 1996 which in
turn claims priority from Provisional U.S. patent
application, Ser. No. 60/005,337, entitled COMPONENT
DECOUPLING, A KEY TO IMPROVING SOFTWARE SYSTEM
ARCHITECTURES, filed on Oct. 17, 1995 in the name of Tony
I. LARSSON, the inventor of the present application. The
carlier-filed Nonprovisional Patent Application is currently
pending and has not been abandoned.

CROSS REFERENCES TO RELATED
APPLICATIONS

This Nonprovisional U.S. Patent Application contains
subject matter related to an earlier-filed, currently nonaban-
doned Nonprovisional U.S. patent application Ser. No.
08/723,107, entitled SYSTEM AND METHOD FOR REDUCING
COUPLING IN AN OBIECT-ORIENTED PROGRAMMING
ENVIRONMENT, filed on Sep. 30, 1996 which in turn claims
priority from Provisional U.S. patent application Ser. No.
60/005,337, entitled COMPONENT DECOUPLING, A KEY TO
IMPROVING SOFTWARE SYSTEM ARCHITECTURES, filed on
Oct. 17, 1995 in the name of Tony I. LARSSON, the
inventor of the present application. This currently pending
Nonprovisional U.S. Patent Application and any other
related Patent Applications deriving therefrom in the United
States or in other countries and the disclosure(s) contained
therein are all hereby expressly incorporated by reference
herein.

The earlier-filed Provisional U.S. Patent Applications
identified above and the present Nonprovisional U.S. Patent
Application have all been, will be or are under an obligation
of assignment to Telefonaktiebolaget LM Ericsson (publ).

DESCRIPTION

1. Technical Field of the Invention

The invention relates to the field of computer program-
ming languages, methodologies and systems and more
particularly, to a system and method for reducing the inter-
dependence between modular software units and facilitating
the dynamic replacement or hot-swapping of software mod-
ules at run-time in a real-time environment, such as a
telecommunications environment.

2. Description of Related Art

This patent application concerns the development and
maintenance of large software systems. It has been found
desirable to have the ability to extend or modify a system so
as to cope with new or changed requirements. It has further
been found desirable to find techniques for making such
changes both simply and selectively. Consequently, an ideal
software development environment should permit much of
the software used in an old system to be reused or be
combined into a new system with only slight modifications.
In some application areas such as the telecommunications, it
has also been found desirable that system modifications be
possible during run time, i.c., to be made dynamically in a
live system. Such dynamic system modification is some-
times referred as “hot-swapping”™—a term commonly used
in the field of computer hardware.

10

15

20

25

30

35

40

45

50

55

60

65

2

In order to limit the cascading effect of changes and to
simplify the reuse and/or modification of different parts of a
large software system, it has become common to partition
the software into modules on the basis of some general
design principles that offer such benefits. It should be
emphasized that ideally the different software modules
should be as independent of each other as possible so that a
change in one module or the replacement of another does not
result in or require changes to a great number of other
modules.

The decoupling of software modules (variously referred
to in the art as parts, components, objects or processes) is
currently solved by a two-step process. First, by requiring
that an interface be declared that defines what a module type
may provide to other module types, and sometimes also
defining the functions and data that a module may use from
other modules. Next, such interface information is used to
statically link the different modules into a system. This
technique can prevent ordinary users of a module from
directly using knowledge about the internal implementation
of a software module in undesirable ways.

Class 5 telecommunications switches, such as AT&T’s
5ESS system or Ericsson’s AXE-10 system, comprise com-
plex telecommunication hardware and software. The soft-
ware architecture of Ericsson’s AXE-10 system requires
each block or module to have a Signal Sending Table (SST)
to decouple it from other blocks or modules. The basic
purpose of the Signal Sending Table used in AXE-10 is to
provide linking information for signals sent from a module,
specifying the receiving module the signals are intended to
be sent to. The signals sent are used to trigger the execution
of program code implementing the function associated with
the signal but are typically not directly linked to the entry
position for such code. Instead the linking is done indirectly
via a Signal Distribution Table (SDT), for the common input
port of the block. The entry position in this SDT is called the
Local Signal Number (LSN). One can use a linker to find the
LSN of a receiving block and provide this information to the
SST of the sending block.

The AXE-10 software architecture also includes support
for a concept referred to as “multiple signals” wherein the
same signal is sent to multiple receiving blocks and where
the receiver that is to act on the signal is specified at
run-time. In this case one needs to find the smallest possible
LSN that fits all receiving blocks (so as to avoid wasting a
large block of memory space for the SDT). This reduces to
a difficult optimization problem that should be avoided if
possible.

As described in U.S. Pat. Ser. No. 5,297,285 entitled
SYSTEM FOR DYNAMICALLY LINKING MODULAR PORTIONS OF
COMPUTER SOFTWARE issued to Anders ABRAHAMSSON
& Lars HOLMQVIST, one way to improve this software
architecture is by complementing the Signal Sending Table
and Signal Distribution Table of the various different mod-
ules with a Global Signal Distribution Table (GSDT). This
simplifies the problems associated with the dynamic linking
of software modules. In such a case, the sending block can
use a Global Signal Number (GSN) in conjunction with the
block number of the receiving block to find the appropriate
LSN for that receiving block. FIG. 1 is a diagrammatic
representation of the manner in which modular software
blocks are dynamically linked in accordance with the system
of this Ericsson patent.

The system and method disclosed in the above-identified
Ericsson patent can be extended or generalized as to cover
the case where a symbolic block number is replaced by an

US 6,389,483 B1

3

actual block number. More details about this technique can
be obtained by reference to this U.S. Pat. Ser. No. 5,297,285.

Another U.S. Pat. Ser. No. 5,339,430 entitled SYSTEM FOR
Dy~Namic RUN-TIME BINDING OF SOFTWARE MODULES IN A
COMPUTER SYSTEM issued to Kenneth LUNDIN & Ulf

MARKSTROM describes a technique for object decoupling
and dynamic relinking of object-oriented software modules
using abstract language-independent interface specifications
supported by compilation techniques and an address trader
(which is functionally equivalent to a global address table)
that is built into the kernel of the operating system.

Yet another U.S. Pat. Ser. No. 5,410,703, entitled SYSTEM
FOR CHANGING SOFTWARE DURING COMPUTER OPERATION

issued to Rickard NILSSON, Ulf MARKSTROM & Leif

KLOFVER describes the use of an addressing mechanism
that allows two references, one to an old module or object
and the other to a new module or object. This patent also
describes a mechanism for relating and maintaining the state
of both an old as well as a new module during the updating
phase in an object-oriented system. FIG. 2 is a flow chart
illustrating the process of changing software during run-time
in accordance with the system of this Ericsson patent.
However, it should be noted that the term “module” as used
in this reference appears to refer to a software reload unit or
replacement unit, and has thus a somewhat different mean-
ing from the term as used in the present patent application.

In theory, program entities invoking a module (which may
be other modules) can be restricted from straying beyond a
defined interface and from using knowledge about the
implementation of a module. However, different modules
are often designed by software engineers who have knowl-
edge about the existence and internal architecture of other
related modules. They may use their information in ways
that can make future changes to the system complex.

There is a fundamental conflict in designing modular
software systems. On the one hand, one would like to
modularize the design of complex software systems by
partitioning the application domain and then using the set of
software modules as building blocks in crafting a solution.
This requires that the various software modules complement
each other and work well in combination.

On the other hand, it is also desirable to provide each
module with the least amount of information about the
internal implementational details of other modules. While it
is important to provide each module with abstract or essen-
tial knowledge about other software modules in order to
permit a module to make use of other modules, it is also
desirable to restrict access to detailed internal information
about a module (e.g., address information regarding a spe-
cific instance of a module type) from other modules.

Current approaches for addressing this problem have
principally concentrated on techniques for encapsulating
and protecting the module internals. However, these
approaches do not prevent inter-dependencies between mod-
ules from arising, which in turn may make system changes
difficult to implement without the modification of multiple
modules. Thus there is a need for techniques that can help
decouple modules by restricting use of knowledge about
other modules other than that specified in an interface
definition. As noted earlier, this issue has been partially
addressed by U.S. Pat. Ser. Nos. 5,297,285 & 5,339,430
identified above, albeit by techniques that are different from
those described and discussed herein.

There is also a need for software programming environ-
ments that support dynamic modifications to or configura-
tion changes of software systems using new or modified

5

10

15

20

25

30

35

40

45

50

55

60

65

4

modules while the system is running. As noted earlier, this
issue has been partially addressed in U.S. Pat. Ser. No.
5,410,703 identified above, albeit again by different methods
than those described and discussed herein.

Since telecommunications systems are expected to not
have any downtime, on-going calls or other similar services
need to be continuously kept operational. As a result, the
transition from an old software system to a new one cannot
be instantaneous. Consequently, linking mechanisms are
needed to relate the software to both ongoing (or old) calls
as well as to new calls (or services that may be separated into
different parts). Furthermore, some information needs to be
maintained and updated in both the old as well as the new
software parts during the relinking process. In some
instances, it may be desirable to divide this relinking process
into multiple phases.

Traditional Telecommunication Software Development:

The traditional approach to telecommunication software
development has been function-oriented. The function-
oriented analysis was (and is) based on a top-down (or black
box) view of system requirements. In real-time applications
such as telecommunications, such an analysis focuses on the
functions or services provided to external clients and is
implemented as processes that are distributed over a tele-
communications network.

In contrast, software engineers often focus on algorithm
control structures, on data structures and on data transfor-
mation methods. In the function-oriented approach, as
understood by skilled software engineers, data is usually
considered as being global, although in some instances data
maybe encapsulated. Consequently every change in the
representational format of a datum immediately feeds back
into the design of every function that manipulates that
datum.

This disadvantage can be ameliorated somewhat, by
manipulating the data indirectly, i.e., by manipulating the
data symbolically or by using a specialized interface func-
tion that serves as a filter. The use of such interface functions
can also permit modification of the representational format
of the data and can be used to obtain an abstract view of the
data. Thus, choice of a proper software architecture model
can avoid or eliminate many of the problems that are often
associated with the function-oriented approach to software
design.

The function-oriented approach is most commonly used
nowadays to manipulate information contained in databases.
Each database management software program often uses an
abstract information model that isolates the data represen-
tation from its manipulation. However, the internal structure
of the database is not accessible to an end-user who invokes
standard functions to manipulate the information contained
in the database.

In contrast to the function-oriented approach which
focuses on functions that transform or manipulate external
or global data, the object-oriented approach advocates an
inverted, more structure-oriented or implementation-
oriented view of the world, that focuses on objects that in
turn are represented by data and applicable functions. This
approach, which is achieved by separating the function-
naming parts of messages (including their intended
interpretation) from the implementations of the functions,
makes it possible to encapsulate and hide the data represen-
tations that are used in a specific implementation. Thus, this
approach requires both the message-names as well as their
meaning (which constitute the communications means
between objects) to have stable definitions.

The encapsulation of certain information in distinct sys-
tem entities that communicate amongst each other through

US 6,389,483 B1

5

signals has been a common approach amongst many tele-
communications software designers and programmers. This
approach has been used in order to handle system compo-
nents in a coherent way that is independent of their physical
location and implementation. In this telecommunications
software engineering paradigm, a function at the system-
level is implemented by the interworking of different system
components each containing some of the necessary parts of
the function being implemented, including the related data.

More details about the use of object-oriented approaches
to developing software for telecommunications applications
can be found in U.S. patent application Ser. No. 08/723,107,
entitled SYSTEM AND METHOD FOR REDUCING COUPLING IN
AN OBIECT-ORIENTED PROGRAMMING ENVIRONMENT.

The current object-oriented paradigm suffers from several
problems. The first of these is the likelihood of excessive
coupling between objects. Such excessive coupling often
arises due to direct references by some objects to other
serving objects via messages as well as via class structures
and/or object structures. Another problem with the present
paradigm is the lack of a deterministic solution for mini-
mizing the amount of coupling between objects and/or
subsystems and the lack of a suitable decomposition tech-
nique for the same purpose.

It should be emphasized that much of the issues detailed
below relative to the problems of traditional (single-port)
object-oriented software design are equally applicable to
modular software development. Thus, for example, many of
the problems reportedly associated with the use of present
object-oriented software development techniques may be
attributable to the use of objects having only a single (input)
port. As detailed in U.S. patent application Ser. No. 08/723,
107, entitled SYSTEM AND METHOD FOR REDUCING Cou-
PLING IN AN OBJECT-ORIENTED PROGRAMMING
ENVIRONMENT, the current object-oriented programming
paradigm may be improved upon by using objects that have
both an input port as well as an output port. Similar problem
have also been observed with modular software develop-
ment. Those of ordinary skill in the art would understand
that an “object” is a lower-level programming construct than
a “module.”

A central problem with the present object-oriented para-
digm is that objects are well-protected only from external
misuse. Currently some measure of decoupling can be
achieved by using a message dispatch function that works as
an input port for each object as shown in FIG. 3. As noted
earlier, it may be possible to extend this technique from the
object-level to the module-level.

FIG. 3 shows an object o, 300 having an input port p,,
301 and containing two functions (or methods) f; 311 and f,
312 that modify, manipulate, or transform two attribute
values, v, 321 and v, 322. The role of the input port p, 301
is to decouple the accesses (or invocations) of the functions
f; 311 and f, 312 from their implementations by using an
externally published function-name in the invoking mes-
sage.

Thus the input port p, 301 serves as an attribute-value or
function-name dispatch function. However, this technique of
decoupling does not prevent problems arising from an object
being dependent on other objects that it invokes. Thus,
changes to object o, 300 may influence all other objects
invoked by it since each object is often linked to many other
objects as shown in FIG. 4.

FIG. 4 illustrates the strong coupling between objects that
arise from message links between various objects. Four
objects 0, 401, 0, 402, 05 403 and o, 404 are shown in FIG.
4. Thus, the invocations of object o, 401 may cause its

10

15

20

25

30

35

40

45

50

55

60

65

6

functions f,; 411, f,, 412 and f,; 413 to invoke in turn
objects 0, 402, o; 403 and o, 404 as shown in the figure.
Likewise, the invocation of object 0, 402 causes its func-
tions f,, 421 and f,, 422 to invoke inter alia, object o, 404.
Likewise the invocation of object 05 403 causes its functions
f;, 431, f;, 432 and f;, 433 to invoke inter alia, object o,
404.

Analogously, as shown in FIG. 4, the invocation of object
0, 404 causes its functions f,; 441 and f,, 442 to invoke
objects 0, 402 and o, 403. Thus changes in the internal
structure of object 0, 401 will impact upon the operation of
objects 0, 402, o, 403 and o, 404.

It has been found that strong coupling between modules
lacking an output port poses the same kind of problem. This
illustrates an important structuring guideline that can be
used to decrease the coupling between objects/modules and
improve the operation of object-oriented or modular soft-
ware programs, namely, that it is important to isolate ele-
ments that change frequently from other elements that
remain relatively stable over long periods of time.

As can be seen from the above description, current
attempts to standardize the design and development of
computer software have focused only on high-level stan-
dardization efforts. However, in order to provide a design
base that can respond to market needs and economic
constraints, software systems and their components need to
be flexible and reusable. Consequently, it has been found
desirable that software architectures support inter-
operability, modifiability and implementation-independence
over long periods of time.

A good system architecture therefore needs to be based on
a definitive conceptual design that incorporates knowledge
about the requirements that will be imposed upon the
system. Consequently, important elements of the architec-
ture including paradigms, interfaces, naming rules, messag-
ing schemes, addressing schemes, key components,
structure, layers, function decomposition principles, design
rules and support tools must be selected in advance in such
a manner as to maximize their consistency, simplicity,
uniformity and orthogonality.

Piece-meal improvement of an existing architecture can-
not always suffice, as an existing architecture may lack a
consistent architecture or framework of system interfaces;
different applications might be incompatible; industry stan-
dards might not have been adhered to; or the accumulated
sum of new customer requirements might necessitate the
design and development of a new software architecture
model.

In order to improve the architecture of a software system,
one first needs to understand the problems that arise from the
present object-oriented paradigm. Knowledge of the under-
lying problems can help make new designs more modifiable,
inter-operable and implementation-independent.

SUMMARY OF THE INVENTION

Therefore it is a primary object of the present invention to
permit the decoupling amongst the software modules in a
telecommunications environment. It is a further object of the
present invention to permit the easy and dynamic updating
of software modules in a running system.

A system and method for reducing the coupling between
modules of a software application program in a modular
telecommunications software programing environment is
described. The programming environment comprises a com-
puter system containing a processing unit, a memory unit, an
I/O (input/output) unit and an operating system.

In one aspect of the present invention, the technique starts
with the creation of functionally-distinct software program

US 6,389,483 B1

7

modules. When a software module is revised to add new
features, both versions of the software module are stored.
Each of the modules that use the services of other modules
has at least two logical output ports, with each of the two
logical output ports serving to route data to the appropriate
version of the other module.

It should be noted that the set of two or more logical
output ports may be implemented as a single physical output
port. Further, the various output ports could be masked to
appear as a unitary symbolic destination port to a system
programmer. A selected group of two or more modules is
linked into a telecommunications application program. The
software application program is executed on the computer
system, by processing all invocations of non-local refer-
ences in each module through the appropriate output port of
the module.

In another aspect of the present invention, a method for
facilitating the reuse of modular software units is described.
The technique begins with the grouping of software modules
of the telecommunications application program into Access
Modules, Service Modules and Resource Modules. Access
Modules are responsible for managing the Access Individu-
als while Service Modules are responsible for managing the
Service Individuals. Likewise, the Resource Module is
responsible for managing the Resource Individuals.

A select group of modules that may be combined into a
telecommunications application program are next identified.
Each module that invokes other modules is provided with
specific address information about the other modules no
earlier than system building time, creating corresponding
module instances. The instances of the selected group of
modules are then lined into a telecommunications software
application program. The software application program is
then executed on the computer system, by processing all
invocations of non-local references in a module through the
Access Module.

In yet another aspect of the present invention, a system
and method for the selective replacement, testing and acti-
vation of modular software units in a telecommunications
application program is described. The technique begins with
the creation of functionally-distinct software program mod-
ules. When a software module is revised to add new features,
both versions of the software module are stored. Each of the
modules that use the services of other modules has at least
two logical output ports, with—each output port serving to
route data to the appropriate version of the other module.

The software modules of the telecommunications appli-
cation program are then grouped into Access Modules,
Service Modules and Resource Modules. Access Modules
are responsible for managing the Access Individuals while
Service Modules are responsible for managing the Service
Individuals. Likewise, the Resource Module is responsible
for managing the Resource Individuals.

Each new service need identified by an Access Module is
assigned a unique Service Identity (SI). A globally unique
Selection Variable (SV) is then specified to indicate when
the telecommunications application program is to make the
transition from using the first version of the second module
to using the second version of the second module. The
Service Identity is then compared with the Selection Vari-
able. If the Service Identity is greater than or equal to the
Selection Variable, the modules of the telecommunications
application program are relinked by replacing references to
the first version of the second module with references to the
second version of the second module. The software appli-
cation program is then executed on the computer system.

10

20

25

30

35

40

45

50

55

60

65

8
BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and system
of the present invention may be obtained by reference of the
detailed description of the preferred embodiments that
follow, taken in conjunction with the accompanying
drawings, wherein:

FIG. 1 is a diagrammatic representation of the manner in
which modular software blocks can be dynamically linked in
accordance with the system as described in a prior patent;

FIG. 2 is a flow chart illustrating the process of changing
software during run-time in accordance with the system as
described in a prior patent;

FIG. 3 shows an exemplary embodiment of the traditional
object-oriented paradigm where each object has an input
port that functions as a message dispatch function;

FIG. 4 illustrates the strong coupling between objects (or
modules) that can arise from the message links between
various objects (or modules) in a system;

FIG. § depicts the object-attribute-function space in three-
dimensions;

FIG. 6 depicts one technique for reducing coupling
between objects or modules by routing all communications
between peer objects through a centralized switch object;

FIG. 7 depicts an exemplary embodiment of the present
invention where an interface object or module coordinates
communications between server objects or modules;

FIG. 8 shows the preferred embodiment of the present
invention where every object or module has both an input
port as well as an output port;

FIG. 9 is a higher-level illustration showing the interac-
tion and operation of the enhanced objects or modules
depicted in FIG. §;

FIG. 10 shows a further embodiment to the present
invention where a specialized object or module inherits its
behavior from a generic object or module;

FIG. 11 depicts an additional embodiment of the present
invention where the behavior of a specialized object or
module is designed based upon cooperation with a generic
object or module;

FIG. 12 depicts an additional embodiment of the present
invention where the behavior of a specialized object or
module having an output port is designed based upon
cooperation with a generic object or module having an
output port,

FIG. 13 shows an exemplary implementation of a module
as a composed object where interface objects pass informa-
tion to various control and resource objects;

FIG. 14 shows an exemplary implementation of a module
as a composed object where all information processed
through a unitary control object in the module;

FIG. 15 shows an exemplary implementation of a module
as a composed object where separate interface objects or
ports are used for dealing with the flow of control informa-
tion and for data;

FIG. 16 illustrates the input specialization technique for
modifying a software system;

FIG. 17 illustrates the output specialization technique for
modifying a software system;

FIG. 18 illustrates the input adaptation technique for
modifying a software system;

FIG. 19 illustrates the output adaptation technique for
modifying a software system;

FIG. 20 illustrates the parallel extension technique for
modification of a software system;

US 6,389,483 B1

9

FIG. 21 illustrates the coupled extension technique for
modification of a software system;

FIG. 22 illustrates the replacement technique for modifi-
cation of a software system;

FIG. 23 depicts the linkage of signals from an Access
Module to a Service Module that makes use of a set of
Resource Modules;

FIG. 24 illustrates the conditional linking of module A to
either an old module B or to a new module C based upon a
Session Identity token;

FIG. 25 shows a high-level overview of the simplest
implementation of the present invention wherein a module
has one input port and one output port;

FIG. 26 shows one embodiment of the output port of the
present invention wherein each module has only one output
port that in turn is implemented as an array of linking
records;

FIG. 27 illustrates the selective linking of a signal from a
first module A to the input port of one of two modules B and
C based upon the value of a Service Instance (SI) associated
with the signal;

FIG. 28 illustrates an exemplary signal being linked via an
output port having a two-variable linking record for each
signal to an input port of a selected receiving module;

FIG. 29 shows the implementation details of a signal
being sent from an originating module to a program in a
receiving module using the signal linking technique of the
present invention;

FIG. 30 shows an alternative embodiment of the output
port of the present invention wherein an exemplary module
is depicted as having two input ports and three output ports;

FIG. 31 shows each input port of a receiving module as
having one linking variable while each output port of an
originating module has one linking variable for each of the
various receiving modules;

FIG. 32 illustrates the selective linking of a signal from a
first module A to the input port of one of two modules B and
C based upon the value of a Service Instance (SI) associated
with the signal;

FIG. 33 illustrates an exemplary signal directed to a
named output port, where each output port is implemented
as an array of two-variable linking records, being linked to
a corresponding input port of a selected receiving module;

FIG. 34 shows the implementation details of a signal
being sent from an originating module to a program in a
receiving module using the port linking technique of the
present invention; and

FIG. 35 shows the interworking of access modules, ser-
vice modules and resource modules where the various
modules have varying numbers of input and output ports.

DESCRIPTION OF THE PREFERRED
EMBODIMENT
Module Orientation

A software system comprises a set of modules that
cooperate to achieve a common goal or effect. In many
instances, the modules of a software system are themselves
systems. Consequently, in describing or modeling a product,
it has been found to be very useful if one were able to switch
between a module-oriented and a system-oriented perspec-
tive.

In a module-oriented analysis, a software-system is
viewed top-down as being a single module from a functional
perspective and viewed bottom-up as being a set of coupled
(and sometimes physically distributed) modules. In the

10

15

20

25

30

35

40

45

50

55

60

65

10

system-oriented approach, each module may itself be a
system at a lower-level. In such an analysis, communication
between modules is permitted only through predefined
interfaces, couplings, communications channels or ports.

The first task in a module-oriented analysis is therefore to
identify the users of each module in order to understand the
greatest use of the module being analyzed and its overall
behavior. Additionally, one needs to determine whether
clients invoking a module need access ports to that module
or to other modules or systems. The next task in the analysis
is to identify one or more possible implementations of each
module and to determine the individual behavior of each
module and its coupling with other modules. Such an
analysis can be helpful in the design of entirely new systems,
in the modification of existing systems or permit the reuse of
modules in a concurrent software engineering environment.

In one embodiment of the invention described in U.S.
patent application Ser. No. 08/723,107 and shown in FIG. 8
and the accompanying description, each object is encapsu-
lated and is permitted to access or communicate with other
objects only through established input and output ports.
Such a pure module-oriented software engineering approach
differs from the traditional object-oriented approach in hav-
ing an output port to regulate all outward-directed commu-
nications from an object. This additional regulation and
protection of outward-directed communications need not be
“hard-wired” into each object or module, but can instead be
implemented using additional software constructs as
detailed elsewhere in this patent application.

Such an approach ameliorates some of the disadvantages
of the existing object-oriented approach by reducing the
coupling between modules. The object-oriented approach
has been claimed to permit the design of “software 1Cs”
(Integrated Circuits), see, ¢.g., BRAD J. CoX, OBJECT-
ORIENTED PROGRAMMING: AN EVOLUTIONARY APPROACH
70-71 (ISBN 0-201-10393-1, Addison-Wesley 1986).
However, in practice it has been found that any such
software ICs realized using the existing object-oriented
software programming paradigm are too dependent upon
other objects because it has been tailored for a specific
environment. Consequently, in order to obtain reusable
modules, one has to aim for more generic solutions to
software design problems.

The decoupling of software modules or elements by the
use of objects having output ports is one of the basic
building blocks of the module-oriented paradigm. Addi-
tional details about the use of objects having an output port
can be obtained by reference to co-pending U.S. patent
application Ser. No. 08/723,107. This technique improves
upon, and complements, the current object-oriented soft-
ware programming paradigm.

In the preferred embodiment of the invention shown in
FIG. 8 and the accompanying description, the decoupling of
objects and modules using output ports is implemented by
introducing specific decoupling objects or modules whose
role is to act as output ports or name switches. This is
detailed elsewhere in the patent application. When a decou-
pling object or module receives a message m, it redistributes
the message m to one or more coupled receivers.

In one implementation of the present invention, if we
assume that there is one output port for every abstract server
object or module, the decoupling object triggers an action of
the form “on receiving any message m send message m to
reCeIVers Iy, [oo, - - - Iy, Where r,y, I, . . . 1, are the names
of receiving objects or modules for the specified message. In
another implementation of the present invention, a single
output port is used, whose behavior can be characterized as

US 6,389,483 B1

“on receiving a message m to an abstract receiver r,,;, send
message m to receivers r;, I o, . . . I,,,,”

However, it should be noted that just by using a decou-
pling object or module we cannot solve all of the problems
that plague the present object-oriented software program-
ming paradigm. For example, the use of decoupling objects
or modules does not prevent objects or modules from
communicating directly with other objects or modules even
where such communications are prohibited by a software
programming standard such as the one proposed here.

If full module generality and reusability is to be achieved
then the coupling information must not be built in to the
various modules but must instead be provided by coupling
ports either at the time of instantiation, or (dynamically)
during active invocation (or use) of the module.

Further, the partitioning of a software system into mod-
ules or subsystems needs to be based upon a rigorous
analysis of the static and dynamic couplings between the
modules involved, i.e., between the types and the instances
of different variables. Other important factors that may also
influence the system partitioning include the physical and
performance-related locational and distribution constraints.

In order to have practical utility in real-time applications,
the module-oriented software programming technique
described in the present patent application additionally
needs to permit each object or module to simultaneously
observe and change the states of other objects or modules.
Further, each object or module must also include means for
specifying the synchronous activation of multiple objects or
modules for the performance of concurrent actions. Without
such a capability, the act of observation of an object or
module may itself influence the states of other objects or
modules—making it impossible to observe either a system’s
state or its change of state.

It should be noted that there are no significant barriers in
the object-oriented paradigm that prevent or limit the inclu-
sion of mechanisms to specify either real-time or simulated
real-time behavior. The addition of features for the specifi-
cation of reactive concurrent behavior can result in an
upgraded object-oriented paradigm that better supports the
design of open systems.

However, it should also be noted that most object-oriented
programming languages and environments of the present
day are sequential or single-threaded and thus have no
built-in support for handling real-time phenomena like con-
current actions or processes. Consequently, operating
system-level mechanisms are necessary for achieving an
equivalent effect.

Improving Object Decoupling

U.S. patent application Ser. No. 08/723,107 describes
several techniques to limit the problems associated with the
traditional object-oriented programming approach. The
solutions suggested in this patent application generally fall
into two classes.

The first class of solutions can be characterized as meth-
ods that support the definition of stable object- and function-
partitions that result in the meaning and encoding of mes-
sages remaining stable over relatively long periods of time.
These methods comprise various techniques for efficient
partitioning of the problem space to improve programming
efficiency. The second class of solutions regulate the iden-
tification of objects and communication between an object
and other objects, by introducing a mechanism that adds an
extra level of indirectness to inter-object communications.
These implementational techniques are also useful for
improving programming efficiency.

Object Classification: It is very important to find stable
object classes. Several methods of analysis can be used for

10

15

20

25

30

35

40

45

50

55

60

65

12

this purpose. As part of such an analysis, the attributes and
functions that characterize each object class and the rela-
tionships between various objects need to be defined. In one
embodiment of the invention described in U.S. patent appli-
cation Ser. No. 08/723,107, a hierarchical approach is used
to limit the number of objects in view at each level of the
hierarchy.

Minimizing the Object-Attribute-Function Space: In
another embodiment of the invention described in U.S.
patent application, Ser. No. 08/723,107, which belongs to
the first class of solutions of improving object decoupling
messages are used as interfaces for functions and attributes.
Each such interface consists of a function name and an
optional set of attribute value pairs. If an analysis of an
application domain yields a normal stable set of object
classes that are characterized by a reasonably orthogonal set
of attributes and functions, it becomes possible to define
both the meaning of a set of messages as well as a message-
encoding technique that is both stable and extensible.

It has been found in practice that an analysis of one or
more object classes will often show a set of closely related
functions to have common or shared elements in their
meanings. Consequently, the set of messages used can be
significantly smaller than the total set of functions using the
messages. A similar analysis technique can also be applied
to the attribute name space. Furthermore, it may also be
possible to unify two or more of the object classes using a
similar ordering technique.

As shown in FIG. § this minimization effort can be
visualized as attempting to reduce the volume of a three-
dimensional space whose axes represent function names
501, object classes 502 and attribute names 503. Needless to
say, the minimization effort must still generate a feasible
solution, i.e. the solution must lie within the minimized
object-attribute-function solution space. As would be appre-
ciated by those skilled in the art, the extension of this
concept to the problems of modular software development
transforms to the two-dimensional problem of minimizing
the area of the rectangle whose sides are parallel to the
function name and the attribute name axes. In the module-
oriented approach, the attributes would be the named data
items.

Communication Using a Centralized Switch Object: In
yet another embodiment of the invention described in U.S.
patent application Ser. No. 08/723,107, the desired object-
and module-decoupling is obtained by routing communica-
tions between peer objects or modules (or between client
objects/modules and server objects/modules) through a spe-
cialized object or module that operates as a centralized
switch. This technique which falls into the second class of
problem solutions is an alternative to the preferred embodi-
ment using objects having output ports that is described
elsewhere in that application. However it should be noted
that it is possible to use the centralized switch object concept
in conjunction with the output port concept that is part of the
preferred embodiment of the invention described in the
carlier-filed co-pending U.S. patent application Ser. No.
08/723,107.

Such a centralized switch object or module can be imple-
mented as a dispatch function or as a name table. As shown
in FIG. 6, in such a software programming environment,
objects or modules o, 601, 0, 602 . . . 0, 609 communicate
amongst each other and with the external environment
through the centralized switch object or module o_, 611.

Communication and Coordination Using an Agent: In a
further embodiment of the invention described in U.S. patent
application Ser. No. 08/723,107 that also falls into the

US 6,389,483 B1

13

second class of problem solutions, the centralized switch
object described above (or module) can be further enhanced
by using an agent object or module o, 701, also referred to
as an interface object or module, that provides the dispatch
function and also acts as a controller, command mediator
and coordinator of a set of related servers or resources o,
711, 0, 712, . . . 0, 719 as shown in FIG. 7.

The agent object or module technique is also an alterna-
tive approach to the preferred embodiment of U.S. patent
application Ser. No. 08/723,107 that discloses objects hav-
ing output ports. However, as with the centralized switch
object or module, it should be noted that it is possible to use
the agent object or module concept in conjunction with the
output port concept that is part of the preferred embodiment
of the present invention.

The principal difference between the basic central switch
object (or module) o_; 611 shown in FIG. 6 and the agent
object (or module) o, 701 shown in FIG. 7 is that an agent
object or module o, 701 can bring additional intelligence to
the basic access functions that are implemented in the agent
object (or module) and can thus be used to provide virtual
views of each of the server objects or modules 711-719. It
should be noted that the functionality of the centralized
switch object or module 611 and the agent object or module
701 are somewhat complementary to each other and can thus
be combined in a further embodiment of the invention
described in U.S. patent application Ser. No. 08/723,107.

Communication Using an Output Port: In the preferred
embodiment of the invention described in U.S. patent appli-
cation Ser. No. 08/723,107, the coupling between objects is
reduced by introducing an enhanced object that possesses an
output port in addition to the input port that is part of the
traditional object-oriented paradigm. Such an output port (or
output dispatch function) decouples the direct access to
serving objects by functions or methods within the invoking
object. As noted earlier, the output port concept can be
extended to cover both objects as well as software modules.

FIG. 8 shows an object (or module) o, 800 having both an
input port p; 801 and an output port p, 802. The input port
p; 801 serves as an attribute value or function name dis-
patcher while the output port p, 802 functions as an object-
name (or module-name) dispatcher. When the object (or
module) o, 800 shown in FIG. 8 receives a message, its
input port p, 801 will either invoke one or both of the two
functions f; 811 and £, 812 that are defined within the object
(or module), or it will directly access the three attribute
values v, 821, v, 822 or v, 823 that are defined within the
object (or module). The functions f; 811 and f, 812 may also
access or modify the attribute values v, 821, v, 822 or v;
823. However, neither of the functions f; 811 or f, 812 is
permitted to invoke an external function or object (or
module) directly. Functions f; 811 and f, 812 may access or
communicate with external functions, objects (or modules)
only through the output port p, 802.

In order to implement this technique, in one embodiment
of the invention described in U.S. patent application Ser. No.
08/723,107, every object (or module) referred to by another
object (or module) is handled as a variable and is replaced
by specific references to instantiated objects (or modules)
either at compile-time or at run-time by an instruction of the
form:

object {receiver;=object,, . . . , receivers,=object, }

This expression symbolizes an object (or module) that is
instantiated in an environment where the variable symbol
“receiver;” is to be interpreted as a reference to “object;”,
etc. The references to instantiated objects (or modules) may

10

15

20

25

30

35

40

45

50

55

60

65

14

be bound at run-time rather than at compile-time if the
implementation language supports dynamic binding.
Further, the object/module name dispatch function may also
be viewed and realized as a table.

Furthermore, if all references from an object (or module)
to other serving objects (or modules) are made indirectly
using an “environment dictionary” or table (that can be
implemented and treated as an attribute of the object or
module) that is evaluated at run-time. The references can
also be changed dynamically during the lifetime of the
object or module in question.

It should be emphasized that the input and output ports in
objects or higher-level modules can be integrated during
implementation into a unitary functional entity. Persons
skilled in the art would appreciate that several techniques are
available for implementing an input port, e.g., using a
dispatch function along with a table. Although the present
invention does not require the implementations of the input
and the output ports to be identical, or even similar, con-
siderations of design simplicity may be best served by using
identical implementations for both input and output ports.
Even greater programming efficiency can be obtained by
combining the input and output port implementations into a
single functional entity.

FIG. 9 shows an application of the output port concept
shown in FIG. 8. In such a case, the output ports in a network
of objects (or modules) operate like a locally distributed
dispatch function as shown in FIG. 9. The output ports p,;
911 and p_, 912 of objects (or modules) o, 901 and o, 902
can thus invoke objects (or modules) o5 903 and o, 904 by
sending messages m; 931, m, 932, m; 933 and m, 934 to the
input ports p,; 923 and p;, 924 of objects (or modules) o5
903 and o, 904 respectively.

The replacement of symbolic references (or the binding of
variables) by references to instantiated objects (or modules)
at compile-time or at run-time, as discussed above, aids in
separating the task of creating a composition and coupling
structure for each composed object (using lower-level object
instances) from the task of describing the content and
behavior of each individual module’s object class. Such a
separation is of great practical importance because it permits
a truly modular architecture and system framework to be
provided from which specific variants can be created later
with very little additional effort.

It should be noted that the output port concept shown in
FIG. 8 bears some similarities to the centralized approaches
shown in FIGS. 6 and 7. However, the output port concept
can provide additional programming flexibility in some
circumstances. This can be best understood by considering
an example. If two objects (or modules) o, and o, both refer
initially to an object (or module) o5, under the centralized
approaches shown in FIGS. 6 and 7, if object (or module) o4
were to be replaced by an object (or module) o,, then objects
(or modules) o, and o, would now both point to the same
object (or module) o,. In contrast, by using the output ports
shown in FIG. 8, a software developer obtains additional
programming flexibility because objects (or modules) o, and
0, can now point to different objects (or modules), say, o5 or
0, This ability to change object/module links and pointers
selectively is very useful in improving the modifiability of
software programs.

Replacing Inheritance with Composition: Analyses of the
object-oriented paradigm have traditionally focused on the
hierarchies of object classes. It has been found in practice
that excessively deep inheritance structures can make it
difficult to modity an object-oriented software program. This
is because inheritance relationships often create undesirably

US 6,389,483 B1

15

strong structural coupling. Furthermore, a composition
structure is almost always needed, thus making it necessary
to maintain a two-dimensional structure—an even more
daunting task. The class hierarchy creates a dimension or
view that focuses on behavior and data similarities while the
composition hierarchy creates a dimension or view that
focuses on composition and coupling structures.

It has been found that changes in the class dimensionality
often influences objects in their composition dimension.
Thus, software systems become rigid and inflexible because
changes in a generic object that is the root of a class
hierarchy influences all of its ancestors and every system
composition where it is used as a module, unless a particular
change is overwritten by local design rules in some of the
ancestors of the generic object.

It should be noted, however, that the existence of an effect
does not automatically imply that there will always be
operational problems. For example, the internal implemen-
tation details of functions may be changed at any time
without substantial operational effect as long as the mean-
ings of the appropriate functions are preserved. Nonetheless,
small changes in attribute representation may still influence
the encoding of the external message and cause trouble at the
system-level unless the attribute values are isolated using
specific access functions.

FIG. 10 shows the inheritance relationship between a
specialized object (or module) o, 1001 and a generic object
(or module) o, 1002 in a traditional object-oriented pro-
gramming environment. When the specialized object (or
module) o, 1001 is invoked by a message m; 1021 received
at its input port p,, 1011, it sends a message m, 1022 to the
input port p,, 1012 of the generic object (or module) o,
1002.

In an analogous manner, specialized modules can inherit
their behavior from other generic modules. As used herein,
a generic module is somewhat akin to a skeleton program
that is stored as a source document in a library. Such a
generic module may be specialized as needed in a specific
situation.

In a further embodiment of the present invention, many of
the problems associated with maintaining either a class
hierarchy or a composition hierarchy can be circumvented
by replacing class hierarchies and their inheritance relation-
ships as shown in FIG. 10 with composed objects (or
modules) that cooperate with each other by communications
as shown in FIG. 11.

The inheritance model of FIG. 10 should be contrasted to
the cooperative model of object (or module) interaction
illustrated in FIG. 11, wherein a specialized object (or
module) o, 1101 invokes an internal function (or method) .
1131 in object (or module) o, 1101 upon receiving a message
m, 1121 at its input port p,, 1111. The function f, 1131, in
turn, sends a message m, 1122 to the input port p,, 1112 of
the generic object (or module) o, 1102. Thus, in the coop-
erative model of object (or module) interaction, each spe-
cialized object (or module) can be viewed as an agent that
uses generic objects (or modules) as resources as needed. It
should be noted that multiple specialized objects (or
modules) can all refer to the same generic object (or
modules).

The cooperative model of object-interaction can be con-
joined with the output port concept of FIG. 8 as shown in
FIG. 12 although it should be emphasized that the two
concepts—of cooperation and of output ports—are not inter-
dependent. The cooperative model of object (or module)
interaction can also be used in conjunction with the central-
ized switch object (or module) of FIG. 6 or the agent object
(or module) of FIG. 7.

10

15

20

25

30

35

40

45

50

55

60

65

16

In practical terms the cooperative model of module inter-
action can be implemented either statically or dynamically.
The static implementation would be start with a design-
template that is specialized or modified to suit a particular
application. The dynamic implementation would be have
modules cooperate with each other by exchanging messages.

One of the advantages of using a composition structure is
that it can be changed dynamically at compile-time or even
at run-time—unlike a class hierarchy which needs to be
finalized during the design stage of a software system. In
addition to this significant benefit, another advantage of
using a composition structure is that it permits generic
modules to be used in more situations (by combining them)
than an inheritance-based structure. Furthermore, the use of
a composition structure also eliminates the need for multiple
levels of inheritance—the traditional technique for enhanc-
ing programming flexibility in the current object-oriented
programming paradigm.

Implementation of Composed Objects: At any composi-
tion level, modules of the software system may have spe-
cialized or distinguished roles such as controllers (also
known as control objects), resources (also called entity
objects) and interfaces (also known as interface objects).
Such a structure can be discerned in many software systems
and has also been proposed as part of an analysis method
where the underlying analysis model has been partitioned
into control objects, entity objects and interface objects, see,
e.g., I. JAacoBsoN, M. CHRISTERSON, P. JonssoN & G.

OVERGARD, OBJECT-ORIENTED SOFTWARE ENGINEERING: A
UsE CASE DRIVEN ApPROACH 132 (ISBN 0-201-54435-0,
Addison-Wesley 1992).

If we compare this to the agent concept described earlier
in conjunction with the discussion of FIG. 7, the present
technique divides the role of an agent into two parts: an
interface element and a control element. It has been found
that such a functional separation will be effective only if the
influence of any changes in program structure falls largely
upon the control element alone while the interface element
is influenced only occasionally and resource (or other data-
intensive) elements are influenced rarely, if at all.

There are several ways of implementing a module as a
composition of different types of objects or of simpler (or
lower-level) modules. Three such exemplary techniques are
shown in FIGS. 13-15. In the following discussion of the
module implementation techniques shown in FIGS. 13-15,
it should be emphasized that modules constitute a higher-
level description of a software system than the primitive
objects discussed earlier.

Just like primitive objects, modules too can have input
and output ports. As can be expected, the input and output
ports of a module are higher-level abstractions of the input
and output ports of a primitive-level object. Thus the control
objects o, 1311, o, 1411 and o_ 1511 shown in FIGS. 13-15
can also have behavior associated with it and is not restricted
to only switching functions as might be expected of a
primitive object. The modules in a software system play
various roles and constitute the building blocks of a software
system from a higher-level perspective. FIGS. 13—15 depict
three exemplary and alternative approaches to the design
and development of the architecture of a software system.
These approaches which are alternatives to the output port
concept of FIG. 8, are not limited to the object-oriented
paradigm, as roles can be assigned to the various modules at
both high-as well as low-levels.

FIG. 13 shows a module implemented as a composed
object 0 1300 where interface objects 0;; 1301 and o,, 1302
pass information to and from a control object o, 1311 and

US 6,389,483 B1

17

resource objects 0,; 1321 and o,, 1322. In such an
implementation, resources, servers and interface objects can
be directed to send all information directly to other con-
trolled objects via an object o 1300 that creates the overall
function as shown in FIG. 13.

FIG. 14 illustrates another implementation of a module as
a composed object o 1400 where all information passes
through a centralized control object o, 1411. In such an
implementation, information is permitted to pass to or from
the interface objects o;; 1401 and o,, 1402 to the resource
objects o,, 1421 or o,, 1422 only through the control object
o, 1411.

A third technique for implementing a module as a com-
posed multi-ported object o 1500 is depicted in FIG. 15. In
such an implementation of a module, the module may
comprise multiple input and output ports with separate
interface objects (or ports) for dealing with the flow of
control information and data. Thus, the interface object o,;
1501 is used for all incoming invocations to the module’s
control object o, 1511 while the interface object 0,5 1503 is
used for all invocations of external objects by the control
object o, 1511.

Similarly, the interface object 0,, 1502 is used by external
objects and modules to access the resource objects o,; 1521
and o,, 1522 and results are directed to their eventual
destination through the interface object o,, 1504. Those
skilled in the art will appreciate that it is also possible to
implement a module by combining control and interface
objects into an unitary object having a role similar to the
agent object discussed earlier in conjunction with FIG. 7.
System Modifiability:

Software systems often need to be modified. For example,
a generic object maybe customized in several different ways
for multiple software application programs, each of which
uses modified versions of the generic object. We will next
examine the modifiability of a software program at the
system level (i.e., at the level of software modules) rather
than at the module-level or at the object-level.

As can be seen from the discussion that follows, the
modifiability of computer software can be significantly
enhanced if software modules had input and output ports. As
used herein, a software module can be defined as a compo-
sition of one or more objects. Each software module can
have more than one input and output port. This is in contrast
to an object that is ipso facto permitted to have only one
input port and one output port.

The use of input and output ports for objects enhances the
modifiability of computer software by both making the
modification process systematic and by isolating and local-
izing the effect of changes to software. As would be appre-
ciated by those skilled in the art, different layers of decou-
pling can address different problems. An input port, for
example, decouples the external world from knowing about
the internal operation of a module (or object) while an output
port decouples the internal world from knowing about the
environment that is external to a module (or object).

It should be noted that the modifiability analysis that
follows does not concern the modifiability of the internal
elements or structure of an object such as attributes and
functions which can be modified by creating new module or
object classes. There are at least four principal techniques
for system modification: specialization, adaptation, exten-
sion and replacement. Each of these four techniques which
fall into the first class of solutions to the coupling problem
in the object orientation paradigm is considered in greater
detail further below.

Specialization: A general module o, 1601 can be modified
into a specialized module o, 1602 by restricting input and/or

15

20

25

30

35

40

45

50

55

60

65

18

output ports messages or attribute value domains. This
technique which has hitherto been used principally with
optimizing compilers is illustrated in FIG. 16 where one of
the input ports 1611 of the general module o, 1601 is bound
to a specific function £ 1621 to create the specialized module
0, 1602. Just like the input specialization depicted in FIG.
16, one can also have output specialization as shown in FIG.
17, where one of the output ports 1711 of the general module
0, 1701 is left unused to create the specialized object module
o, 1702.

Specialization of modules and objects can be imple-
mented by setting parameters during the design stage. It
would be appreciated by those skilled in the art that for
output specialization to be useful, it is necessary to first
create multi-purpose objects and then selectively activate
their functionality at compile-time or run-time. By using a
partial evaluation technique that is built into the compiler,
the modules and objects can thus be optimized for each
particular setting.

Adaptation: Another technique for system modification is
adaptation, which is defined herein as the mapping of one or
more input or output values to or from a generalized module
0, to create a specialized module o,. The adaptation tech-
nique has hitherto been used only with parameterized soft-
ware wherein software elements are designed as general
purpose modules that can handle a variety of inputs. Build-
ing in additional functionality over that required to mini-
mally perform the task at hand permits the software ele-
ments to be modified with relative ease to handle different
tasks than the ones initially contemplated. This technique
bears some similarities to the use of filters with data streams.
Like specialization, this modification technique also has two
flavors: input adaptation and output adaptation.

FIG. 18 illustrates the input adaptation modification tech-
nique where one of the inputs 1811 to a general module o,
1801 is modified by a transformation function f; 1821 to
create a modified module o,, 1802. Output adaptation is
depicted in FIG. 19 where one of the outputs 1911 of a
generalized module o, 1901 is modified by adaptation via a
function £, 1921 to create the modified module o,, 1902. As
with the specialization technique shown in FIGS. 16 and 17,
partial evaluation or program manipulation techniques can
be used here too to optimize the implementation of the
modified modules.

Extension: The third technique for system modification is
to extend the functionality of a general module o, 2002 or
2102 by coupling it to a new module called an extension
module o, 2003 or 2103. The extension technique for system
modification, like the specialization and adaptation tech-
niques described in FIGS. 16-19, also has two flavors:
parallel extension and coupled extension.

Parallel extension is illustrated in FIG. 20, where a
modified module o,, 2001 is created as a combination of an
exemplary extension module o, 2003 operating in parallel to
the preexisting general module o, 2002. FIG. 21 depicts the
coupled extension technique where an exemplary extension
module o, 2103 is coupled as an attachment to the existing
general module o, 2102 to create the modified module o,,
2101.

The extension technique of system modification is very
useful whenever one needs to extend a generic element that
is common to multiple product lines by combining them
with specific elements that are particular to one or more
individual product lines.

Replacement: The fourth technique for system modifica-
tion is replacement. The replacement technique of system
modification is most useful when a default module o, 2202

US 6,389,483 B1

19

is replaced with a specialized module o, 2203 that uses
either the same (or a slightly extended) interface as the
default module to create the modified module o,, 2201. This
technique is shown in FIG. 22.

Assumptions Underlying the Preferred Embodiment:

A telecommunication software system can be constructed
using software modules that implement the desired overall
system behavior by interworking between the modules
through the interchange of signals (i.e. by message passing
protocols) In this paradigm, each module responds to a
number of signals, and each signal causes it to perform some
action that is also a part of the overall behavior. Such actions
may result in the change of the state of the module (and thus
indirectly also a change in the state of the system) and may
optionally produce new signals that one or more modules
may respond to.

In the preferred embodiment of the present invention,
signals from one module to another are not sent directly, but
instead are sent through an advanced “output port”. Such an
output port permits each signal to be directed to different
implementations of the same recipient module. For termi-
nological simplicity, we will refer to two different imple-
mentations of a single recipient module as the “old” version
and the “new” version of the module. The technique of the
present invention, by using multiple references, provides a
mechanism for the relinking of software modules at run
time. The cut over from the old version to the new version
is typically performed in three phases: the first being an
initialization phase, the second being a relay phase and third
being a finalization phase.

The software in a telecommunications system is used to
access, supervise and control different kinds of resources in
order to set up call services and associated connections.
Information about such resources can be kept in data records
representing the state of the resources. In most cases there
are multiple resources of each particular type where the state
of each individual resource is represented as a data record of
the appropriate resource type. The set of such individual
resources can be treated as a pool of allocable resources.

The set of these individual resource data records and an
analogous set of data records representing common state and
control information about the set of individual resources
constitute the data that is operated upon by some program
code. This program code and the associated data relating to
the pool of allocable resources defines an important program
unit that is referred to hereinafter as a software program
module.

Services and associated connection resources are avail-
able to be utilized by invoking entities that request that type
of service. This task is carried out by Access Modules
(AMs), typically classified further into an common access
part and an individual access part. Different kinds of Access
Modules handle access attempts from different kinds of
sources or access channels. Each kind of Access Module
handles a set of individual access records that correspond to
a specific kind of access channel.

When an Access Module identifies a specific service need,
a corresponding Service Module (SM) is informed. The
common control part of such a service module allocates a
service individual to the particular service invocation. Since
a service module can have knowledge about the number of
critical resources needed and in use, it can also reject service
requests that it could not have rejected earlier in the access
phase.

To implement telecommunications services, it is usually
necessary to utilize and coordinate the services of a plurality
of resource individuals. These resource individuals are typi-

10

15

20

25

30

35

40

45

50

55

60

65

20

cally provided by several different Resource Modules
(RMs). A Service Individual (SI) represents the control state
and other information about a particular instance of a
service, for example, it may constitute a sub-record of the
access and resource individuals engaged in a particular
service invocation.

General Architectural Principles

Based on the above assumptions, it has been found that
the design goals can be achieved by following the guidelines
outlined below, some of which are mandatory. The following
guidelines have been found to be the most important:

Each new service need that is identified by an Access
Module has to be associated with a unique Session (or
Service) Identity (SI). The SI is used to relate all the
different Resource Individuals (RIs) that are used to
implement a particular service instance. To assist with
fault location purposes, the SI is logged in conjunction
with the signal data that is regarded as initiating an
access attempt.

Communication references from one module to another
are permitted only via an output port (containing two or
more symbolic module references or linking variables)
that is bound either at linking time or system configu-
ration time. FIG. 23 depicts the linkage of signals from
an Access Module to a Service Module that makes use
of a set of Resource Modules. This scheme makes it
possible for the linking to be changed when parts of the
software system are modified or replaced.

The basic purpose of an output port is to provide linking
information for each signal (of a set of signals that are
intended to be sent via the output port) from an origi-
nating module specifying the receiving module for that
signal, provided that the specified receiving module is
able to receive and respond appropriately to each of the
signals. An output port thus has some common
attributes and functional similarity to the Signal Send-
ing Table in an AXE-10 system since it provides an
array of linking records.

However, in some situations, we may also want to permit

a module to have more than one output port. In such a case
a module can (optionally) have a named output port for each
receiving module. Each named output port in this example
acts as an interface that provides an abstract view of a
receiving module.

In a similar fashion, each module may have more than one
input port that provides different abstract views of a module
as viewed by different user modules. It is thus possible to
define complementary pairs of input and output ports that
implement communication channels that restrict traffic flow
to just subsets of the total set of signals, that are sent from
or received by a module.

To make modifications more transparent to users of the
system and to minimize the effect of errors resulting
from modifications, the output port for each signal
should include place holders for both the old module
(OM) reference as well as the new module (NM)
reference. It should be noted that all communications
between modules are performed via signals that are
sent via the output port. This permits a signal to be
dynamically routed to any of a plurality of alternative
implementations of a receiving module.

A global Selection Variable (SV) is used to indicate that
for signals having their SI value lower than the SV value the
OM is to be used. For all other SI values, the NM is to be
used. This is illustrated in FIG. 24. However, certain specific
signals that are indicated by a unique bit setting are permit-
ted to be sent to both the old and to the new module. The

US 6,389,483 B1

21

value of the SV is used to determine and synchronize the
timing of the transition from an old software version to a
new version.

The linking of signals from an output port to the input
ports of two or more alternative implementations of a
module can be done at either the signal level or at the
port level. The former is referred to as signal linking
while the latter is referred to as port linking. Each of
these alternative implementations are discussed further
below. A high-level overview of the simplest imple-
mentation of the present invention can be obtained
from FIG. 25, which shows a module having one input
port and one output port.

Signal Linking: In the first case, referred to hereinafter as
signal linking, a signal from an output port of an originating
module is linked at the signal level to the input port of one
(or more) of two or more alternative implementations of a
module. In the case of signal linking, each module has only
one output port as shown in FIG. 26. The output port of each
module shown in FIG. 26 can be implemented as an array of
linking records, each containing two or more linking
variables, one for each signal to be sent via the output port.

In an implementation where there are only two possible
receiving modules, the linking variables (or place holders)
provide references to both the old module (OM) as well as
to the new module (NM). The selection between alternative
implementations of a module is performed through a linking
record using the signal name as a selection parameter.

As shown in FIG. 26, one linking record, containing two
or more linking variables, is needed for each signal that is to
be sent through the output port of an originating module. In
the basic case where there are just two alternative
implementations, the choice between the two alternatives is
guided by one or more Global Selection Variables that can
optionally be part of the linking record.

The program logic that implements the choice (as either
part of the output port or as program instructions that is
external to the output port) causes the selection of the old
module (OM) for signals related to service instances (SI)
whose (temporal) ordering number is smaller than the value
of a Global Selection Variable (SV).

Analogously, the program logic causes the selection of the
new module (MM) for all other values of the (temporal)
ordering numbers. The value of the SV is thus used to
determine the timing and synchronize the transition from an
old version of a software module to a new version of a
software module, as depicted in FIG. 27. FIG. 27 illustrates
the linking of a signal from a first module A (having only one
output port) to the input port of an old module B if the value
of SI associated with a signal is less than n, the value of the
global Selection Variable or to the input port of a new
module C in other instances.

In FIG. 28, a signal sn(i) is linked via an output port op,
or an associated Signal Sending Table (SST) comprising a
set of I linking records where there is one linking record for
each of the signals sn (i), each of the linking variables
containing two variables for each of the signals. Needless to
say, in a situation where there are more than two alternative
implementations of a receiving module, the Signal Sending
Table associated with the output port of an originating
module would have one linking variable for each of the
alternative implementations of the receiving module.

In the exemplary implementation shown in FIG. 28, m2
and m3 are two alternative receiving modules. The selection
variables contain pointers to the input port or an associated
Signal Distribution Table (SDT) of a selected receiving
module, optionally through a Global Signal Distribution

10

15

20

25

30

35

40

45

50

55

60

65

22

Table (GSDT) that is ordered by Global Signal Number
(GSN). In turn, each GSN in the GSDT provides a reference
to the Local Signal Number (LSN) of the appropriate
receiving module.

The process of sending a signal from one module to a
program in another module is illustrated in greater detail in
FIG. 29. The Signal Sending Function correlates a signal
reference sn to a specific receiving module mn and a Global
Signal Number gsn. The module number, mn of the receiv-
ing module and the Global Signal Number gsn is converted
into a Local Signal Number Isn using the Global Signal
Distribution Table (GSDT). The module number mn is used
to determine the base address ma of the target program in the
receiving module, and the base address da of the correspond-
ing data in the receiving module. The issues relating to the
data will not be discussed further.

The base address ma of the target program and the Local
Signal Number Isn are used to obtain the address ia of the
instructions to be executed in the receiving module. The
memory is partitioned into a program store (PS), a data store
(DS) and a reference store (RS). These different types of
memory spaces can either be physically distinct or be logical
partitions of the same physical memory.

Port Linking: In the second case, referred to hereinafter as
port linking, a signal from an output port of an originating
module is linked at the port level to the input port of one (or
more) of two or more alternative implementations of a
module. In the case of port linking, each module can have
more than one output port as shown in the exemplary
illustration of a module having two input ports and three
output ports depicted in FIG. 30. Each output port of an
originating module shown in FIG. 30 is associated with one
linking record that contains two or more linking variables,
one for each signal to be sent through that output port.

In an implementation where there are only two possible
receiving modules, the linking variables (or place holders)
provide references to both the old module (OM) as well as
to the new module (NM) as shown in FIG. 31. The selection
between alternative implementations of a module is per-
formed through a linking record using the destination port
name as a selection parameter.

In FIG. 31 illustrates that each input port has one linking
variable for each signal that it is permitted to accept while
each output port has two or more linking variables, one for
a first (typically, an old version of the) module and at least
a second for the second (typically, a new version of the)
module.

As shown in FIG. 31, one linking record, containing two
or more linking variables, is needed for each output port of
an originating module. In the basic case where there are just
two alternative implementations, the choice between the two
alternatives is guided by one or more Global Selection
Variables that can optionally be part of the linking record
associated with the output port in question.

The program logic that implements the choice (as either
part of the output port or as program instructions that is
external to the output port) causes the selection of the old
module (OM) for signals related to service instances (SI)
whose (temporal) ordering number is smaller than the value
of a Global Selection Variable (SV).

Analogously, the program logic causes the selection of the
new module (NM) for all other values of the (temporal)
ordering numbers. The value of the SV is thus used to
determine the timing and synchronize the transition from an
old version of a software module to a new version of a
software module, as depicted in FIG. 32. FIG. 32 illustrates
the linking of a signal from a first module A that is directed

US 6,389,483 B1

23

to a named output port to the corresponding input port of an
(old) module B if the value of SI associated with a signal is
less than n, the value of the global Selection Variable or to
the corresponding input port of a (new) module C in other
instances.

In FIG. 33, a signal sn(i) directed to a named output port
op(i) where the output port is implemented as an array of
linking records, each of the linking variable containing as
many linking records as there are alternative implementa-
tions of the receiving modules, is linked to the correspond-
ing input port of a selected module implementation.

In the exemplary implementation shown in FIG. 33, m2
and m3 are two alternative receiving modules. The selection
variables contain pointers to the corresponding input port or
an associated Signal Distribution Table (SDT) of a selected
receiving module, optionally using the Signal Number (SN)
of the corresponding input port of the receiving module.

The process of sending a signal from one module to a
program in another module is illustrated in greater detail in
FIG. 34. The Signal Sending Function receives a reference
to a specific input port ipn of a receiving module via an
output port opn of the originating module. The input port
number ipn is used to determine the base address ipa of the
corresponding input port in the receiving module, and the
base address da of the corresponding data in the receiving
module. The issues relating to the data will not be discussed
further.

The base address ma of the target program and the Signal
Number sn are used to obtain the address ia of the instruc-
tions to be executed in the receiving module. The memory
is partitioned into a program store (PS), a data store (DS) and
a reference store (RS). These different types of memory
spaces can either be physically distinct or be logical parti-
tions of the same physical memory.

In the case of port linking, the output port is treated as an
abstract interface to a receiving module and all signals sent
to a given output port are redirected to a new implementation
of the module via a new version of the port if the signal
contains an SI with selection properties as detailed earlier.
The selection mechanism is hence used to select the appro-
priate port or module while the linking variable correspond-
ing to each signal is used to select the destination for
directing that signal.

In an alternative implementation, one can map the signal
sent from a module directly (via job buffers and a reference
store) to the input port (or an associated Signal Distribution
Table) thus bypassing the part of the output port that
corresponds to a Signal Sending Table. This can decrease the
storage needs of the output ports and make the process of
dynamic linking faster. It can also reduce the need for a
GSDT since each module using multiple signals can now
have one output port for each possible receiving module for
a multiple signal, providing that proper port definitions of all
receiving modules are readily available at the time of
compilation of a module. This can permit an input port to be
extended still further even though a user of a port may not
use all the signals made available via the port. Another
benefit of such a solution is that several compatibility
problems can be solved since a new module can support
more than one version (or generation) of an interface by
providing a separate input port for each interface version
that is supported.

However, a GSDT can still be used in some cases since it
can simplify the programming, compilation and linking
processes by allowing a freer ordering of the signals that are
named in port declarations. The use of a GSDT can also
allow the implementation of the functions that are made

10

15

20

25

30

35

40

45

50

55

60

65

24

available via an output port to be split over several modules
and thus several input ports. The latter can however also be
achieved by using a combination of the signal linking and
port linking techniques described above.

In FIG. 35 signals from one or more access modules are
linked to one or more service module each of which invokes
(and thus sends signals to) one or more of a set of resource
modules. Each of the modules shown in FIG. 35 can have
varying numbers of input and output ports.

In order to limit the overhead associated with continually
comparing SI with SV, such comparisons are to be done
only in a specific configuration mode.

During the initialization phase, a NM (or more specifi-
cally the control part of an NM) is assigned all free
individuals controlled by the OM. During the relay
phase that follows initialization, all individuals seized
by the OM that become free are successively allocated
to the NM. The old individuals then send specified parts
of their data to the new individuals via an optional
Translation Function (TF).

The relay phase ends when all individuals controlled by
the OM have been released for reallocation. In the finaliza-
tion phase that follows the relay phase, the old module sends
specified parts of its common data via a TF to the NM.

If a fault occurs, all individuals and all resources associ-

ated with a specific SI can be identified and released.
The fault conditions and the state of the system fol-
lowing it can be traced from the log. In a special test
mode, the chain of events associated with a selected SI
can also be traced and logged.

It has been found that the best results are obtained by
combining the above guidelines with the following support-
ing rules that are more architecturally oriented:

The signal interfaces normally remain invariant. They
may be extended only under strictly controlled condi-
tions. When larger changes to the format or encoding of
a signal are needed, it is assumed that a receiving NM
remains prepared to handle the old signal format or
encoding until the sending module has been replaced
by a new one that uses the new format or encoding.

Modules are not given knowledge about other modules at
the time of their design. They are given the necessary
implementation (address) knowledge only at the time
of the system build, i.e. when a system is created by
linking different software module instances using the
output port concept. Such linking of the modules can be
done as early as the system design time, as late as
run-time (i.e., dynamically) or at any intermediate stage
such as at system configuration time or at load time,
depending on the needs of an application.

A general architecture principle would be to partition the
system into Access Modules (AMs), Service Modules
(SMs) and Resource Modules (RMs) each of which
manage access, service and resource individuals
respectively. Access modules are not provided knowl-
edge about Service Modules. However, they must be
provided or must have access to the mapping between
the identified service need (as given in an access signal)
and the Service Module that is responsible for provid-
ing the appropriate service.

Knowledge about how resource individuals from different
resource modules are combined to make a service is handled
by the Service Modules. It has been found desirable to keep
Resource Modules isolated from explicit knowledge about
other resource modules away. However, a resource indi-
vidual should have the ability to respond to or have a
reference to the service individual invoking it.

US 6,389,483 B1

25

The system should be partitioned in a way that permits
software to be modified during run time. It is addition-
ally desirable to be able to modify a Resource Module
independently from the modification of other Resource
Modules. If the order of modification begins with the
Resource Modules, proceeding to the Service Modules
and then finally to the Access Modules (which would
be the proper order for modification if the AMs invoked
one or more SMs and the SMs, in turn, invoked one or
more RMs), then a system implementation based on
these principles can permit run-time modifications to be
made with no disturbance other than a temporary loss
in performance and the concomitant management effort
at the next higher level of software.

Advantages of the Present Invention:

The indirect addressing of other modules via an output
port that permits reference to two or more modules, the use
of a selection variable to select between two or more
downstream modules, the time stamping (or test numbering)
of new access attempts or service attempts and the use of
some simple problem partitioning rules makes it possible to
use, modify, replace or reuse software modules in many
different combinations.

Although it is known to perform dynamic linking of
software components using “address servers” or “name
servers”, most implementations of dynamic linkers result in
a less selective global linking. The output port of the present
invention is a conceptual advance since it permits a subset
of the references to a module A to be selectively substituted
by references to module B. Under the traditional approach,
this selective substitution was not possible. Thus any sub-
stitution of module A by module B always had to be global.
Thus the system and method of the present invention allows
changes to software systems to be made more selectively.

More than one input port can typically be used to separate
the traffic interface of a module from its operational and
maintenance interfaces. A module may also be designed to
make accept some of its input signals at more than one input
port. A correct module shall be implemented as to provide
support for all signals defined by the union of all the signals
accepted via its input ports.

Extensions of the Basic Concept:

In operating system terminology, a module can be viewed
as a process that is implemented as a lightweight process
(sometimes called a trace or a thread) that manages a set of
individuals that are also implemented as lightweight pro-
cesses. In object-oriented terminology, the control part of a
module can be implemented as a kind of master object (e.g.,
a single instance of a unique class) that manages a set of
slave objects or individuals (e.g., instances of a slave class).
In such a context the output ports can be associated with
individual processes or objects rather than with modules.

The general architectural principle that all modules should
be independent of other modules may in some instances be
modified to permit higher-level modules to know about
more primitive modules. This hierarchical model permits
modules to provide resources that may in reality be com-
posed of resource individuals conjoined with more primitive
modules.

The output port concept of the present invention can also
be used in distributed and multi-processing environments.
All types of modules can be partitioned and their individuals
distributed over one or more processors. The output port
concept can be applied to distributed and multi-processing
environments by using either a segmented address space or
a unified address space used by multiple processors. The
system and method of the present invention can also be

10

15

20

25

30

35

40

45

50

55

60

65

26

extended to other closely-related application areas such as
software used in data communications networks and in
industrial process control systems.

As detailed in this patent application, one of the principal
impediments to achieving inter-operability, modifiability,
implementation-independence and the reuse of object-
oriented software modules is the excessive and/or strong
coupling between modules. As detailed above, the preferred
solution to this problem involves adding two or more output
ports to each module and further making this additional
output port part of the module-oriented paradigm. In an
alternative implementation, each module has a single output
port that permits signals or messages to be passed from the
module to one or more of a plurality of modules. Such
solutions provide the level of indirect addressing that is
necessary to manage the earlier-stated design requirements
of inter-operability, modifiability and implementation inde-
pendency.

Another solution to the decoupling problem includes
requiring each module to address other modules only
indirectly, such as by using specific interface elements.
Several variants of this technique have been detailed,
described and compared in co-pending U.S. patent applica-
tion Ser. No. 08/723,107. As noted above, each of these
techniques may be applied in different parts, or at different
levels, of a software system.

Although a preferred embodiment of the method and
apparatus of the present invention has been illustrated in the
accompanying drawings and described in the foregoing
detailed description, it is to be understood that the invention
is not limited to the embodiment(s) disclosed, but is capable
of numerous rearrangements, modifications and substitu-
tions without departing from the spirit of the invention as set
forth and defined by the following claims.

What is claimed is:

1. In a modular telecommunications software develop-
ment environment, a method for reducing the coupling
between the modules of a software application program
comprising the steps of:

creating a receiving program module, said receiving pro-

gram module existing in at least a first version and a
second version, said second version being a later ver-
sion with respect to said first version;

creating an originating program module having at least a

first output port and a second output port, wherein said
first output port comprises computer program instruc-
tions for communicating data from said originating
program module to said first version of said receiving
program module, and wherein said second output port
comprises computer program instructions for commu-
nicating data from said originating program module to
said second version of said receiving program module;
linking at least said originating program module and a
selected version of said receiving program module into
a software application program; and

wherein a particular signal having said data, a signal
reference, and a version value corresponds to both said
first output port and said second output port, said
computer program instructions using said version value
to determine whether to direct said data through said
first output port to said first version of said receiving
program module or through said second output port to
said second version of said receiving program module.

2. In a modular telecommunications software develop-
ment environment, a method for reducing the coupling
between the modules of a software application program
comprising the steps of:

US 6,389,483 B1

27

creating a plurality of software program modules, includ-
ing a first module having at least a first output port and
a second output port, said first module invoking a
second module during its operation, said second mod-
ule existing in at least a first version and a second
version, wherein said first output port comprises com-
puter program instructions for communicating data
from said first module to said first version of said
second module, and wherein said second output port
comprises computer program instructions for commu-
nicating data from said first module to said second
version of said second module;

linking a selected group of two or more modules into a
software application program;

providing at least one invocation of a nonlocal reference,
said at least one invocation of a nonlocal reference
associated with said data and a version value, said at
least one invocation of a nonlocal reference corre-
sponding to both said first output port and said second
output port;

executing said software application program by process-

ing said at least one invocation of a nonlocal reference
in said first module through said first output port of said
first module responsive to said version value pointing
to said first version of said second module and through
said second output port of said first module responsive
to said version value pointing to said second version of
said second module.

3. The method of claim 2 for reducing the coupling
between the modules of a software application program
wherein the communication of data between modules is
performed using a message-passing protocol.

4. The method of claim 2 for reducing the coupling
between the modules of a software application program
wherein said step of linking a selected group of two or more
modules into a software application program is performed at
system design time.

5. The method of claim 2 for reducing the coupling
between the modules of a software application program
wherein said step of linking a selected group of two or more
modules into a software application program is performed at
system configuration time.

6. The method of claim 2 for reducing the coupling
between the modules of a software application program
wherein said step of linking a selected group of two or more
modules into a software application program is performed
dynamically at run-time.

7. In a telecommunications environment, a method for
selective replacement, testing and activation of modular
software units in a telecommunications application program
comprising the steps of:

creating a plurality of software program modules, includ-
ing a first module having at least a first output port and
a second output port, said first module invoking a
second module during its operation, said second mod-
ule existing in at least a first version and a second
version, wherein said first output port comprises com-
puter program instructions for communicating data
from said first module to said first version of said
second module, and wherein said second output port
comprises computer program instructions for commu-
nicating data from said first module to said second
version of said second module;

grouping the modules of a modular telecommunications
application software into Access Modules, Service
Modules and Resource Modules, said Access Module

10

15

20

25

30

35

40

45

50

55

60

65

28

being responsible for managing a plurality of Access
Individuals, said Service Module being responsible for
managing a plurality of Service Individuals and said
Resource Module being responsible for managing a
plurality of Resource Individuals, each Access Indi-
vidual corresponding to a different access channel and
each Resource Individual associated with at least one
resource for providing a telecommunications service,
each Service Individual including control state and
other information related to a particular instance of a
telecommunications service, said other information
including at least one reference to an associated
Resource Individual;

assigning a unique Service Identity (SI) to each new
service need identified by an Access Module;

specifying a unique local or global selection variable (SV)
to indicate when the telecommunications application
program is to make the transition from using said first
version of said second module to using said second
version of said second module;

comparing said Service Identity with said local or global

selection variable; relinking the modules of the tele-
communications application program by replacing ref-
erences to said first version of said second module with
references to said second version of said second mod-
ule if the Service Identity is greater than or equal to said
local or global selection variable; and

executing said software application program.

8. The method of claim 7 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein said step of
comparing said Service Identity with said local or global
selection variable is performed only in a configuration
mode.

9. The method of claim 7 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program additionally compris-
ing a test mode wherein data is communicated from said first
module to both the first version as well as the second version
of said second module.

10. The method of claim 9 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein events asso-
ciated with a selected Service Identity are traced and logged
during said test mode.

11. The method of claim 7 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein the transition
from using said first version of said second module to using
said second version of said second module is performed in
phases, and comprises an initialization phase, a relay phase
and a finalization phase, with all unallocated resources
belonging to said first version of said second module being
transferred to said second version of said second module
during said initialization phase, with resources managed by
said first version of said second module being transferred to
said second version of said second module upon their release
during said relay phase, and with common data being
transferred from said first version of said second module to
said second version of said second module during said
finalization phase.

12. The method of claim 11 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein the transfer of
common data from said first version to said second version
during said finalization phase is performed using a transla-
tion function.

US 6,389,483 B1

29

13. In a modular telecommunications software develop-
ment environment, a system for reducing the coupling
between the modules of a software application program
comprising:
means for creating a receiving program module, said
receiving program module existing in at least a first
version and a second version, said second version being
a later version with respect to said first version;

means for creating an originating program module having
at least a first output port and a second output port,
wherein said first output port comprises computer pro-
gram instructions for communicating data from said
originating program module to said first version of said
receiving program module, and wherein said second
output port comprises computer program instructions
for communicating data from said originating program
module to said second version of said receiving pro-
gram module;

means for linking at least said originating program mod-

ule and a selected version of said receiving program
module into a software application program; and
wherein a particular signal having said data, a signal
reference, and a version value corresponds to both said
first output port and said second output port, said
computer program instructions using said version value
to determine whether to direct said data through said
first output port to said first version of said receiving
program module or through said second output port to
said second version of said receiving program module.

14. In a modular telecommunications software develop-
ment environment, a system for reducing the coupling
between the modules of a software application program
comprising:

means for creating a plurality of software program

modules, including a first module having at least a first
output port and a second output port, said first module
invoking a second module during its operation, said
second module existing in at least a first version and a
second version, wherein said first output port comprises
computer program instructions for communicating data
from said first module to said first version of said
second module, and wherein said second output port
comprises computer program instructions for commu-
nicating data from said first module to said second
version of said second module;

means for linking a selected group of two or more

modules into a software application program;

means for providing at least one invocation of a nonlocal

reference, said at least one invocation of a nonlocal
reference associated with said data and a version value,
said at least one invocation of a nonlocal reference
corresponding to both said first output port and said
second output port;

means for executing said software application program by

processing said at least one invocation of a nonlocal
reference in said first module through said first output
port of said first module responsive to said version
value pointing to said first version of said second
module and through said second output port of said first
module responsive to said version value pointing to
said second version of said second module.

15. The system of claim 14 for reducing the coupling
between the modules of a software application program
wherein the communication of data between modules is
performed using a message-passing protocol.

16. The system of claim 14 for reducing the coupling
between the modules of a software application program

10

15

20

25

30

35

40

45

50

55

60

30

wherein said means for linking a selected group of two or
more modules into a software application program addition-
ally comprises means for performing the linking at system
design time.
17. The system of claim 14 for reducing the coupling
between the modules of a software application program
wherein said means for linking a selected group of two or
more modules into a software application program addition-
ally comprises means for performing the linking at system
configuration time.
18. The system of claim 14 for reducing the coupling
between the modules of a software application program
wherein said means for linking a selected group of two or
more modules into a software application program addition-
ally comprises means for performing the linking dynami-
cally at run-time.
19. In a telecommunications environment, a system for
the selective replacement, testing and activation of modular
software units in a telecommunications application program
comprising:
means for creating a plurality of software program
modules, including a first module having at least a first
output port and a second output port, said first module
invoking a second module during its operation, said
second module existing in at least a first version and a
second version, wherein said first output port comprises
computer program instructions for communicating data
from said first module to said first version of said
second module, and wherein said second output port
comprises computer program instructions for commu-
nicating data from said first module to said second
version of said second module;
means for grouping the modules of a modular telecom-
munications application software into Access Modules,
Service Modules and Resource Modules, said Access
Module being responsible for managing a plurality of
Access Individuals, said Service Module being respon-
sible for managing a plurality of Service Individuals
and said Resource Module being responsible for man-
aging a plurality of Resource Individuals, each Access
Individual corresponding to a different access channel
and each Resource Individual associated with at least
one resource for providing a telecommunications
service, each Service Individual including control state
and other information related to a particular instance of
a telecommunications service, said other information
including at least one reference to an associated
Resource Individual;

means for assigning a unique Service Identity (SI) to each
new service need identified by an Access Module;

means for specifying a unique local or global selection
variable (SV) to indicate when the telecommunications
application program is to make the transition from
using said first version of said second module to using
said second version of said second module;

means for comparing said Service Identity with said local

or global selection variable;

means for relinking the modules of the telecommunica-

tions application program by replacing references to
said first version of said second module with references
to said second version of said second module if the
Service Identity is greater than or equal to said local or
global selection variable; and

means for executing said software application program.

20. The system of claim 19 for the selective replacement,
testing and activation of modular software units in a tele-

US 6,389,483 B1

31

communications application program wherein means for
comparing said Service Identity with said local or global
selection variable additionally comprises means for per-
forming the comparison only in a configuration mode.

21. The system of claim 19 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program additionally compris-
ing a test mode wherein data is communicated from said first
module to both the first version as well as the second version
of said second module.

22. The system of claim 21 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein events asso-
ciated with a selected Service Identity are traced and logged
during said test mode.

23. The system of claim 19 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein the transition
from using said first version of said second module to using
said second version of said second module is performed in

10

15

32

phases, and comprises an initialization phase, a relay phase
and a finalization phase, with all unallocated resources
belonging to said first version of said second module being
transferred to said second version of said second module
during said initialization phase, with resources managed by
said first version of said second module being transferred to
said second version of said second module upon their release
during said relay phase, and with common data being
transferred from said first version of said second module to
said second version of said second module during said
finalization phase.

24. The system of claim 23 for the selective replacement,
testing and activation of modular software units in a tele-
communications application program wherein means for the
transfer of common data from said first version to said
second version during said finalization phase additionally
comprises a translator.

