PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 9/44 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/27441

3 June 1999 (03.06.99)

(21) International Application Number: PCT/SE98/02073

(22) International Filing Date: 17 November 1998 (17.11.98)

(30) Priority Data:

08/975,539 20 November 1997 (20.11.97) US

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON
(publ) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventor: LARSSON, Tony, Ingemar; Gammelgardsvigen 52,
S-112 64 Stockholm (SE).

(74) Agents: ANDERSSON, Michael et al.; Albihns Patentbyrd
Stockholm AB, P.O. Box 5581, S-114 85 Stockholm (SE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, T, T™M, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: SYSTEM AND METHOD FOR REDUCING COUPLING BETWEEN MODULES IN A TELECOMMUNICATIONS

ENVIRONMENT

(57) Abstract

A technique for enhancing the modifiability and reuse
of telecommunications software systems is described. The
problem domain is first partitioned into tasks that are
assigned to distinct software program modules (901, 902).
In one embodiment, each of the software modules (901,
902) have multiple output ports (911, 912). Each output
port (911, 912) provides a mechanism to link the software
module (901, 902) to a specific version of a different
program module (903, 904). The multiple output ports
are used to selectively link the module to one of several
versions of a different program module. The linking is
performed as early as system design time or as late as
run—time, or at any intermediate time between the two. The
use of output ports makes software modules less dependent

Sv= sig(S! <n) E? .
A
lom=5 H
NM=C c
sigsizn]

on each other and also simplifies the "hot-swapping” or dynamic replacement of one module by another at run—time. In an alternative
embodiment, each of the software modules (800) has a unitary output port (802) where each output port comprises an array of linking
records. Each linking record has as many linking variables as there are versions of the receiving module.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CuU
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
Us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

20

WO 99/27441

PCT/SE98/02073

SYSTEM AND METHOD FOR REDUCING COUPLING
BETWEEN MODULES IN A TELECOMMUNICATIONS ENVIRONMENT

DESCRIPTION

1. Technical Field of the Invention

The invention relates to the field of computer programming languages, methodologies
and systems and more particularly, to a system and method for reducing the
interdependence between modular software units and facilitating the dynamic

replacement or hot-swapping of software modules at run-time in a real-time environment,

such as a telecommunications environment.

2. Description of Related Art

This patent application concerns the development and maintenance of large software
systems. It has been found desirable to have the ability to extend or modify a system so
as to cope with new or changed requirements. It has further been found desirable to find
techniques for making such changes both simply and selectively. Consequently, an ideal
software development environment should permit much of the software used in an old
system to be reused or be combined into a new system with only slight modifications.
In some application areas such as the telecommunications, it has also been found
desirable that system modifications be possible during run time, i.e., to be made
dynamically in a live system. Such dynamic system modification is sometimes referred
as “hot-swapping” -- a term commonly used in the field of computer hardware.

In order to limit the cascading effect of changes and to simplify the reuse and/or
modification of different parts of a large software system, it has become common to
partition the software into modules on the basis of some general design principles that
offer such benefits. It should be emphasized that ideally the different software modules
should be as independent of each other as possible so that a change in one module or the
replacement of another doee not result in or require changes to a great number of other
modules.

The decoupling of software modules (variously referred to in the art as parts,
components, objects or processes) is currently solved by a two-step process. First, by
requiring that an interface be declared that defines what a module type may provide to
other module types, and sometimes aiso defining the functions and data that a module

may use from other modules. Next, such interface information is used to statically link

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/27441 PCT/SE98/02073

the different modules into a system. This technique can prevent ordinary users of a
module from directly using knowledge about the internal implementation of a software
module in undesirable ways.

Class 5 telecommunications switches, such as AT&T’s SESS system or
Ericsson’s AXE-10 system, comprise complex telecommunication hardware and
software. The software architecture of Ericsson’s AXE-10 system requires each block
or module to have a Signal Sending Table (SST) to decouple it from other blocks or
modules. The basic purpose of the Signal Sending Table used in AXE-10 is to provide
linking information for signals sent from a module, specifying the receiving module the
signals are intended to be sent to. The signals sent are used to trigger the execution of
program code implementing the function associated with the signal but are typically not
directly linked to the entry position for such code. Instead the linking is done indirectly
via a Signal Distribution Table (SDT), for the common input port of the block. The entry
position in this SDT is called the Local Signal Number (LSN). One can use a linker to
find the LSN of a receiving block and provide this information to the SST of the sending
block.

The AXE-10 software architecture also includes support for a concept referred to
as “multiple signals” wherein the same signal is sent to multiple receiving blocks and
where the receiver that is to act on the signal is specified at runtime. In this case one
needs to find the smallest possible LSN that fits all receiving blocks (so as to avoid
wasting a large block of memory space for the SDT). This reduces to a difficult
optimization problem that should be avoided if possible.

As described in U.S. Patent, Serial No. 5,297,285 entitled SYSTEM FOR
DYNAMICALLY LINKING MODULAR PORTIONS OF COMPUTER SOFTWARE issued to
Anders ABRAHAMSSON & Lars HOLMQVIST, one way to improve this software
architecture is by complementing the Signal Sending Table and Signal Distribution Table
of the various different modules with a Global Signal Distribution Table (GSDT). This
simplifies the problems associated with the dynamic linking of software modules. In
such a case, the sending block can use a Global Signal Number (GSN) in conjunction
with the block number of the receiving block to find the appropriate LSN for that

recetving block. FIGURE 1 is a diagrammatic representation of the manner in which

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/27441 PCT/SE98/02073

modular software blocks are dynamically linked in accordance with the system of this
Ericsson patent.

The system and method disclosed in the above-identified Ericsson patent can be
extended or generalized as to cover the case where a symbolic block number is replaced
by an actual block number. More details about this technique can be obtained by
reference to this U.S. Patent, Serial No. 5,297,285.

Another U.S. Patent, Serial No. 5,339,430 entitled SYSTEM FOR DYNAMIC RUN-
TIME BINDING OF SOFTWARE MODULES IN A COMPUTER SYSTEM issued to Kenneth
LUNDIN & Ulf MARKSTROM describes a technique for object decoupling and
dynamic relinking of object- oriented software modules using abstract language-
independent interface specifications supported by compilation techniques and an address
trader (which is functionally equivalent to a global address table) that is built into the
kernel of the operating system.

Yet another U.S. Patent, Serial No. 5,410,703, entitled SYSTEM FOR CHANGING
SOFTWARE DURING COMPUTER OPERATION issued to Rickard NILSSON, Ulf
MARKSTROM & Leif KLOFVER describes the use of an addressing mechanism that
allows two references, one to an old module or object and the other to a new module or
object. This patent also describes a mechanism for relating and maintaining the state of
both an old as well as a new module during the updating phase in an object-oriented
system. FIGURE 2 is a flow chart illustrating the process of changing software during
run-time in accordance with the system of this Ericsson patent. However, it should be
noted that the term “module” as used in this reference appears to refer to a software
reload unit or replacement unit, and has thus a somewhat different meaning from the term
as used in the present patent application.

In theory, program entities invoking a module (which may be other modules) can
be restricted from straying bleyond a defined interface and from using knowledge about
the implementation of a module. However, different modules are often designed by
software engineers who have knowledge about the existence and internal architecture of
other related modules. They may use their information in ways that can make future

changes to the system complex.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/27441 PCT/SE98/02073

There is a fundamental conflict in designing modular software systems. On the
one hand, one would like to modularize the design of complex software systems by
partitioning the application domain and then using the set of software modules as
building blocks in crafting a solution. This requires that the various software modules
complement each other and work well in combination.

On the other hand, it is also desirable to provide each module with the least
amount of information about the internal implementational details of other modules.
While it is important to provide each module with abstract or essential knowledge about
other software modules in order to permit a module to make use of other modules, it is
also desirable to restrict access to detailed internal information about a module (e.g.,
address information regarding a specific instance of a module type) from other modules.

Current approaches for addressing this problem have principally concentrated on
techniques for encapsulating and protecting the module internals. However, these
approaches do not prevent inter-dependencies between modules from arising, which in
turn may make system changes difficult to implement without the modification of
multiple modules. Thus there is a need for techniques that can help decouple modules
by restricting use of knowledge about other modules other than that specified in an
interface definition. As noted earlier, this issue has been partially addressed by U.S.
Patents, Serial Nos. 5,297,285 & 5,339,430 identified above, albeit by techniques that are
different from those described and discussed herein.

There is also a need for software programming environments that support
dynamic modifications to or configuration changes of software systems using new or
modified modules while the system is running. As noted earlier, this issue has been
partially addressed in U.S. Patent, Serial No. 5,410,703 identified above, albeit again by
different methods than those described and discussed herein.

Since telecommunicétions systems are expected to not have any downtime, on-
going calls or other similar services need to be continuously kept operational. As a
result, the transition from an old software system to a new one cannot be instantaneous.
Consequently, linking mechanisms are needed to relate the software to both ongoing (or
old) calls as well as to new calls (or services that may be separated into different parts).

Furthermore, some information needs to be maintained and updated in both the old as

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/27441 PCT/SE98/02073

well as the new software parts during the relinking process. In some instances, it may be

desirable to divide this relinking process into multiple phases.

Traditional Telecommunication Software Development:

The traditional approach to telecommunication software development has been function-
oriented. The function-oriented analysis was (and is) based on a top-down (or black box)
view of system requirements. In real-time applications such as telecommunications, such
an analysis focuses on the functions or services provided to external clients and is
implemented as processes that are distributed over a telecommunications network.

In contrast, software engineers often focus on algorithm control structures, on data
structures and on data transformation methods. In the function-oriented approach, as
understood by skilled software engineers, data is usually considered as being global,
although in some instances data maybe encapsulated. Consequently every change in the
representational format of a datum immediately feeds back into the design of every
function that manipulates that datum.

This disadvantage can be ameliorated somewhat, by manipulating the data
indirectly, i.e., by manipulating the data symbolically or by using a specialized interface
function that serves as a filter. The use of such interface functions can also permit
modification of the representational format of the data and can be used to obtain an
abstract view of the data. Thus, choice of a proper software architecture model can avoid
or eliminate many of the problems that are often associated with the function-oriented
approach to software design.

The function-oriented approach is most commonly used nowadays to manipulate
information contained in databases. Each database management software program often
uses an abstract information model that isolates the data representation from its
manipulation. However, the internal structure of the database is not accessible to an end-
user who invokes standard functions to manipulate the information contained in the
database.

In contrast to the function-oriented approach which focuses on functions that
transform or manipulate external or global data, the object-oriented approach advocates

an inverted, more structure-oriented or implementation-oriented view of the world, that

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/27441 PCT/SE98/02073

focuses on objects that in turn are represented by data and applicable functions. This
approach, which is achieved by separating the function-naming parts of messages
(including their intended interpretation) from the implementations of the functions,
makes it possible to encapsulate and hide the data representations that are used in a
specific implementation. Thus, this approach requires both the message-names as well
as their meaning (which constitute the communications means between objects) to have
stable definitions.

The encapsulation of certain information in distinct system entities that
communicate amongst each other through signals has been a common approach amongst
many telecommunications software designers and programmers. This approach has been
used in order to handle system components in a coherent way that is independent of their
physical location and implementation. In this telecommunications software engineering
paradigm, a function at the system-level is implemented by the interworking of different
system components each containing some of the necessary parts of the function being
implemented, including the related data.

More details about the use of object-oriented approaches to developing software
for telecommunications applications can be found in U.S. Patent Application, Serial No.
08/723,107, entitled SYSTEM AND METHOD FOR REDUCING COUPLING IN AN OBJECT-
ORIENTED PROGRAMMING ENVIRONMENT.

The current object-oriented paradigm suffers from several problems. The first of
these is the likelihood of excessive coupling between objects. Such excessive coupling
often arises due to direct references by some objects to other serving objects via messages
as well as via class structures and/or object structures. Another problem with the present
paradigm is the lack of a deterministic solution for minimizing the amount of coupling
between objects and/or subsystems and the lack of a suitable decomposition technique
for the same purpose. N

It should be emphasized that much of the issues detailed below relative to the
problems of traditional (single-port) object-oriented software design are equally
applicable to modular software development. Thus, for example, many of the problems
reportedly associated with the use of present object-oriented software development

techniques may be attributable to the use of objects having only a single (input) port. As

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/27441 PCT/SE98/02073

detailed in U.S. Patent Application, Serial No. 08/723,107, entitled SYSTEM AND

METHOD FOR REDUCING COUPLING IN AN OBJECT-ORIENTED PROGRAMMING

ENVIRONMENT, the current object-oriented programming paradigm may be improved
upon by using objects that have both an input port as well as an output port. Similar
problem have also been observed with modular software development. Those of ordinary

skill in the art would understand that an “object” is a lower-level programming construct

than a “module.”

A central problem with the present object-oriented paradigm is that objects are
well-protected only from external misuse. Currently some measure of decoupling can
be achieved by using a message dispatch function that works as an input port for each
object as shown in FIGURE 3. As noted earlier, it may be possible to extend this
technique from the object-level to the module-level.

FIGURE 3 shows an object o, 300 having an input port P 301 and containing two
functions (or methods) f; 311 and £, 312 that modify, manipulate, or transform two
attribute values, v, 321 and v, 322. The role of the input port p, 301 is to decouple the
accesses (or invocations) of the functions f, 311 and f, 312 from their implementations
by using an externally- published function-name in the invoking message.

Thus the input port p, 301 serves as an attribute-value or function-name dispatch
function. However, this technique of decoupling does not prevent problems arising from
an object being dependent oﬁ other objects that it invokes. Thus, changes to object o,
300 may influence all other objects invoked by it since each object is often linked to
many other objects as shown in FIGURE 4.

FIGURE 4 illustrates the strong coupling between objects that arise from message
links between various objects. Four objects o, 401, o, 402, 0, 403 and o , 404 are
shown in FIGURE 4. Thus, the invocations of object o, 401 may cause its functions f;,
411, f,, 412 and f,, 413 to invoke in turn objects 0, 402, 0, 403 and o, 404 as shown in
the figure. Likewise, the invocation of object 0, 402 causes its functions f,; 421 and f;,
422 to invoke inter alia, object 0, 404. Likewise the invocation of object 0, 403 causes
its functions f;, 431, f;, 432 and f;, 433 to invoke inter alia, object o, 404.

Analogously, as shown in FIGURE 4, the invocation of object o, 404 causes its

functions f,) 441 and f,, 442 to invoke objects o, 402 and 0, 403. Thus changes in the

SUBSTITUTE SHEET (RULE 26)

10

15

20

30

WO 99/27441 PCT/SE98/02073

internal structure of object o, 401 will impact upon the operation of objects o, 402, g 403
and o, 404.

It has been found that strong coupling between modules lacking an output port
poses the same kind of problem. This illustrates an important structuring guideline that
can be used to decrease the coupling between objects/modules and improve the operation
of object-oriented or modular software programs, namely, that it is important to isolate
elements that change frequently from other elements that remain relatively stable over
long periods of time.

As can be seen from the above description, current attempts to standardize the
design and development of computer software have focused only on high-level
standardization efforts. However, in order to provide a design base that can respond to
market needs and economic constraints, software systems and their components need to
be flexible and reusable. Consequently, it has been found desirable that software
architectures support inter-operability, modifiability and implementation-independence
over long periods of time.

A good system architecture therefore needs to be based on a definitive conceptual
design that incorporates knowledge about the requirements that will be imposed upon the
system. Consequently, important elements of the architecture including paradigms,
interfaces, naming rules, messaging schemes, addressing schemes, key components,
structure, layers, function decomposition principles, design rules and support tools must
be selected in advance in such a manner as to maximize their consistency, simplicity,
uniformity and orthogonality.

Piece-meal improvement of an existing architecture cannot always suffice, as an
existing architecture may lack a consistent architecture or framework of system
interfaces; different applications might be incompatible; industry standards might not
have been adhered to; or the accumulated sum of new customer requirements might
necessitate the design and development of a new software architecture model.

In order to improve the architecture of a software system, one first needs to
understand the problems that arise from the present object-oriented paradigm.
Knowledge of the underiying problems can help make new designs more modifiable,

inter-operable and implementation-independent.

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 99/27441 PCT/SE98/02073

SUMMARY OF THE INVENTION

Therefore it is a primary object of the present invention to permit the decoupling amongst
the software modules in a telecommunications environment. It is a further object of the
present invention to permit the easy and dynamic updating of software modules in a
running system.

A system and method for reducing the coupling between modules of a software
application program in a modular telecommunications software programing environment
is described. The programming environment comprises a computer system containing
a processing unit, a memory unit, an /O (input/output) unit and an operating system.

In one aspect of the present invention, the technique starts with the creation of
functionally-distinct software program modules. When a software module 1s revised to
add new features, both versions of the software module are stored. Each of the modules
that use the services of other modules has at least two logical output ports, with each of
the two logical output ports serving to route data to the appropriate version of the other
module.

It should be noted that the set of two or more logical output ports may be
implemented as a single physical output port. Further, the various output ports could be
masked to appear as a unitary symbolic destination port to a system programmer. A
selected group of two or more modules is linked into a telecommunications application
program. The software application program is executed on the computer system, by
processing all invocations of non-local references in each module through the appropriate
output port of the module.

In another aspect of the present invention, a method for facilitating the reuse of
modular software units is described. The technique begins with the grouping of software
modules of the telecommunications application program into Access Modules, Service
Modules and Resource Modules. Access Modules are responsible for managing the
Access Individuals while Service Modules are responsible for managing the Service
Individuals. Likewise, the Resource Module is responsible for managing the Resource
Individuals.

A select group of modules that may be combined into a telecommunications

application program are next identified. Each module that invokes other modules is

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

10

provided with specific address information about the other modules no earlier than
system building time, creating corresponding module instances. The instances of the
selected group of modules are then lined into a telecommunications software application
program. The software application program is then executed on the computer system,
by processing all invocations of non-local references in a module through the Access
Module.

In yet another aspect of the present invention, a system and method for the
selective replacement, testing and activation of modular software units in a
telecommunications application program is described. The technique begins with the
creation of functionally-distinct software program modules. When a software module is
revised to add new features, both versions of the software module are stored. Each of'the
modules that use the services of other modules has at least two logical output ports, with
each output port serving to route data to the appropriate version of the other module.

The software modules of the telecommunications application program are then
grouped into Access Modules, Service Modules and Resource Modules. Access Modules
are responsible for managing the Access Individuals while Service Modules are
responsible for managing the Service Individuals. Likewise, the Resource Module is
responsible for managing the Resource Individuals.

Each new service need identified by an Access Module is assigned a unique
Service Identity (SI). A globally unique Selection Variable (SV) is then specified to
indicate when the telecommunications application program is to make the transition from
using the first version of the second module to using the second version of the second
module. The Service Identity is then compared with the Selection Variable. If the
Service Identity is greater than or equal to the Selection Variable, the modules of the

telecommunications application program are relinked by replacing references to the first

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

11

version of the second module with references to the second version of the second module.

The software application program is then executed on the computer system.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and system of the present invention may
be obtained by reference of the detailed description of the preferred embodiments that
follow, taken in conjunction with the accompanying drawings, wherein:

- FIGURE 1 is a diagrammatic representation of the manner in which modular
software blocks can be dynamically linked in accordance with the system as described
in a prior patent;

FIGURE 2 is a flow chart illustrating the process of changing software during
run-time in accordance with the system as described in a prior patent;

FIGURE 3 shows an exemplary embodiment of the traditional object-oriented
paradigm where each object has an input port that functions as a message dispatch
function;

FIGURE 4 illustrates the strong coupling between objects (or modules) that can
arise from the message links between various objects (or modules) in a system;

FIGURE 5 depicts the object-attribute-function space in three dimensions;

FIGURE 6 depicts one technique for reducing coupling between objects or
modules by routing all communications between peer objects through a centralized
switch object;

FIGURE 7 depicts an exemplary embodiment of the present invention where an
interface object or module coordinates communications between server objects or
modules;

FIGURE 8 shows the preferred embodiment of the present invention where every
object or module has both an input port as well as an output port;

FIGURE 9 is a higher-level illustration showing the interaction and operation of
the enhanced objects or modules depicted in FIGURE §;

FIGURE 10 shows a further embodiment to the present invention where a

specialized object or module inherits its behavior from a generic object or module;

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

12

| FIGURE 11 depicts an additional embodiment of the present invention where the
behavior of a specialized object or module is designed based upon cooperation with a
generic object or module;

FIGURE 12 depicts an additional embodiment of the present invention where the
behavior of a specialized object or module having an output port is designed based upon
cooperation with a generic object or module having an output port;

FIGURE 13 shows an exemplary implementation of a module as a composed
object where interface objects pass information to various contro] and resource objects;

FIGURE 14 shows an exemplary implementation of a module as a composed
object where all information processed through a unitary control object in the module;

FIGURE 15 shows an exemplary implementation of a module as a composed
object where separate interface objects or ports are used for dealing with the flow of
control information and for data;

FIGURE 16 illustrates the input specialization technique for modifying a software
system;

FIGURE 17 illustrates the output specialization technique for modifying a
software system,;

FIGURE 18 illustrates the input adaptation technique for modifying a software
system,;

FIGURE 19 illustrates the output adaptation technique for modifying a software
system;

FIGURE 20 illustrates the parallel extension technique for modification of a

software system;

FIGURE 21 illustrates the coupled extension technique for modification of a

software system,; ,

FIGURE 22 illustrates the replacement technique for modification of a software
system,

FIGURE 23 depicts the linkage of signals from an Access Module to a Service
Module that makes use of a set of Resource Modules;

FIGURE 24 illustrates the conditional linking of module A to either an old

module B or to a new module C based upon a Session Identity token;

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

13

FIGURE 25 shows a high-level overview of the simplest implementation of the
present invention wherein a module has one input port and one output port;

FIGURE 26 shows one embodiment of the output port of the present invention
wherein each module has only one output port that in turn is implemented as an array of
linking records;

FIGURE 27 illustrates the selective linking of a signal from a first module A to
the input port of one of two modules B and C based upon the value of a Service Instance
(SI) associated with the signal;

FIGURE 28 illustrates an exemplary signal being linked via an output port having
a two-variable linking record for each signal to an input port of 4 selected receiving
module;

FIGURE 29 shows the implementation details of a signal being sent from an
originating module to a program in a receiving module using the signal linking technique
of the present invention;

FIGURE 30 shows an alternative embodiment of the output port of the present
invention wherein an exemplary module is depicted as having two input ports and three
output ports;

FIGURE 31 shows each input port of a receiving module as having one linking
variable while each output port of an originating module has one linking variable for each
of the various receiving modules;

FIGURE 32 illustrates the selective linking of a signal from a first module A to
the input port of one of two modules B and C based upon the value of a Service Instance
(SI) associated with the signal;

FIGURE 33 illustrates an exemplary signal directed to a named output port,
where each output port is implemented as an array of two-variable linking records, being
linked to a corresponding iﬂput port of a selected receiving module;

FIGURE 34 shows the implementation details of a signal being sent from an

originating module to a program in a receiving module using the port linking technique

of the present invention; and

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

14

FIGURE 35 shows the interworking of access modules, service modules and

resource modules where the various modules have varying numbers of input and output
ports.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Module Orientation:

A software system comprises a set of modules that cooperate to achieve a common goal
or effect. In many instances, the modules of a software system are themselves systems.
Consequently, in describing or modeling a product, it has been found to be very useful
if one were able to switch between a module-oriented and a system-oriented perspective.

In a module-oriented analysis, a software-system is viewed top-down as being a
single module from a functional perspective and viewed bottom-up as being a set of
coupled (and sometimes physically distributed) modules. In the system-oriented
approach, each module may itself be a system at a lower-level. In such an analysis,
communication between modules is permitted only through predefined interfaces,
couplings, communications channels or ports.

The first task in a module-oriented analysis is therefore to identify the users of
each module in order to understand the greatest use of the module being analyzed and its
overall behavior. Additionally, one needs to determine whether clients invoking a
module need access ports to that moduie or to other modules or systems. The next task
in the analysis is to identify one or more possible implementations of each module and
to determine the individual behavior of each module and its coupling with other modules.
Such an analysis can be helpful in the design of entirely new systems, in the modification
of existing systems or permit the reuse of modules in a concurrent software engineering
environment.

In one embodiment of the invention described in U.S. Patent Application, Serial
No. 08/723,107 and shown in FIGURE 8 and the accompanying description, each object
1s encapsulated and is permitted to access or communicate with other objects only
through established input and output ports. Such a pure module-oriented software
engineering approach differs from the traditional object-oriented approach in having an

output port to regulate all outward-directed communications from an object. This

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

15

additional regulation and protection of outward-directed communications need not be
“hard-wired” into each object or module, but can instead be implemented using
additional software constructs as detailed elsewhere in this patent application.

Such an approach ameliorates some of the disadvantages of the existing object-
oriented approach by reducing the coupling between modules. The object-oriented
approach has been claimed to permit the design of “software ICs” (Integrated Circuits),
see, e.g., BRAD J. COX, OBJECT-ORIENTED PROGRAMMING: AN EVOLUTIONARY
APPROACH 70-71 (ISBN 0-201-10393-1, Addison-Wesley 1986). However, in practice
it has been found that any such software ICs realized using the existing object-oriented
software programming paradigm are too dependent upon other objects because it has
been tailored for a specific environment. Consequently, in order to obtain reusable
modules, one has to aim for more generic solutions to software design problems.

The decoupling of software modules or elements by the use of objects having
output ports is one of the basic building blocks of the module-oriented paradigm.
Additional details about the use of objects having an output port can be obtained by
reference to co-pending U.S. Patent Application, Serial No. 08/723,107. This technique
improves upon, and complements, the current object-oriented software programming
paradigm.

In the preferred embodiment of the invention shown in FIGURE 8 and the
accompanying description, the decoupling of objects and modules using output ports is
implemented by introducing specific decoupling objects or modules whose role is to act
as output ports or name switches. This is detailed elsewhere in the patent application.
When a decoupling object or module receives a message m, it redistributes the message
m to one or more coupled receivers.

In one implementation of the present invention, if we assume that there is one
output port for every abstract server object or module, the decoupling object triggers an

action of the form “on receiving any message m send message m to receiversr.,, r

clr tc2s - -

T, Where r,y, 1, . . . 1, are the names of receiving objects or modules for the specified
message. In another implementation of the present invention, a single output port is used,
whose behavior can be characterized as “on receiving a message m to an abstract receiver

r,,, send message m to receivers r,, I,

cn

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

16

However, it should be noted that just by using a decoupling object or module we
cannot solve all of the problems that plague the present object-oriented software
programming paradigm. For example, the use of decoupling objects or modules does not
prevent objects or modules from communicating directly with other objects or modules
even where such communications are prohibited by a software programming standard
such as the one proposed here.

If full module generality and reusability is to be achieved then the coupling
information must not be built in to the various modules but must instead be provided by
coupling ports either at the time of instantiation, or (dynamically) during active
invocation (or use) of the module.

Further, the partitioning of a software system into modules or subsystems needs
to be based upon a rigorous analysis of the static and dynamic couplings between the
modules involved, i.e., between the types and the instances of different variables. Other
important factors that may also influence the system partitioning include the physical and
performance-related locational and distribution constraints,

In order to have practical utility in real-time applications, the module-oriented
software programming technique described in the present patent application additionally
needs to permit each object or module to simultaneously observe and change the states
of other objects or modules. Further, each object or module must also include means for
specifying the synchronous activation of multiple objects or modules for the performance
of concurrent actions. Without such a capability, the act of observation of an object or
module may itself influence the states of other objects or modules -- making it impossible
to observe either a system’s state or its change of state.

It should be noted that there are no significant barriers in the object-oriented
paradigm that prevent or limit the inclusion of mechanisms to specify either real-time or
simulated real-time behavior. The addition of features for the specification of reactive
concurrent behavior can result in an upgraded object-oriented paradigm that better
supports the design of open systems.

However, it should also be noted that most object-oriented programming

ianguages and environmenss of the present day are sequential or single-threaded and thus

have no built-in support for handling real-time phenomena like concurrent actions or

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
17

processes. Consequently, operating system-level mechanisms are necessary for achieving

an equivalent effect.

Improving Object Decoupling:

U.S. Patent Application, Serial No. 08/723,107 describes several techniques to limit the
problems associated with the traditional object-oriented programming approach. The
solutions suggested in this patent application generally fall into two classes.

The first class of solutions can be characterized as methods that support the
definition of stable object- and function-partitions that result in the meaning and encoding
of messages remaining stable over relatively long periods of time. These methods
comprise various techniques for efficient partitioning of the problem space to improve
programming efficiency. The second class of solutions regulate the identification of
objects and communication between an object and other objects, by introducing a
mechanism that adds an extra level of indirectness to inter-object communications.
These implementational techniques are also useful for improving programming
efficiency.

Object Classification: It is very important to find stable object classes. Several methods
of analysis can be used for this purpose. As part of such an analysis, the attributes and
functions that characterize each object class and the relationships between various objects
need to be defined. In one embodiment of the invention described in U.S. Patent
Application, Serial No. 08/723,107, a hierarchical approach is used to limit the number
of objects in view at each level of the hierarchy.

Minimizing the Object-Attribute-Function Space: In another embodiment of the
invention described in U.S. Patent Application, Serial No. 08/723,107, which belongs to
the first class of solutions of improving object decoupling messages are used as interfaces
for functions and attributes. Each such interface consists of a function name and an
optional set of attribute value pairs. If an analysis of an application domain yields a
normal stable set of object classes that are characterized by a reasonably orthogonal set

of attributes and functions, it becomes possible to define both the meaning of a set of

messages as well as a message-encoding technique that is both stable and extensibie.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
18

It has been found in practice that an analysis of one or more object classes will
often show a set of closely related functions to have common or shared elements in their
meanings. Consequently, the set of messages used can be significantly smaller than the
total set of functions using the messages. A similar analysis technique can also be
applied to the attribute name space. Furthermore, it may also be possible to unify two
or more of the object classes using a similar ordering technique.

As shown in FIGURE 5 this minimization effort can be visualized as attempting

to reduce the volume of a three-dimensional space whose axes represent function names
501, object classes 502 and attribute names 503. Needless to say, the minimization effort
must still generate a feasible solution, i.e. the solution must lie within the minimized
object-attribute-function solution space. As would be appreciated by those skilled in the
art, the extension of this concept to the problems of modular software development
transforms to the two-dimensional problem of minimizing the area of the rectangle whose
sides are parallel to the function name and the attribute name axes. In the module-
oriented approach, the attributes would be the named data items.
Communication Using a Centralized Switch Object: In yet another embodiment of
the invention described in U.S. Patent Application, Serial No. 08/723,107, the desired
object- and module-decoupling is obtained by routing communications between peer
objects or modules (or between client objects/modules and server objects/modules)
through a specialized object or module that operates as a centralized switch. This
technique which falls into the second class of problem solutions is an alternative to the
preferred embodiment using objects having output ports that is described elsewhere in
that application. However it should be noted that it is possible to use the centralized
switch object concept in conjunction with the output port concept that is part of the
preferred embodiment of the invention described in the earlier-filed co-pending U.S.
Patent Application, Serial No. 08/723,107.

Such a centralized switch object or module can be implemented as a dispatch
function or as a name table. As shown in FIGURE 6, in such a software programming
environment, objects or modules o, 601, 0, 602 . . . 0, 609 communicate amongst each

other and with the external environment through the centralized switch object or module
o, 611.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

19

Communication and Coordination Using an Agent: In a further embodiment of the
invention described in U.S. Patent Application, Serial No. 08/723,107 that also falls into
the second class of problem solutions, the centralized switch object described above (or
module) can be further enhanced by using an agent object or module o, 701, also referred
to as an interface object or module, that provides the dispatch function and also acts as
a controller, command mediator and coordinator of a set of related SETVETS Or resources
o, 711, 0, 712, . . . 0., 719 as shown in FIGURE 7.

The agent object or module technique is also an alternative approach to the
preferred embodiment of U.S. Patent Application, Serial No. 08/723,107 that discloses
objects having output ports. However, as with the centralized switch object or module,
it should be noted that it is possible to use the agent object or module concept in
conjunction with the output port concept that is part of the preferred embodiment of the
present invention.

The principal difference between the basic central switch object (or module) o,
611 shown in FIGURE 6 and the agent object (or module) o, 701 shown in FIGURE 7
is that an agent object or module o, 701 can bring additional intelligence to the basic
access functions that are implemented in the agent object (or module) and can thus be
used to provide virtual views of each of the server objects or modules 711-719. It should
be noted that the functionality of the centralized switch object or module 611 and the
agent object or module 701 are somewhat complementary to each other and can thus be
combined in a further embodiment of the invention described in U.S. Patent Application,
Serial No. 08/723,107. |
Communication Using an Output Port: In the preferred embodiment of the invention
described in U.S. Patent Application, Serial No. 08/723,107, the coupling between
objects is reduced by introducing an enhanced object that possesses an output port in
addition to the input port that is part of the traditional object-oriented paradigm. Such
an output port (or output dispatch function) decoupies the direct access to serving objects
by functions or methods within the invoking object. As noted earlier, the output port
concept can be extended to cover both objects as well as software modules.

FIGURE 8 shows an object (or module) o, 800 having both an input port p; 801

and an output port p, 802. The input port p, 801 serves as an attribute value or function

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

20

name dispatcher while the output port p, 802 functions as an object-name (or module-
name) dispatcher. When the object (or module) 0, 800 shown in FIGURE 8§ receives a
message, its input port p, 801 will either invoke one or both of the two functions f, 811
and f, 812 that are defined within the object (or module), or it will directly access the
three attribute values v, 821, v, 822 or vy 823 that are defined within the object (or
module). The functions f, 811 and f, 812 may also access or modify the attribute values
v, 821, v, 822 or v, 823. However, neither of the functions f, 811 or f, 812 is permitted
to invoke an external function or object (or module) directly. Functions f, 811 and f, 812
may access or communicate with external functions, objects (or modules) only through
the output port p, 802.

In order to implement this technique, in one embodiment of the invention
described in U.S. Patent Application, Serial No. 08/723,107, every object (or module)
referred to by another object (or module) is handled as a variable and is replaced by
specific references to instantiated objects (or modules) either at compile-time or at run-
time by an instruction of the form:

object {receiver, = object,, . . ., receiver, = object, }
This expression symbolizes an object (or module) that is instantiated in an environment
where the variable symbol “receiver,” is to be interpreted as a reference to “object,”, etc.
The references to instantiated objects (or modules) may be bound at run-time rather than
at compile-time if the implementation language supports dynamic binding. Further, the
object/module name dispatch function may also be viewed and realized as a table.

Furthermore, if all references from an object (or module) to other serving objects
(or modules) are made indirectly using an “environment dictionary” or table (that can be
implemented and treated as an attribute of the object or module) that is evaluated at run-
time. The references can also be changed dynamically during the lifetime of the object
or module in question. ’

It should be emphasized that the input and output ports in objects or higher-level
modules can be integrated during implementation into a unitary functional entity.
Persons skilled in the art would appreciate that several techniques are available for
implementing an input port, e.g., using a dispatch function along with a table. Although

the present invention does not require the implementations of the input and the output

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
21

ports to be identical, or even similar, considerations of design simplicity may be best
served by using identical implementations for both input and output ports. Even greater
programming efficiency can be obtained by combining the input and output port
implementations into a single functional entity.

FIGURE 9 shows an application of the output port concept shown in FIGURE 8.
In such a case, the output ports in a network of objects (or modules) operate like a locally
distributed dispatch function as shown in FIGURE 9. The output ports p,, 911 and p,,
912 of objects (or modules) o, 901 and o0, 902 can thus invoke objects (or modules) o,
903 and o, 904 by sending messages m, 931, m, 932, m, 933 and m, 934 to the input
ports p;; 923 and p;, 924 of objects (or modules) o, 903 and 0,4 904 respectively.

The replacement of symbolic references (or the binding of variables) by
references to instantiated objects (or modules) at compile-time or at run-time, as
discussed above, aids in separating the task of creating a composition and coupling
structure for each composed object (using lower-level object instances) from the task of
describing the content and behavior of each individual module’s object class. Such a
separation is of great practical importance because it permits a truly modular architecture
and system framework to be provided from which specific variants can be created later
with very little additional effort.

It should be noted that the output port concept shown in FIGURE 8 bears some
similarities to the centralized approaches shown in FIGURES 6 and 7. However, the
output port concept can provide additional programming flexibility in some
circumstances. This can be best understood by considering an example. If two objects
(or modules) o, and o, both refer initially to an object (or module) o,, under the
centralized approaches shown in FIGURES 6 and 7, if object (or module) o, were to be
replaced by an object (or module) o 4» then objects (or modules) o, and o, would now
both point to the same object (or module) o 4+ In contrast, by using the output ports
shown in FIGURE 8§, a software developer obtains additional programming flexibility
because objects (or modules) o, and o0, can now point to different objects (or modules),
say, 05 or o, This ability to change object/module links and pointers selectively is very

useful in improving the modifiability of software programs.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

22

Replacing Inheritance with Composition: Analyses of the object-oriented paradigm
have traditionally focused on the hierarchies of object classes. It has been found in
practice that excessively deep inheritance structures can make it difficult to modify an
object-oriented software program. This is because inheritance relationships often create
undesirably strong structural coupling. F urthermore, a composition structure is almost
always needed, thus making it necessary to maintain a two-dimensional structure -- an
even more daunting task. The class hierarchy creates a dimension or view that focuses
on behavior and data similarities while the composition hierarchy creates a dimension or
view that focuses on composition and coupling structures.

It has been found that changes in the class dimensionality often influences objects
in their composition dimension. Thus, software systems become rigid and inflexible
because changes in a generic object that is the root of a class hierarchy influences all of
its ancestors and every system composition where it is used as a module, unless a
particular change is overwritten by local design rules in some of the ancestors of the
generic object.

It should be noted, however, that the existence of an effect does not automatically
imply that there will always be operational problems. For example, the internal
implementation details of functions may be changed at any time without substantial
operational effect as long as the meanings of the appropriate functions are preserved.
Nonetheless, small changes in attribute representation may still influence the encoding
of the external message and cause trouble at the system-level unless the attribute values
are isolated using specific access functions.

FIGURE 10 shows the inheritance relationship between a specialized object (or
module) o; 1001 and a generic object (or module) 0, 1002 in a traditional object-oriented
programming environment. When the specialized object (or module) o, 1001 1s invoked
by a message m, 1021 received at its mput port p;; 1011, it sends a message m, 1022 to
the input port p;, 1012 of the generic object (or module) o, 1002.

In an analogous manner, specialized modules can inherit their behavior from other
generic modules. As used herein, a generic module is somewhat akin to a skeleton
program that is stored as a source document in a library. Such a generic module may be

specialized as needed in a specific situation.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
23

In a further embodiment of the present invention, many of the problems
associated with maintaining either a class hierarchy or a composition hierarchy can be
circumvented by replacing class hierarchies and their inheritance relationships as shown
in FIGURE 10 with composed objects (or modules) that cooperate with each other by
communications as shown in FIGURE 11.

The inheritance model of FIGURE 10 should be contrasted to the cooperative
model of object (or module) interaction illustrated in FIGURE 11, wherein a specialized
object (or module) o, 1101 invokes an internal function (or method) f; 1131 in object (or
module) o, 1101 upon receiving a message m 1121 at its input port p 1111. The
function £; 1131, in turn, sends a message m, 1122 to the input port p;, 1112 of the
generic object (or module) 0, 1102. Thus, in the cooperative model of object (or module)
interaction, each specialized object (or module) can be viewed as an agent that uses
generic objects (or modules) as resources as needed. It should be noted that multiple
specialized objects (or modules) can all refer to the same generic object (or modules).

The cooperative model of object-interaction can be conjoined with the output port
concept of FIGURE 8 as shown in FIGURE 12 although it should be emphasized that the
two concepts -- of cooperation and of output ports -- are not interdependent. The
cooperative model of object (or module) interaction can also be used in conjunction with
the centralized switch object (or module) of FIGURE 6 or the agent object (or module)
of FIGURE 7.

In practical terms the cooperative model of module interaction can be
implemented either statically or dynamically. The static implementation would be start
with a design- template that is specialized or modified to suit a particular application.
The dynamic implementation would be have modules cooperate with each other by
exchanging messages.

One of the advantages of using a composition structure is that it can be changed
dynamically at compile-time or even at run-time -- unlike a class hierarchy which needs
to be finalized during the design stage of a software system. In addition to this
significant benefit, another advantage of using a composition structure is that it permits
generic modules to be used in more situations (by combining them) than an inheritance-

based structure. Furthermore, the use of a composition structure also eliminates the need

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

24

for multiple levels of inheritance -- the traditional technique for enhancing programming
flexibility in the current object-oriented pro gramming paradigm.

Implementation of Composed Objects: At any composition level, modules of the
software system may have specialized or distinguished roles such as controllers (also
known as control objects), resources (also called entity objects) and interfaces (also
known as interface objects). Such a structure can be discerned in many software systems
and has also been proposed as part of an analysis method where the underlying analysis
model has been partitioned into control objects, entity obj écts and interface objects, see,
e.g., I. JACOBSON, M. CHRISTERSON, P. JONSSON & G. OVERGARD, OBJECT-ORIENTED
SOFTWARE ENGINEERING: A USE CASE DRIVEN APPROACH 132 (ISBN 0-201-54435-0,
Addison-Wesley 1992).

If we compare this to the agent concept described earlier in conjunction with the
discussion of FIGURE 7, the present technique divides the role of an agent into two parts:
an interface element and a control element. It has been found that such a functional
separation will be effective only if the influence of any changes in program structure falls
largely upon the control element alone while the interface element is influenced only
occasionally and resource (or other data-intensive) elements are influenced rarely, if at
all.

There are several ways of implementing a module as a composition of different
types of objects or of simpler (or lower-level) modules. Three such exemplary
techniques are shown in FIGURES 13-15. In the following discussion of the module
implementation techniques shown in FIGURES 13-15, it should be emphasized that
modules constitute a higher-level description of a software system than the primitive
objects discussed earlier.

Just like primitive objects, modules too can have input and output ports. As can
be expected, the input and output ports of a module are higher-level abstractions of the
input and output ports of a primitive-level object. Thus the control objects o, 1311, o,
1411 and o, 1511 shown in FIGURES 13-15 can also have behavior associated with it
and 1s not restricted to only switching functions as might be expected of a primitive
object. The modules in a software system play various roles and constitute the building

blocks of a software system from a higher-level perspective. FIGURES 13-15 depict

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
25

three exemplary and alternative approaches to the design and development of the
architecture of a software system. These approaches which are alternatives to the output
port concept of FIGURE 8, are not limited to the object-oriented paradigm, as roles can
be assigned to the various modules at both high- as well as low-levels.

FIGURE 13 shows a module implemented as a composed object o 1300 where
interface objects o;; 1301 and o,, 1302 pass information to and from a control object o,
1311 and resource objects o, 1321 and o, 1322. In such an implementation, resources,
servers and interface objects can be directed to send all information directly to other
controlled objects via an object o 1300 that creates the overall function as shown in
FIGURE 13.

FIGURE 14 illustrates another implementation of a module as a composed object
0 1400 where all information passes through a centralized control object o, 1411. Insuch
an implementation, information is permitted to pass to or from the interface objects o;,

~ 1401 and o;, 1402 to the resource objects o,, 1421 or 0,, 1422 only through the control
object o, 1411.

A third technique for implementing a module as a composed multi-ported object
0 1500 is depicted in FIGURE 15. In such an implementation of a module, the module
may comprise multiple input and output ports with separate interface objects (or ports)
for dealing with the flow of control information and data. Thus, the interface object o;,
1501 is used for all incoming invocations to the module's control object o. 1511 while
the interface object o,; 1503 is used for all invocations of external objects by the control
object o, 1511.

Similarly, the interface object o, 1502 is used by external objects and modules
to access the resource objects o,, 1521 and o ,1522 and resuits are directed to their
eventual destination through the interface object o,, 1504. Those skilled in the art will
appreciate that it is also poSsibIe to implement a module by combining control and
interface objects into an unitary object having a role similar to the agent object discussed

earlier in conjunction with FIGURE 7.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

26

System Modifiability:

Software systems often need to be modified. For example, a generic object maybe
customized in several different ways for multiple software application programs, each of
which uses modified versions of the generic object. We will next examine the
modifiability of a software program at the system level (i.e., at the level of software
modules) rather than at the module-level or at the object-level.

As can be seen from the discussion that follows, the modifiability of computer
software can be significantly enhanced if software modules had input and output ports.
As used herein, a software module can be defined as a composition of one or more
objects. Each software module can have more than one input and output port. This is in
contrast to an object that is ipso facto permitted to have only one input port and one
output port.

The use of input and output ports for objects enhances the modifiability of
computer software by both making the modification process systematic and by isolating
and localizing the effect of changes to software. As would be appreciated by those
skilled in the art, different layers of decoupling can address different problems. An input
port, for example, decouples the external world from knowing about the internal
operation of a module (or object) while an output port decouples the internal world from
knowing about the environment that is external to a module (or object).

It should be noted that the modifiability analysis that follows does not concern
the modifiability of the internal elements or structure of an object such as attributes and
functions which can be modified by creating new module or object classes. There are at
least four principal techniques for system modification: specialization, adaptation,
extension and replacement. Each of these four techniques which fall into the first class
of solutions to the coupling problem in the object orientation paradigm is considered in
greater detail further below.

Specialization: A general module o, 1601 can be modified into a specialized module o,
1602 by restricting input and/or output ports messages or attribute value domains. This
technique which has hitherto been used principally with optimizing compilers is
illustrated in FIGURE 16 where one of the input ports 1611 of the general module o,
1601 1s bound to a specific function f 1621 to create the specialized module 0, 1602. Just

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

27

like the input specialization depicted in FIGURE 16, one can also have output
specialization as shown in FIGURE 17, where one of the output ports 1711 of the general
module o, 1701 is left unused to create the specialized object module o, 1702.

Specialization of modules and objects can be implemented by setting parameters
during the design stage. It would be appreciated by those skilled in the art that for output
specialization to be useful, it is necessary to first create multi-purpose objects and then
selectively activate their functionality at compile-time or run-time. By using a partial
evaluation technique that is built into the compiler, the modules and objects can thus be
optimized for each particular setting.
Adaptation: Another technique for system modification is adaptation, which is defined
herein as the mapping of one or more input or output values to or from a generalized
module o, to create a specialized module o,. The adaptation technique has hitherto been
used only with parameterized software wherein software elements are designed as general
purpose modules that can handle a variety of inputs. Building in additional functionality
over that required to minimally perform the task at hand permits the software elements
to be modified with relative ease to handle different tasks than the ones initially
contemplated. This technique bears some similarities to the use of filters with data
streams. Like specialization, this modification technique also has two flavors: input
adaptation and output adaptation.

FIGURE 18 illustrates the input adaptation modification technique where one of
the inputs 1811 to a general module 0, 1801 is modified by a transformation function f;
1821 to create a modified module o_, 1802. Output adaptation is depicted in FIGURE 19
where one of the outputs 1911 of a generalized module 0, 1901 is modified by adaptation
via a function f, 1921 to create the modified module 0, 1902. As with the specialization
technique shown in FIGURES 16 and 17, partial evaluation or program manipulation
techniques can be used here too to optimize the implementation of the modified modules.
Extension: The third technique for system modification is to extend the functionality of
a general module 0, 2002 or 2102 by coupling it to a new module called an extension
module o, 2003 or 2103. The extension technique for system modification, like the
specialization and adaptation techniques described in FIGURES 16-19, also has two

flavors: parallel extension and coupled extension.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

28

Parallel extension is illustrated in FIGURE 20, where a modified module 0., 2001
is created as a combination of an exemplary extension module 0, 2003 operating in
parallel to the preexisting general module 0, 2002. FIGURE 21 depicts the coupled
extension technique where an exemplary extension module 0. 2103 is coupled as an
attachment to the existing general module 0, 2102 to create the modified module o,
2101.

The extension technique of system modification is very useful whenever one
needs to extend a generic element that is common to multiple product lines by combining
them with specific elements that are particular to one or more individual product lines.
Replacement: The fourth technique for system modification is replacement. The
replacement technique of system modification is most usefill when a default module 04
2202 is replaced with a specialized module o, 2203 that uses either the same (or a slightly

extended) interface as the default module to create the modified module O 2201. This

technique is shown in FIGURE 22.

Assumptions Underlying the Preferred Embodiment:

A telecommunication software system can be constructed using software modules that
implement the desired overall system behavior by interworking between the modules
through the interchange of signals (i.e. by message passing protocols). In this paradigm,
each module responds to a number of signals, and each signal causes it to perform some
action that is also a part of the overall behavior. Such actions may result in the change
of the state of the module (and thus indirectly also a change in the state of the system)
and may optionally produce new signals that one or more modules may respond to.

In the preferred embodiment of the present invention, signals from one module
to another are not sent directly, but instead are sent through an advanced “output port”.
Such an output port permits eaéh signal to be directed to different implementations of the
same recipient module. For terminological simplicity, we will refer to two different
implementations of a single recipient module as the “old” version and the “new” version
of the module. The technique of the present invention, by using multiple references,
provides a mechanism for the relinking of software modules at run time. The cut over

from the old version to the new version is typically performed in three phases: the first

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

29

being an initialization phase, the second being a relay phase and third being a finalization
phase.

The software in a telecommunications system is used to access, supervise and
control different kinds of resources in order to set up call services and associated
connections. Information about such resources can be kept in data records representing
the state of the resources. In most cases there are multiple resources of each particular
type where the state of each individual resource is represented as a data record of the
appropriate resource type. The set of such individual resources can be treated as a pool
of allocable resources.

The set of these individual resource data records and an analogous set of data
records representing common state and control information about the set of individual
resources constitute the data that is operated upon by some program code. This program
code and the associated data relating to the pool of allocable resources defines an
important program unit that is referred to hereinafter as a software program module.

Services and associated connection resources are available to be utilized by
invoking entities that request that type of service. This task is carried out by Access
Modules (AMs), typically classified further into an common access part and an individual
access part. Different kinds of Access Modules handle access attempts from different
kinds of sources or access channels. Each kind of Access Module handles a set of
individual access records that correspond to a specific kind of access channel.

When an Access Module identifies a specific service need, a corresponding
Service Module (SM) is informed. The common control part of such a service module
allocates a service individual to the particular service invocation. Since a service module
can have knowledge about the number of critical resources needed and in use, it can also
reject service requests that it could not have rejected earlier in the access phase.

To implement telecommunications services, it is usually necessary to utilize and
coordinate the services of a plurality of resource individuals. These resource individuals
are typically provided by several different Resource Modules (RMs). A Service
Individual (SI) represents the control state and other information about a particular
instance of a service, for example, it may constitute a sub-record of the access and

resource individuals engaged in a particular service invocation.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

30

General Architectural Principles

Based on the above assumptions, it has been found that the design goals can be achieved

by following the guidelines outlined below, some of which are mandatory. The

following guidelines have been found to be the most important:

Each new service need that is identified by an Access Module has to be
associated with a unique Session (or Service) Identity (SI). The SI is used to
relate all the different Resource Individuals (RIs) that are used to implement a
particular service instance. To assist with fault location purposes, the ST is logged
in conjunction with the signal data that is regarded as initiating an access attempt.
Communication references from one module to another are permitted only via an
output port (containing two or more symbolic module references or linking
variables) that is bound either at linking time or system configuration time.
FIGURE 23 depicts the linkage of signals from an Access Module to a Service
Module that makes use of a set of Resource Modules. This scheme makes it
possible for the linking to be changed when parts of the software system are
modified or replaced.

The basic purpose of an output port is to provide linking information for each
signal (of a set of signals that are intended to be sent via the output port) from an
originating module specifying the receiving module for that signal, provided that
the specified receiving module is able to receive and respond appropriately to
each of the signals. An output port thus has some common attributes and
functional similarity to the Signal Sending Table in an AXE-10 system since it
provides an array of linking records.

However, in some situations, we may also want to permit a module to
have more than one output port. In such a case a module can (optionally) have
a named output port fdr each receiving module. Each named output port in this
example acts as an interface that provides an abstract view of a receiving module.

In a similar fashion, each module may have more than one input port that
provides different abstract views of a module as viewed by different user

modules. It is thus possible to define complementary pairs of input and output

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

31

ports that implement communication channels that restrict traffic flow to just
subsets of the total set of signals, that are sent from or received by a module.
To make modifications more transparent to users of the system and to minimize
the effect of errors resulting from modifications, the output port for each signal
should include place holders for both the old module (OM) reference as well as
the new module (NM) reference. It should be noted that all communications
between modules are performed via signals that are sent via the output port. This
permits a signal to be dynamically routed to any of a plurality of alternative
implementations of a receiving module.

A global Selection Variable (SV) is used to indicate that for signals
having their SI value lower than the SV value the OM is to be used. F or all other
SI values, the NM is to be used. This is illustrated in FIGURE 24. However,
certain specific signals that are indicated by a unique bit setting are permitted to
be sent to both the old and to the new module. The value of the SV is used to
determine and synchronize the timing of the transition from an old software
version to a new version.

The linking of signals from an output port to the input ports of two or more
alternative implementations of a module can be done at either the signal level or
at the port level. The former is referred to as signal linking while the latter is
referred to as port linking. Each of these alternative implementations are
discussed further below. A high-level overview of the simplest implementation
of the present invention can be obtained from FIGURE 25, which shows a
module having one input port and one output port.

Signal Linking: In the first case, referred to hereinafter as signal linking, a
signal from an output port of an on'ginating module is linked at the signal level
to the input port of one (or more) of two or more alternative implementations of
amodule. In the case of signal linking, each module has only one output port as
shown in FIGURE 26. The output port of each module shown in FIGURE 26 can
be implemented as an array of linking records, each containing two or more

linking variables, one for each signal to be sent via the output port.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

32

In an implementation where there are only two possible receiving
modules, the linking variables (or place holders) provide references to both the
old module (OM) as well as to the new module (NM). The selection between
alternative implementations of a module is performed through a linking record
using the signal name as a selection parameter.

As shown in FIGURE 26, one linking record, containing two or more
linking variables, is needed for each signal that is to be sent through the output
port of an originating module. In the basic case where there are just two
alternative implementations, the choice between the two alternatives is guided by
one or more Global Selection Variables that can optionally be part of the linking
record.

The program logic that implements the choice (as either part of the output
port or as program instructions that is external to the output port) causes the
selection of the old module (OM) for signals related to service instances (SD
whose (temporal) ordering number is smaller than the value of a Global Selection
Variable (SV).

Analogously, the program logic causes the selection of the new module
(NM) for all other values of the (temporal) ordering numbers. The value of the
SV is thus used to determine the timing and synchronize the transition from an
old version of a software module to a new version of a software module, as
depicted in FIGURE 27. FIGURE 27 illustrates the linking of a signal from a
first module A (having only one output port) to the input port of an old module
B if the value of SI associated with a signal is less than n, the value of the global
Selection Variable or to the input port of a new module C in other instances.

In FIGURE 28, a signal sn(i) is linked via an output port op, or an
associated Signal Sehding Table (SST) comprising a set of J linking records
where there is one linking record for each of the signals sn(i), each of the linking
variables containing two variables for each of the signals. Needless to say, in a
situation where there are more than two alternative implementations of a

receiving module, the Signal Sending Table associated with the output port of an

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

33

originating module would have one linking variable for each of the alternative
implementations of the receiving module.

In the exemplary implementation shown in FIGURE 28, m2 and m3 are
two alternative receiving modules. The selection variables contain pointers to the
input port or an associated Signal Distribution Table (SDT) of a selected
receiving module, optionally through a Global Signal Distribution Table (GSDT)
that is ordered by Global Signal Number (GSN). In turn, each GSN in the GSDT
provides a reference to the Local Signal Number (LSN) of the appropriate
receiving module.

The process of sending a signal from one module to a program in another
module is illustrated in greater detail in FIGURE 29. The Signal Sending
Function correlates a signal reference sn to a specific receiving module mn and
a Global Signal Number gsn. The module number, mn of the receiving module
and the Global Signal Number gs» is converted into a Local Signal Number Isn
using the Global Signal Distribution Table (GSDT). The module number mn is
used to determine the base address ma of the target program in the receiving
module, and the base address da of the corresponding data in the receiving
module. The issues relating to the data will not be discussed further.

The base address ma of the target program and the Local Signal Number
Isn are used to obtain the address ia of the instructions to be executed in the
receiving module. The memory is partitioned into a program store (PS), a data
store (DS) and a reference store (RS). These different types of memory spaces
can either be physically distinct or be logical partitions of the same physical
memory.

Port Linking: In the second case, referred to hereinafter as port linking, a signal
from an output port of an originating module is linked at the port level to the
input port of one (or more) of two or more alternative implementations of a
module. In the case of port linking, each module can have more than one output
port as shown in the exemplary illustration of a module having two input ports
and three output ports depicted in FIGURE 30. Each output port of an originating

module shown in FIGURE 30 is associated with one linking record that contains

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
34

two or more linking variables, one for each signal to be sent through that output
port.

In an implementation where there are only two possible receiving
modules, the linking variables (or place holders) provide references to both the
old module (OM) as well as to the new module (NM) as shown in FIGURE 31.
The selection between alternative implementations of a module is performed
through a linking record using the destination port name as a selection parameter.

In FIGURE 31 illustrates that each input port has one linking variable for
each signal that it is permitted to accept while each output port has two or more
linking variables, one for a first (typically, an old version of the) module and at
least a second for the second (typically, a new version of the) module.

As shown in FIGURE 31, one linking record, containing two or more
linking variables, is needed for each output port of an originating module. In the
basic case where there are just two alternative implementations, the choice
between the two alternatives is guided by one or more Global Selection Variables
that can optionally be part of the linking record associated with the output port
in question.

The program logic that implements the choice (as either part of the output
port or as program instructions that is external to the output port) causes the
selection of the old module (OM) for signals related to service instances (SI)
whose (temporal) ordering number is smaller than the value of a Global Selection
Variable (SV).

Analogously, the program logic causes the selection of the new module
(NM) for all other values of the (temporal) ordering numbers. The value of the
SV is thus used to determine the timing and synchronize the transition from an
old version of a software module to a new version of a software module, as
depicted in FIGURE 32. FIGURE 32 illustrates the linking of a signal from a
first module A that is directed to a named output port to the corresponding input
port of an (old) module B if the value of SI associated with a signal is less than
1, the value of the global Selection Variable or to the corresponding input port of

a (new) module C in other instances.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
35

In FIGURE 33, a signal sn(i) directed to a named output port op(i) where
the output port is implemented as an array of linking records, each of the linking
variable containing as many linking records as there are alternative
implementations of the receiving modules, is linked to the corresponding input
port of a selected module implementation.

In the exemplary implementation shown in FIGURE 33, m2 and m3 are
two alternative receiving modules. The selection variables contain pointers to the
corresponding input port or an associated Signal Distribution Table (SDT) of a
selected receiving module, optionally using the Signal Number (SN) of the
corresponding input port of the receiving module.

The process of sending a signal from one module to a program in another
module is illustrated in greater detail in FIGURE 34. The Signal Sending
Function receives a reference to a specific input port ipn of a receiving module
via an output port opn of the originating module. The input port number ipn is
used to determine the base address ipa of the corresponding input port in the
receiving module, and the base address da of the corresponding data in the
receiving module. The issues relating to the data will not be discussed further.

The base address ma of the target program and the Signal Number sn are
used to obtain the address ia of the instructions to be executed in the receiving
module. The memory is partitioned into a program store (PS), a data store (DS)
and a reference store (RS). These different types of memory spaces can either be
physically distinct or be logical partitions of the same physical memory.

In the case of port linking, the output port is treated as an abstract
interface to a receiving module and all signals sent to a given output port are
redirected to a new implementation of the module via a new version of the port
if the signal contains an SI with selection properties as detailed earlier. The
selection mechanism is hence used to select the appropriate port or module while
the linking variable corresponding to each signal is used to select the destination
for directing that signal.

In an alternative implementation, one can map the signal sent from a

module directly (via job buffers and a reference store) to the input port (or an

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

36

associated Signal Distribution Table) thus bypassing the part of the output port
that corresponds to a Signal Sending Table. This can decrease the storage needs
of the output ports and make the process of dynamic linking faster. It can also
reduce the need for a GSDT since each module using multiple signals can now
have one output port for each possible receiving module for a multiple signal,
providing that proper port definitions of all receiving modules are readily
available at the time of compilation of a module. This can permit an input port
to be extended still further even though a user of a port may not use all the signals
made available via the port. Another benefit of such a solution is that several
compatibility problems can be solved since a new module can support more than
one version (or generation) of an interface by providing a separate input port for
each interface version that is supported.

However, a GSDT can still be used in some cases since it can simplify the
programming, compilation and linking processes by allowing a freer ordering of
the signals that are named in port declarations. The use of a GSDT can also allow
the implementation of the functions that are made available via an output port to
be split over several modules and thus several input ports. The latter can however
also be achieved by using a combination of the signal linking and port linking
techniques described above.

In FIGURE 35 signals from one or more access modules are linked to one
or more service module each of which invokes (and thus sends signals to) one or
more of a set of resource modules. Each of the modules shown in FIGURE 35
can have varying numbers of input and output ports.

. In order to limit the overhead associated with continually comparing SI with SV,
such comparisons are to be done only in a specific configuration mode.

. During the initialization phase, a NM (or more specifically the control part of an
NM) is assigned all free individuals controlled by the OM. During the relay
phase that follows initialization, all individuals seized by the OM that become
free are successively allocated to the NM. The old individuals then send

specified parts of their data to the new individuals via an optional Translation
Function (TF).

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

37

The relay phase ends when all individuals controlled by the OM have
been released for reallocation. In the finalization phase that follows the relay
phase, the old module sends specified parts of its common data via a TF to the
If a fault occurs, all individuals and all resources associated with a specific SI can
be identified and released. The fault conditions and the state of the system
following it can be traced from the log. In a special test mode, the chain of events
associated with a selected SI can also be traced and logged.

It has been found that the best results are obtained by combining the above

guidelines with the following supporting rules that are more architecturally oriented:

The signal interfaces normally remain invariant. They may be extended only
under strictly controlled conditions. When larger changes to the format or
encoding of a signal are needed, it is assumed that a receiving NM remains
prepared to handle the old signal format or encoding until the sending module has
been replaced by a new one that uses the new format or encoding,.
Modules are not given knowledge about other modules at the time of their design.
They are given the necessary implementation (address) knowledge only at the
time of the system build, i.e. when a system is created by linking different
software module instances using the output port concept. Such linking of the
modules can be done as early as the system design time, as late as run-time (i.e.,
dynamically) or at any intermediate stage such as at system configuration time
or at load time, depending on the needs of an application.
A general architecture principle would be to partition the system into Access
Modules (AMs), Service Modules (SMs) and Resource Modules (RMs) each of
which manage access, service and resource individuals respectively. Access
modules are not provided knowledge about Service Modules. However, they
must be provided or must have access to the mapping between the identified
service need (as given in an access signal) and the Service Module that is
responsible for providing the appropriate service.

Knowledge about how resource individuals from different resource

modules are combined to make a service is handled by the Service Modules. It

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

38

has been found desirable to keep Resource Modules isolated from explicit
knowledge about other resource modules away. However, a resource individual
should have the ability to respond to or have a reference to the service individual
invoking it.

The system should be partitioned in a way that permits software to Be modified
during run time. It is additionally desirable to be able to modify a Resource
Module independently from the modification of other Resource Modules. If the
order of modification begins with the Resource Modules, proceeding to the
Service Modules and then finally to the Access Modules (which would be the
proper order for modification if the AMs invoked one or more SMs and the SMs,
in turn, invoked one or more RMs), then a system implementation based on these
principles can permit run-time modifications to be made with no disturbance

other than a temporary loss in performance and the concomitant management

effort at the next higher level of software.

Advantages of the Present Invention:
The indirect addressing of other modules via an output port that permits reference to two
or more modules, the use of a selection variable to select between two or more
downstream modules, the time stamping (or test numbering) of new access attempts or
service attempts and the use of some simple problem partitioning rules makes it possible
to use, modify, replace or reuse software modules in many different combinations.

Although it is known to perform dynamic linking of software components using
“address servers” or “name servers”, most implementations of dynamic linkers result in
a less selective global linking. The output port of the present invention is a conceptual
advance since it permits a subset of the references to a module A to be selectively
substituted by references to module B. Under the traditional approach, this selective
substitution was not possible. Thus any substitution of module A by module B always
had to be global. Thus the system and method of the present invention allows changes
to software systems to be made more selectively.

More than one input port can typically be used to separate the traffic interface of

a module from its operational and maintenance interfaces. A module may also be

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
39

designed to make accept some of its input signals at more than one input port. A correct

module shall be implemented as to provide support for all signals defined by the union

of all the signals accepted via its input ports.

Extensions of the Basic Concept:

In operating system terminology, a module can be viewed as a process that is
implemented as a lightweight process (sometimes called a trace or a thread) that manages
a set of individuals that are also implemented as lightweight processes. In object-oriented
terminology, the control part of a module can be implemented as a kind of master object
(e.g., a single instance of a unique class) that manages a set of slave objects or individuals
(e.g., instances of a slave class). In such a context the output ports can be associated with
individual processes or objects rather than with modules.

The general architectural principle that all modules should be independent of
other modules may in some instances be modified to permit higher-level modules to
know about more primitive modules. This hierarchical model permits modules to
provide resources that may in reality be composed of resource individuals conjoined with
more primitive modules.

The output port concept of the present invention can also be used in distributed
and multi-processing environments. All types of modules can be partitioned and their
individuals distributed over one or more processors. The output port concept can be
applied to distributed and multi-processing environments by using either a segmented
address space or a unified address space used by multiple processors. The system and
method of the present invention can also be extended to other closely-related application
areas such as software used in data communications networks and in industrial process-
control systems.

As detailed in this patent application, one of the principal impediments to
achieving inter-operability, modifiability, implementation-independence and the reuse
of object-oriented software modules is the excessive and/or strong coupling between
modules. As detailed above, the preferred solution to this problem involves adding two
or more output ports to each module and further making this additional output port part

of the module-oriented paradigm. In an alternative implementation, each module has a

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
40

single output port that permits signals or messages to be passed from the module to one
or more of a plurality of modules. Such solutions provide the level of indirect addressing
that is necessary to manage the earlier-stated design requirements of inter-operability,
modifiability and implementation-independency.

Another solution to the decoupling problem includes requiring each module to
address other modules only indirectly, such as by using specific interface elements.
Several variants of this technique have been detailed, described and compared in co-
pending U.S. Patent Application, Serial No. 08/723,107. As noted above, each of these
techniques may be applied in different parts, or at different levels, of a software system.

Although a preferred embodiment of the method and apparatus of the present
invention has been illustrated in the accompanying drawings and described in the
foregoing detailed description, it is to be understood that the invention is not limited to
the embodiment(s) disclosed, but is capable of numerous rearrangements, modifications

and substitutions without departing from the spirit of the invention as set forth and

defined by the following claims.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
41

WHAT IS CLAIMED IS:

1. In a modular telecommunications software development environment, a
method for reducing the coupling between the modules of a software application program
comprising the steps of:

creating an originating program module having at least a first output port
and a second output port, wherein said first output port comprises computer program
instructions for communicating data from said first module to said first version of said
second module, and wherein said second output port comprises computer program

instructions for communicating data from said first module to said second version of said

second module;

creating a receiving program module, said receiving program module

existing in at least a first version and a second version; and

linking at least said originating program module and a selected version of

said receiving program module into a software application program.

2. In a modular telecommunications software development environment, a
method for reducing the coupling between the modules of a software application program
comprising the steps of:

creating a plurality of software program modules, including a first module
having at least a first output port and a second output port, said first module invoking a
second module during its operation, said second module existing in at least a first version
and a second version, wherein said first output port comprises computer program
instructions for communicating data from said first module to said first version of said
second module, and wherein said second output port comprises computer program

instructions for communicating data from said first module to said second version of said

second module;

linking a selected group of two or more modules into a software

application program; and
executing said software application program on said computer system, by

processing ail invocations of nonlocal references in said first module through either said

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

42

first output port of said first module or through said second output port of said first

module, as appropriate.

3. The method of Claim 2 for reducing the coupling between the modules
of a software application program wherein the communication of data between modules

is performed using a message-passing protocol.

4, The method of Claim 2 for reducing the coupling between the modules
of a software application program wherein said step of linking a selected group of two

or more modules into a software application program is performed at system design time.

5. The method of Claim 2 for reducing the coupling between the modules
of a software application program wherein said step of linking a selected group of two

or more modules into a software application program is performed at system

configuration time.

6. The method of Claim 2 for reducing the coupling between the modules
of a software application program wherein said step of linking a selected group of two

or more modules into a software application program is performed dynamically at run-
time.

7. In a modular telecommunications software development environment, a
method for facilitating the reuse of modular software units comprising the steps of:
grouping the modules of a modular telecommunications application
software into Access Modules, Service Modules and Resource Modules, said Access
Module being responsible for managing a plurality of Access Individuals, said Service
Module being responsible for managing a plurality of Service Individuals and said
Resource Module being responsible for managing a plurality of Resource Individuals;

identifying a select group of modules that may be combined into a

telecommunications application program;

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
43

providing each module that invokes other modules with specific address
information about said other modules no earlier than system building time, and creating

a corresponding module instance;

linking instances of said select group of modules into a
telecommunications software application program; and

executing said software application program on said computer system, by

processing all invocations of nonlocal references in a module through said Access
Module.

8. In a telecommunications environment, a method for selective replacement,
testing and activation of modular software units in a telecommunications application
program comprising the steps of:

creating a plurality of software program modules, including a first module
having at least a first output port and a second output ports, said first module invoking
a second module during its operation, said second module existing in at least a first
version and a second version, wherein said first output port comprises computer program
Instructions for communicating data from said first module to said first version of said
second module, and wherein said second output port comprises computer program
instructions for communicating data from said first module to said second version of said
second module;

grouping the modules of a modular telecommunications application
software into Access Modules, Service Modules and Resource Modules, said Access
Module being responsible for managing a plurality of Access Individuals, said Service
Module being responsible for managing a plurality of Service Individuals and said
Resource Module being responsible for managing a plurality of Resource Individuals;

assigning a Linique Service Identity (SI) to each new service need
identified by an Access Module;

specifying a unique local or global selection variable (SV) to indicate
when the telecommunications application program is to make the transition from using

said first version of said second module to using said second version of said second

module;

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

44

comparing said Service Identity with said local or global selection
variable;

relinking the modules of the telecommunications application program by
replacing references to said first version of said second module with references to said
second version of said second module if the Service Identity is greater than or equal to

said local or global selection variable; and

executing said software application program.

9. The method of Claim 8 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
wherein said step of comparing said Service Identity with said local or global selection

variable is performed only in a configuration mode.

10. The method of Claim 8 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
additionally comprising a test mode wherein data is communicated from said first module

to both the first version as well as the second version of said second module.

11. The method of Claim 10 for the selective replacement, testing and
activation of modular software units in a telecommunications application program

wherein events associated with a selected Service Identity are traced and logged during

said test mode.

12. The method of Claim 8 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
wherein the transition from uSing said first version of said second module to using said
second version of said second module is performed in phases, and comprises an
initialization phase, a relay phase and a finalization phase, with all unallocated resources
belonging to the first version being transferred to the second version during said

initialization phase, with resources managed by the first version being transferred to the

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
45

new version upon their release during said relay phase, and with common data being

transferred from said first version to said second version during said finalization phase.

13. The method of Claim 12 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
wherein the transfer of common data from said first version to said second version during

said finalization phase is performed using a translation function.

14, In amodular telecommunications software development environment, a
method for reducing the coupling between the modules of a software application program
comprising the steps of:

creating a plurality of software program modules, each of said software
program modules, including a first module having an output port and a second module
that is invoked by said first module during its operation, said second module existing in
at least a first version and a second version;

maintaining a database of local or global selection variables correlating
each invocation of said second module with the appropriate version of said second
module;

linking a selected group of two or more modules into a software
application program; and

executing said software application program on said computer system, by
processing all invocations of nonlocal references in said first module through said first
version of said second module if said local or global selection variable database points
to said first version and through said second version of said second module if said local

or global selection variable database entry points to said second version.

15. In a modular telecommunications software development environment, a
system for reducing the coupling between the modules of a software application program
comprising:

means for creating an originating program module having at least a first

output port and a second output port, wherein said first output port comprises computer

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
46

program instructions for communicating data from said first module to said first version
of said second module, and wherein said second output port comprises computer program

instructions for communicating data from said first module to said second version of said
second module;

means for creating a receiving program module, said receiving program
module existing in at least a first version and a second version; and
means for linking at least said originating program module and a selected

version of said receiving program module into a software application program.

16. Inamodular telecommunications software development environment, a
system for reducing the coupling between the modules of a software application program
comprising:

means for creating a plurality of software program modules, including a
first module having at least a first output port and a second output port, said first module
invoking a second module during its operation, said second module existing in at least
a first version and a second version, wherein said first output port comprises computer
program instructions for communicating data from said first module to said first version
of said second module, and wherein said second output port comprises computer program.
instructions for communicating data from said first module to said second version of said
second module;

means for linking a selected group of two or more modules into a software
application program; and

means for executing said software application program on said computer
system, by processing all invocations of nonlocal references in said first module through

either said first output port of said first module or through said second output port of said

first module, as appropriate.

17. The system of Claim 16 for reducing the coupling between the modules

of a software application program wherein the communication of data between modules

is performed using a message-passing protocol.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

47

18. The system of Claim 16 for reducing the coupling between the modules
of a software application program wherein said means for linking a selected group of two

or more modules into a software application program additionally comprises means for

performing the linking at system design time.

19. The system of Claim 16 for reducing the coupling between the modules
of a software application program wherein said means for linking a selected group of two

or more modules into a software application program additionally comprises means for

performing the linking at system configuration time.

20. The system of Claim 16 for reducing the coupling between the modules
of a software application program wherein said means for linking a selected group of two

or more modules into a software application program additionally comprises means for

performing the linking dynamically at run-time.

21. Inamodular telecommunications software development environment, a

system for facilitating the reuse of modular software units comprising:
means for grouping the modules of a modular telecommunications
application software into Access Modules, Service Modules and Resource Modules, said
Access Module being responsible for managing a plurality of Access Individuals, said
Service Module being responsible for managing a plurality of Service Individuals and
said Resource Module being responsible for managing a plurality of Resource

Individuals;

means for identifying a select group of modules that may be combined

into a telecommunications application program;

means for provitfing each module that invokes other modules with specific
address information about said other modules no earlier than system building time, and
creating a corresponding module instance;

means for linking instances of said select group of modules into a

telecommunications software application program; and

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

48

means for executing said software application program on said computer

system, by processing all invocations of nonlocal references in a module through said
Access Module.

22. In a telecommunications environment, a system for the selective
replacement, testing and activation of modular software units in a telecommunications
application program comprising: 7

means for creating a plurality of software program modules, including a
first module having at least a first output port and a second output ports, said first module
invoking a second module during its operation, said second module existing in at least
a first version and a second version, wherein said first output port comprises computer
program instructions for communicating data from said first module to said first version
of said second module, and wherein said second output port comprises computer program
instructions for communicating data from said first module to said second version of said
second module;

means for grouping the modules of a modular telecommunications
application software into Access Modules, Service Modules and Resource Modules, said
Access Module being responsible for managing a plurality of Access Individuals, said
Service Module being responsible for managing a plurality of Service Individuals and
said Resource Module being responsible for managing a plurality of Resource

Individuals;

means for assigning a unique Service Identity (SI) to each new service

need identified by an Access Module;

means for specifying a unique local or global selection variable (SV) to
indicate when the telecommunications application program is to make the transition from
using said first version of said s?:cond module to using said second version of said second

module;

means for comparing said Service Identity with said local or global

selection variable;

means for relinking the modules of the telecommunications application

program by replacing references to said first version of said second module with

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
49

references to said second version of said second module if the Service Identity is greater

than or equal to said local or global selection variable; and

means for executing said software application program.

23. The system of Claim 22 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
wherein means for comparing said Service Identity with said local or global selection

variable additionally comprises means for performing the comparison only in a

configuration mode.

24. The system of Claim 22 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
additionally comprising a test mode wherein data is communicated from said first module

to both the first version as well as the second version of said second module.

25. The system of Claim 24 for the selective replacement, testing and
activation of modular software units in a telecommunications application program

wherein events associated with a selected Service Identity are traced and logged during

said test mode.

26. The system of Claim 22 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
wherein the transition from using said first version of said second module to using said
second version of said second module is performed in phases, and comprises an
initialization phase, a relay phase and a finalization phase, with all unallocated resources
belonging to the first version being transferred to the second version during said
initialization phase, with resources managed by the first version being transferred to the
new version upon their release during said relay phase, and with common data being

transferred from said first version to said second version during said finalization phase.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

50

27. The system of Claim 26 for the selective replacement, testing and
activation of modular software units in a telecommunications application program
wherein means for the transfer of common data from said first version to said second

version during said finalization phase additionally comprises a translator.

28. Inamodular telecommunications software development environment, a
system for reducing the coupling between the modules of a software application program
comprising:

means for creating a plurality of software program modules, each of said
software program modules, including a first module having an output port and a second
module that is invoked by said first module during its operation, said second module
existing in at least a first version and a second version;

means for maintaining a database of local or global selection variables
correlating each invocation of said second module with the appropriate version of said
second module;

means for linking a selected group of two or more modules into a software
application program; and

means for executing said software application program on said computer
system, by processiﬁg all invocations of nonlocal references in said first module through
said first version of said second module if said local or global selection variable database
points to said first version and through said second version of said second module if said

local or global selection variable database entry points to said second version.

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 » PCT/SE98/02073

1 /27
51y BLOCK A 66~ BLockp /f
\ Blocih ¥
353 ™ A 63 SDT
PhA — PSAg
SST| GSN FOR S 1 fme—d SSP
54-
i 62
\-52 —
PROGRAM | genp s, RECEIVE
CODE TOBNR S
GTSA
[SN FOR S;
G\ FOR INB, BNR
T D56
55 64|
B GSDT

SUBSTITUTE SHEET (RULE 26)

WO 99/27441
2 /27

101-_{LOAD NEW VERSION

F l G 2 OF SOFTWARE

\
COPY DATA WITH

102 CHANGE AND LINK

TO NEW SOFTWARE

!
RUN TEST CALL WITH
103~_| NEW SOFTWARE AND
REGULAR TRAFFIC
WITH OLD SOFTWARE
AND OLD DATA

Rh
107-""] WITH NEW SOFTWARE

108

DOES NE
SOFTWARE
WORK ?

YES

PCT/SE98/02073

!
RUN ALL NEW CALLS

109 ~"| WITH NEW SOFTWARE
AND DATA

110

105 ~ DOES NEW
? ‘ SOFTWARE
WORK?
REMOVE NEW
SOFTWARE AND 114
NEW DATA

ARE
OLD CALLS

NO

HAS
TIME LIMIT
EXPIRED ?

TERMINATE OR
TRANSFER
REMAINING CALLS

COMPLETE ?

]
(END)
106

SUBSTITUTE SHEET (RULE 26)

f1 12
REMOVE OLD
SOFTWARE AND
OLD DATA

PCT/SE98/02073

WO 99/27441

27

12g LA enjea ainqune

oog o

ZZ€ CA enjea anquile
LO€ !d yi0d Indyj

ZL€ €3 uonouny

€9l

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

206G sassejd uom.EoV

£0g saweu alnquily

I\< 10s

saweu uopoung

G'DId

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

SUBSTITUTE SHEET (RULE 26)

WO 99/27441

0g1 711

Servers

FIG.7

Agent

~ Object o, 701

PCT/SE98/02073

052 712
Ogn 719

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

208

£z8 €A

0d yi04 1ndingQ

128 tA

oog lo

Log d 104 Induj

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

10

L0050 108lqQ pazyeisads

c00l bo 198lqQ ou18UBY)

zzoLlw

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

11

LELL S}

Lol LSo 108lqQ pazyerdads

zoLL Po 100fq0 ouauap

L 1Ol

LLLL Sid

1zitlw

zi111 B'd

ZZLLCuw

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

12

Loz L So 108lqQ pezieroads

gLzl Sod
RAARLT

zezLlu

gzzLéw

L1z1 Bod
zoz1 Bo 199lq0 ousuap

¢l Ol

LizL Sid

z1z1 Bd

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
13/ 27

r" o 1300

o2 1322

FIG.13
0.1311
)

op1 1321

0j1 1301

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073

14 /27

(— o 1400

N
KN
L~
N
t
(@)
-
<
<t < 4
—
[&]
"_. o
O 'y
R g
LL. -
" —
Daw
o

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

15

| 00slL © IL

L1512

GL Ol

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

16

LO9L B 309[qQ jeiauan

\

2091 So 199[qQ paziyedads

2

)

91°OI4

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

17

Loz1 Bo 100lqQ jessuen Z0L1 So 198lqo pezievads

=

L1914

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

18

LO81L By 109[qQ jesauan

\

zogL "o 108lq0 paypoy

)

)

LZsl

LL8L

81 Old

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

19

LO6L bo 108lqQ |e18uaD)

\

zoe6L Yo 109[q0 payipon

)

)

Lc6l

LL6lL

61 Ol

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

20

€002 20 190[qQ uoisuaixa /

- Looz "o 108lq0 peypony

=

L (
),

2002 bo 100lqQ jesauan L

YA =

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

21

€0Lg 20 100lqQ uoisualx3y J

LoLz Wo 193lqo pauipoN

)

)

zo1z Bo 10elqQ jessusy (\

AR

SUBSTITUTE SHEET (RULE 26)

PCT/SE98/02073

WO 99/27441

27

22

cozz So 199lqQ pazieivads /

Lozz Wo 199[q0 payIpoN

D

L0
—

zo0zz Po 300lqQ ynejeqg l\

A=

SUBSTITUTE SHEET (RULE 26)

WO 99/27441

PCT/SE98/02073

23 /27

FIG.23

AMs SMs RMs

| H | H | H
| H | H | H
FIG.24
 SV=n B

sig(Sl<n) j E

om=8 H
NM=C C
MJ .

FIG.25 FIG.26
0O = i<

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
24 /27

FIG.27
SV=n GSDT sig(SI<n)%B é
A
Howm=s |
NM=C sig(Sl 2 n) [c
i
FIG.28
o
—ﬂ)Jl T 11 GSDT p(m2)
i ‘=
| mod(m2),gsn(j1)£ —— mod(m2), Isn (k1)_l,__ _|_i§>
T =
|
|
mod(m3),gsn(j2) J:L:::,:» mod(m3), Isn (k2) ip(m3)
b
I

NL-- _f_
b —

1l

SUBSTITUTE SHEET (RULE 26)

WO 99/27441

PCT/SE98/02073
25 /27
PS
e RS 5
~__
op
mn,gsn ma,lsn, data
| | la
L
: : _ da
Sn ' ' I ‘5:’3".. 7: <
3 mn,Isn,data
R &T:ffﬁrs L
= o=
- mn,gsn,da% T\

FIG.30 FIG.31

old version
] O E/
O 3 E\ '
] n é = new version

SUBSTITUTE SHEET (RULE 26)

WO 99/27441 PCT/SE98/02073
26 /[27

Sv=n sig(Sl < n) jB x
A /
Oom=g
W~ ¢
sig(S1 2 n) ™ H
H
FIG.33
op
i |
opihsn() ;l{ | l'p(mz)
|_ip(m2), sn(j) i t:jii’
=
ip(m3)
pm3) sn() ! lk_ﬂ i
= —
_—

SUBSTITUTE SHEET (RULE 26)

WO 99/27441

PCT/SE98/02073
27 /| 27
PS | RS PS
[\ ~_
~_
0p2 ipa,sn, data
op1 .
ip1 _ PN ipa
ip2 Job buffers ia
ip3 =
.|
- {ipn,sn,data
T\ ~_

AMs SMs RMs

i H i d i .
| | |
e | |
H]

SUBSTITUTE SHEET (RULE 26)

	Biblio.	(p. 1)
	Desc.	(p. 3)
	Claims	(p. 43)
	Drawings	(p. 53)

