Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Previous level

Next level

Xi Zhou & Yaoyao Luo
Implementation of Hierarchical Temporal Memory
on a Many-Core Architecture

Master's Thesis in Embedded and Intelligent Systems
2012 December

Author: Xi Zhou & Yaoyao Luo
Supervisor: Tomas Nordström
Examiner: Tony Larsson

School of Information Science, Computer and Electrical Engineering
Halmstad University
PO Box 823, SE-301 18 HALMSTAD, Sweden
Description of cover page picture: An HTM region includes columns which are made up of cells.
Preface

This project is part of the master degree program and is the concluding part of a thesis work in Embedded and Intelligent Systems at the School of Information Science, Computer and Electrical Engineering in Halmstad University, Sweden. In particular, we would like to express our sincere gratitude to our supervisor Professor Tomas Nordström for giving us the opportunity to work in this project and guiding us throughout the project. In addition, we would like to thank Doctor Zain Ul Abdin for his patience to guide us using the hardware platform. Moreover, we would like to thank our friends Yang Mingkun and Ni Danqing for their help in this project. Finally we would like to show gratitude to our families for the support and faith in us.

Xi Zhou, Yaoyao Luo

Halmstad University, December 2012
Abstract

This thesis makes use of a many-core architecture developed by the Adapteva Company to implement a parallel version of the Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA). The HTM algorithm is a new machine learning model which is promising in the aspect of pattern recognition and inference. Due to its complexity, sufficiently large simulations are time-consuming to perform on sequential processor, therefore, in this thesis we have investigated the feasibility of using many-core processors to run HTM simulations.

In this thesis, a parallel implementation of the HTM algorithm on the proposed many-core platform has been done in C. In order to evaluate the performance of parallel implementation, some metrics such as speedup, efficiency and scalability have been measured through performing some simple pattern recognition tasks. Implementing the HTM algorithm on a single-core computer established the baseline to calculate the speedup and efficiency of parallel implementation for the purpose of evaluating scalability.

In this thesis, three mapping methods which are block-based, column-based and row-based, have been selected to parallelize the HTM from many mapping methods. In the experiment with small training examples, the row-based mapping method gained the best performance with a high speedup because of the lesser influence of training example variability, and reflected a good scalability when implemented on different numbers of cores. However, the experiment with a relatively large amount of training examples gives almost identical results from all three mapping methods. In contrast with the small experiment, the full set experiment used much more diverse input and the mapping method did not influence the average running time for this training set. All three mappings have showed almost perfect scalability and there is linear speedup increasing with number of cores, for the dataset and HTM size used.
Contents

PREFACE ...1

ABSTRACT ...3

CONTENTS ..5

LIST OF FIGURES ..8

LIST OF TABLES ..10

LIST OF EQUATIONS ..11

INTRODUCTION ...13

1.1 MOTIVATION ..13

1.2 GOALS OF THE THESIS ..14

1.3 EVALUATION METHODOLOGY ..14

1.3.1 Methodology (Steps of Evaluation) ...14

1.3.2 Performance Evaluation Metrics ..15

1.4 OUTLINE OF THE THESIS ..16

2 BACKGROUND ..17

2.1 MACHINE LEARNING ..17

2.2 HIERARCHICAL TEMPORAL MEMORY ...17

2.3 MANY-CORE ARCHITECTURES ...18

2.4 RELATED WORK ..21

2.4.1 HTM Implementation in General ...21

2.4.2 Parallelism in ANNs Computations ..22

2.4.3 Parallel Simulation of HTM Algorithm ..22

3 HIERARCHICAL TEMPORAL MEMORY ..23

3.1 OVERVIEW OF HTM ..23

3.2 SPARSE DISTRIBUTED REPRESENTATIONS ...25

3.3 CORE FUNCTIONS OF HTM ...26
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

3.3.1 Learning ... 26
3.3.2 Inference .. 26
3.3.3 Prediction ... 27
3.4 HTM’s LEARNING AND PREDICTION .. 27
3.4.1 Spatial Pooler Function ... 28
3.4.2 Temporal Pooler Function .. 29

4 ADAPTEVA EPIPHANY .. 33
4.1 INTRODUCTION OF EPIPHANY .. 33
4.1.1 eCore CPU ... 34
4.1.2 Memory Architecture ... 34
4.1.3 2D eMesh Network .. 36
4.1.4 Direct Memory Access .. 37
4.1.5 Event Timers ... 37
4.2 MAPPING ON THE EPIPHANY .. 38

5 IMPLEMENTATION .. 39
5.1 HTM ALGORITHM PROGRAMMING ... 39
5.1.1 Spatial Pooling Implementation .. 42
5.1.2 Temporal Pooling Implementation .. 43
5.2 TRAINING SETS ... 45
5.2.1 The Small Training Set ... 45
5.2.2 The Full Training Set .. 45
5.3 SINGLE-CORE IMPLEMENTATION ... 46
5.4 PARALLELIZATION ... 48
5.4.1 Alternative Mapping Methods .. 48
5.4.2 Selected Columns Level Mapping Methods ... 49
5.4.3 Communication and Synchronization ... 51
5.5 SIMULATION IN OPENMP ... 52

6 RESULTS ANALYSIS ... 55
6.1 RESULT AND ANALYSIS OF THE EXPERIMENT WITH THE SMALL TRAINING SET ... 55
List of Figures

FIGURE 2.3-1 SHARED MEMORY VERSUS MESSAGE PASSING ARCHITECTURE ...19
FIGURE 2.3-2 A TOPOLOGY-BASED TAXONOMY FOR INTERCONNECTION NETWORKS20
FIGURE 3.1-1 A FOUR-LEVEL HIERARCHY WITH FOUR HTM REGIONS ..23
FIGURE 3.1-2 MULTIPLE HTM NETWORKS ...24
FIGURE 3.1-3 A PART OF HTM REGION ..25
FIGURE 3.2-1 SPARSE DISTRIBUTED REPRESENTATION ..26
FIGURE 3.4-1 ONE COLUMN IN AN HTM REGION ..29
FIGURE 3.4-2 ONE CELL OF A COLUMN IN AN HTM REGION ...31
FIGURE 4.1-1 THE EPHAN Y ARCHITECTURE ..33
FIGURE 4.1-2 eCORE CPU ..34
FIGURE 4.1-3 MEMORY MAP ..35
FIGURE 4.1-4 eMesh NETWORK ..37
FIGURE 5.1-1 A ONE LEVEL HTM NETWORK WITH 16 BY 16 COLUMNS ..39
FIGURE 5.1-2 DATA STRUCTURES OF HTM NETWORK IN C PROGRAMMING40
FIGURE 5.1-3 MEMORY MAP ..41
FIGURE 5.1-4 SPATIAL POOLING IMPLEMENTATION ..42
FIGURE 5.1-5 PSEUDO CODE USED IN EACH PHASE IN SPATIAL POOLING IMPLEMENTATION42
FIGURE 5.1-6 TEMPORAL POOLING IMPLEMENTATION ...43
FIGURE 5.1-7 PSEUDO CODE USING IN EACH PHASE OF TEMPORAL POOLING ALGORITHM44
FIGURE 5.1-8 PSEUDO CODE USING IN EACH PHASE OF TEMPORAL POOLING IMPLEMENTATION44
FIGURE 5.2-1 THE SMALL TRAINING SET ...45
FIGURE 5.2-2 THE EXAMPLE OF FULL TRAINING SET ...46
FIGURE 5.3-1 COMPUTATION METHOD OF CLOCK CYCLE FIGURE ..46
FIGURE 5.3-2 SEQUENTIAL IMPLEMENTATION OF THE SMALL TRAINING SET47
FIGURE 5.4-1 BLOCK-BASED MAPPING METHOD ..50
FIGURE 5.4-2 COLUMN-BASED MAPPING METHOD ..50
FIGURE 5.4-3 ROW-BASED MAPPING METHOD ..51
FIGURE 5.4-4 DEPENDENCIES OF TRAINING DATA ..52
FIGURE 5.5-1 SIMULATION IN OpenMP OF SMALL TRAINING SET ..53
FIGURE 5.5-2 SIMULATION IN OpenMP OF 20800 TRAINS ...53
FIGURE 6.1-1 EXECUTION TIME OF THE BLOCK-BASED MAPPING METHOD OF THE FIRST EXPERIMENT 56
FIGURE 6.1-2 SPEEDUP OF THE BLOCK-BASED MAPPING METHOD OF THE FIRST EXPERIMENT ………56
FIGURE 6.1-3 EXECUTION TIME OF THE COLUMN-BASED MAPPING METHOD OF THE FIRST EXPERIMENT 57
FIGURE 6.1-4 EXECUTION TIME OF THE ROW-BASED MAPPING METHOD OF THE FIRST EXPERIMENT …58
FIGURE 6.1-5 SPEEDUP OF IMPLEMENTATION THE SMALL TRAINING SET60
FIGURE 6.1-6 EFFICIENCY OF IMPLEMENTATION THE SMALL TRAINING SET60
FIGURE 6.2-1 Execution time of the block-based mapping method with the full training set ..62
FIGURE 6.2-2 Speedup of the block-based mapping method with the full training set ..63
FIGURE 6.2-3 Phase 2 efficiency of the block-based mapping method with the full training set63
FIGURE 6.3-1 Each execution time of 20800 training using block-based mapping method ...66
FIGURE 6.3-2 Each execution time of the first 5 training using block-based mapping method66
FIGURE 6.3-3 Execution time of 5th and 45th training using block-based mapping method ..67
FIGURE 6.3-4 Training example: Image 369 ..68
FIGURE 6.3-5 Training example: Image 209 ..68
FIGURE 6.5-1 Technology comparison between some hardware ..711
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2.3-1</td>
<td>PERFORMANCE CHARACTERISTICS OF STATIC NETWORKS</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 2.3-2</td>
<td>PERFORMANCE COMPARISON OF DYNAMIC NETWORKS</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 4.1-1</td>
<td>MEMORY MANAGEMENT SCENARIANS</td>
<td>36</td>
</tr>
<tr>
<td>TABLE 5.3-1</td>
<td>EIGHT IMPLEMENTATION STEPS</td>
<td>47</td>
</tr>
<tr>
<td>TABLE 5.3-2</td>
<td>CLOCK CYCLES OF EACH STEP AND TOTAL CLOCK CYCLE</td>
<td>48</td>
</tr>
<tr>
<td>TABLE 5.4-1</td>
<td>ALTERNATIVE MAPPING METHODS</td>
<td>49</td>
</tr>
<tr>
<td>TABLE 5.5-1</td>
<td>RESULT OF OPENMP IMPLEMENTATION OF HTM ALGORITHM</td>
<td>53</td>
</tr>
<tr>
<td>TABLE 6.1-1</td>
<td>EVALUATION OF THREE MAPPING METHODS IMPLEMENTED ON 16 CORES USING THE SMALL TRAINING SET</td>
<td>58</td>
</tr>
<tr>
<td>TABLE 6.1-2</td>
<td>EVALUATION OF IMPLEMENTATION THE SMALL TRAINING SET</td>
<td>59</td>
</tr>
<tr>
<td>TABLE 6.2-1</td>
<td>EFFICIENCY EVALUATION OF THE BLOCK-BASED MAPPING METHOD WITH THE FULL TRAINING SET</td>
<td>62</td>
</tr>
<tr>
<td>TABLE 6.2-2</td>
<td>EFFICIENCY EVALUATION OF THE COLUMN-BASED METHOD</td>
<td>64</td>
</tr>
<tr>
<td>TABLE 6.2-3</td>
<td>EFFICIENCY EVALUATION OF THE ROW-BASED METHOD</td>
<td>65</td>
</tr>
<tr>
<td>TABLE 6.3-1</td>
<td>COMPARISON BETWEEN THREE MAPPING METHOD</td>
<td>69</td>
</tr>
</tbody>
</table>
List of Equations

(Eq. 1.3-1) .. 15
(Eq. 1.3-2) .. 16
Introduction

1.1 Motivation

The machine learning model Hierarchical Temporal Memory (HTM) [1, 2] is a biomimetic model based on the memory-prediction theory of brain function developed by Jeff Hawkins and Dileep George of Numenta, aiming to capture the structural and algorithmic properties of the neocortex. By definition, any system that tries to model the architectural details of the neocortex is an artificial neural network (ANN). Therefore, HTM is considered as a new type of ANN, but HTM is significantly more complex than most other ANNs. The HTM algorithm is promising in the aspect of pattern recognition and inference. Most pattern recognition algorithms are merely able to perform some static patterns recognition, but the HTM algorithm has the ability to learn the spatial and temporal sequences from a continuous stream of input data.

The HTM has potential applications across various problem domains, such as machine learning, artificial intelligence, pattern recognition, data mining and navigation. One example is a user-friendly authoring method for humanoid robots [3] which used HTM to learn and make inference of robot postures based on NUMENTA’s NuPIC (Numenta Platform for Intelligent Computing). HTM has also been used to implement traffic sign recognition, focusing on how to deal with colors [4]. For user support systems, which are not performed easily by conventional algorithms in comparison with the human brain, HTM network could provide a more complete solution to implement an intention estimation information appliance system [5] and in this work a possible Very Large Scale Integration (VLSI) architecture was used for HTM.

HTM is a computational model offering an imitation of the human brain. Due to it being a significantly sophisticated model of a human brain, sufficiently large simulations are time-consuming to perform as a sequential processor. HTM include a large amount of parallelism and would clearly benefit from a many-core implementation. Therefore, parallel implementation of HTM algorithm on a many-core platform will have widespread applicability. Several kinds of hardware could be selected to implement HTM algorithm, such
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

as Massively Parallel Processor Array (MPPA), FPGA, VLSI architecture (in reference [5]), as well as multi-core architecture and many-core architecture studied in this thesis.

This thesis aims to evaluate the performance of a parallel implementation of the HTM algorithm on a many-core architecture by processing a simple pattern recognition task. Different mapping methods of HTM will be investigated in many-core architecture.

1.2 Goals of the Thesis

This thesis investigates the feasibility of using a many-core architecture to run HTM simulations in a parallel version. The focus of this thesis is to evaluate the performance of implementing HTM algorithm on a many-core architecture.

To achieve these goals, we will make an implementation in C at first. Then to find out the proper mapping methods to perform several experiments is a critical process. The following step is to evaluate the performance depending on certain metrics of each mapping method and find out the best one.

1.3 Evaluation Methodology

As section 1.2 mentioned, in this project we will evaluate the performance of a parallel implementation of the HTM algorithm. To realize the performance evaluation, the evaluation methodology shall be described at first. Then we will give the definitions about certain metrics for our performance evaluation.

1.3.1 Methodology (Steps of Evaluation)

To establish speedup, efficiency, scalability, we need a single-core implementation and a many-core implementation. The methodology of evaluating the performance for parallel implementation of the HTM algorithm on a many-core architecture will be divided into three steps:

Implement C Program of HTM

The startup phase of this thesis is to program the HTM algorithm in C, because the proposed many-core architecture is ANSI-C/C++ programmable.
Run the HTM Program on a Single-Core to Get a Baseline

Run the HTM program on a single-core of the proposed architecture. The sequential implementation is used as the baseline to calculate the speedup in order to compare scalability of the parallel implementation.

Implement the Various Mappings

This step is to select various mapping methods to implement a parallel version of HTM on the proposed many-core architecture. The execution time of selected mapping methods will be compared with the sequential implementation and calculate the speedup as well as efficiency. Then to contrast the speedup and efficiency of each mapping method, the best parallelism model will be chosen to implement on different numbers of cores, in order to evaluate the scalability.

Furthermore, we will simulate HTM in an OpenMP implementation. We will compare the many-core implementation with the ordinary computer implementation using OpenMP.

1.3.2 Performance Evaluation Metrics

Performance evaluation as one of the main problems plays an essential role in parallel program developing. When evaluating the performance of parallel programs, five common metrics are: parallel run time, speedup, efficiency, the cost of solving a problem by a parallel system and the last one is scalability [6]. Speedup, efficiency and scalability are frequently used to qualify the match between an algorithm and architecture in a parallel system. This thesis will focus on performance evaluation of implementing the HTM algorithm through comparing the speedup and efficiency as well as scalability of this implementation. We defined these metrics as follows:

Speedup

Speedup measures how much a parallel implementation is faster than its corresponding sequential implementation. Speedup is the ratio between the execution time of the sequential implementation and the execution time of the parallel implementation with a certain number of processors defined as [7]:

\[
\text{Speedup}(n_p) = \frac{\text{Time}_{\text{best sequential implementation}}}{\text{Time}_{\text{parallel implementation}}(n_p)},
\]

(Eq. 1.3-1)
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

where \(n_t \) is the number of processing cores.

Ideal speedup is when \(\text{Speedup}(n_t) \) equals to \(n_t \). For example, if using 16 cores to solve a problem, the execution speed by using 16 cores should ideally be 1/16 of sequential execution speed. The goal of our HTM implementation is, of course, that the speedup is as close to the number of processing cores as possible.

Efficiency

Another measure is efficiency which tells us how well-utilized the cores are. Efficiency is defined as the speedup divided by the number of cores:

\[
E(n_t) = \frac{\text{Speedup}(n_t)}{n_t}
\]
(Eq. 1.3-2)

Efficiency is a value between zero and one. The highest efficiency we can get is 1 which is achieved when speedup equals to \(n_t \).

Scalability

Scalability measures a system’s capacity to increase speedup in proportion to the number of processors. If a system can be seen as scalable, the speedup will increase linearly with increasing the number of cores. Therefore, scalability seems natural to be defined with speedup and we shall evaluate the scalability of this parallel system by calculating the speedup with the increased number of cores.

1.4 Outline of the Thesis

The thesis structure is organized as follows:

In the next chapter we will describe the background. Following that chapter the HTM Cortical Learning Algorithm will be covered in detail. In chapter 4 we will describe the architecture which we selected. Then a chapter follows detailing the implementation. Chapter 6 gives all the final results and analysis of this project. In chapter 7 we will conclude the whole project and make suggestions for future work.
2 Background

In this chapter we give some background to machine learning, the underlying algorithm and many-core architecture. We firstly review the theory of machine learning, then the proposed machine learning algorithm HTM will be introduced in the next section. Section 2.3 deals with many-core architectures, the following section describes the related work of our thesis.

2.1 Machine Learning

Machine learning is one of many areas in artificial intelligence. It is a discipline which studies how computers simulate or implement human learning behaviour in order to acquire new knowledge or skills and to reorganize the existing knowledge structure so as to continuously improve their performance [8, 9]. Machine learning is a scientific discipline which mainly researches to automatically learn properties from the finite training data set and make intelligent decisions based on data. It can be used in many scientific fields, such as in statistics, probability, information theory, philosophy, psychology, and neurobiology, but it is also intersecting with other areas of science and engineering.

For any learning system, it should possess an ability to efficiently classify new examples after training on a finite data set. This ability plays an essential role in machine learning, which is called generalization. A learning system needs have the generalization ability to generalize from the given examples as precisely as it can, in order to produce a useful output for new, unseen examples.

2.2 Hierarchical Temporal Memory

The Hierarchical Temporal Memory (HTM) is a machine learning technology which models the functions of a human brain more accurately than many classical ANN models like Self-organizing Feature Mapping (SOFM) and Back-Propagation (BP). However, it does not try to model the neurons as a spiking system. The full name of the algorithm is Hierarchical
Temporal Memory Cortical Learning Algorithm (CLA), while we here often refer to it as the HTM learning algorithm [2]. Looking at the terms used in the name, we see that “Hierarchical” implies an HTM network is a pyramid-shaped hierarchy of levels that are composed of smaller elements called columns. “Temporal” means that the HTM network can be trained on temporal sequences data. “Memory” represents that the HTM network is fundamentally a memory based system and has the ability to store a large set of spatial patterns and temporal sequences in an efficient way. This makes an HTM model able to predict and infer to match the patterns it received effectively.

“The entire cortex is a memory system.” Jeff Hawkins mentioned in his book “On Intelligent” [1]. Some capabilities of humans, such as understanding spoken languages, handwriting recognition and gesture detection are primarily carried out by the neocortex, while the HTM as a distinct and original technology can imitate how these functions are performed by the humanoid neocortex. An HTM network can be viewed as an artificial neural network as the system attempts to model the architectural specifics of the neocortex, however with a more complicated model of the neuron than classical ANN models use. HTM not only works on human-like sensor input, but is also used to learn some non-human sensory input streams, such as radar, infrared, or financial market data, weather data, web traffic patterns, or text. In Chapter 3 we will describe HTM in some greater detail, but before that we would also like to give a short background of many-core architectures.

2.3 Many-Core Architectures

A multi-core processor is an integrated circuit which has two or more individual cores, while a many-core architecture is defined as a single integrated circuit die with tens or hundreds of processing cores connected via some interconnection network [10, 21]. Each core can read and execute instructions independently, so called MIMD architecture [8]. Many application domains such as embedded, digital signal processing and network can take advantage of many-core techniques to deal with their problems.

In general, any computing system can be operated by two different dimensions: instruction streams and data streams. We can categorize different architectures according to Michael J. Flynn’s suggestion, depending on how many instruction and data streams are available in the architecture: single instruction-single data streams (SISD), multiple instruction-single data
Background

19 streams (MISD), single instruction-multiple data streams (SIMD), and multiple instruction-
multiple data streams (MIMD) [7].

An MIMD architecture is a parallel architecture which is made of multiple processors and
multiple memory modules connected together via some interconnection network. Either
message passing or shared memory can be used in an MIMD architecture to access data in
memory from each processing unit. In a shared memory system, all cores share a global
memory and communication between processors via writing to and reading from the central
shared memory. In contrast, a message passing system only has local memory, and exchanges
information from one core to another through an interconnection network [10]. Figure 2.3-1
illustrates these two categories.

The intercommunication network (ICN) between cores in a many-core architecture is an
important part that can immensely impact the execution speed. An interconnection network
can be classified to two types: static and dynamic. Static networks only have fixed links,
while a dynamic network has the connections established between two or more nodes on the
fly as needed and both of them are common ways to interconnect cores in a many-core
architecture. There are many variations of static and dynamic ICN and in Figure 2.3-2 we
illustrate a commonly used taxonomy based on topologies.
Static networks can be divided into three categories: one-dimension (1D), two-dimension (2D), or higher dimension (HD). The completely connected networks (CCNs) and linear array networks as well as the ring (loop) networks are one-dimensional static networks, while two-dimensional array (mesh) networks, tree networks and 2D mesh networks are the two-dimensional static networks. The higher dimensional networks are the cube-connected networks, the high-dimensional mesh networks and the hypercube networks.

A dynamic network can be categorized to bus-based network and switch-based network depending on the interconnection scheme. Furthermore, the bus-based networks can be subdivided into single bus networks and multiple bus networks. Switch-based networks can be further classified as three classifications: single-stage, multistage, or crossbar networks.

All interconnection networks have their virtues and their faults. Table 2.3-1 and table 2.3-2 give a conclusion about static networks and dynamic networks.
Background

TABLE 2.3-1 Performance characteristics of static networks

<table>
<thead>
<tr>
<th>Network Topology</th>
<th>Degree (d)</th>
<th>Diameter (D)</th>
<th>Cost (No. of Links)</th>
<th>Symmetry</th>
<th>Worst Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCNs</td>
<td>N-1</td>
<td>1</td>
<td>N(N-1)/2</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>Linear array</td>
<td>2</td>
<td>N-1</td>
<td>N</td>
<td>No</td>
<td>N</td>
</tr>
<tr>
<td>Binary tree</td>
<td>3</td>
<td>2([log₂N-1])</td>
<td>N-1</td>
<td>No</td>
<td>log₂N</td>
</tr>
<tr>
<td>n-cube</td>
<td>log₂N</td>
<td>log₂N-1</td>
<td>nN/2</td>
<td>Yes</td>
<td>log₂N</td>
</tr>
<tr>
<td>2D-mesh</td>
<td>4</td>
<td>2(N-1)</td>
<td>2(N-n)</td>
<td>No</td>
<td>√N</td>
</tr>
<tr>
<td>k-ary n-cube</td>
<td>2n</td>
<td>N[k/2]</td>
<td>n×N</td>
<td>Yes</td>
<td>k×log₂N</td>
</tr>
</tbody>
</table>

TABLE 2.3-2 Performance comparison of dynamic networks

<table>
<thead>
<tr>
<th>Network Topology</th>
<th>Delay (Latency)</th>
<th>Cost (Complexity)</th>
<th>Blocking</th>
<th>Degree of Fault Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>O(N)</td>
<td>O(1)</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Multiple bus</td>
<td>O(mN)</td>
<td>O(m)</td>
<td>Yes</td>
<td>m-1</td>
</tr>
<tr>
<td>Multistage</td>
<td>O(logN)</td>
<td>O(NlogN)</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Cross Bar</td>
<td>O(1)</td>
<td>O(N²)</td>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>

2.4 Related Work

This thesis concentrates on making a parallel implementation of the HTM algorithm on a many-core architecture. In this section we will describe some work which related to ours. Firstly, we will describe the HTM implementation in general and in the following section we will describe a study about how to implement ANN algorithms on massively parallel computers with a number of mapping methods, then a parallel implementation of HTM algorithm on a multi-core architecture will be described.

2.4.1 HTM Implementation in General

A user-friendly authoring method for humanoid robots [3] used HTM to learn and make inference of robot postures based on NUMENTA’s NuPIC (Numenta Platform for Intelligent Computing). HTM has also been used to implement traffic sign recognition, focusing on how to deal with colors [4]. For user support systems, which are not performed easily by
conventional algorithms in comparison with the human brain, HTM network could provide a more complete solution to implement an intention estimation information appliance system [5]. In [5], a possible Very Large Scale Integration (VLSI) architecture was used for HTM.

2.4.2 Parallelism in ANNs Computations

This related work is about implementation of ANN on massively parallel computers. T. Nordström showed in [13] that the ANN computations can be unfolded into the smallest computational primitives and proposed at least six different ways to parallel ANN on massively parallel computers, which are training session parallelism, training example parallelism, layer and forward-backward parallelism, node (neuron) parallelism, weight (synapse) parallelism and bit parallelism. He analyzed the application scope and constrains of each of the parallelism methods and furthermore proposed designs of new parallel systems which are suitable for ANN computing. In [14] a parallel implementation of ANN on an FPGA has been implemented based on the parallel methods shown in [13].

2.4.3 Parallel Simulation of HTM Algorithm

An implementation of Numenta’s HTM algorithm in a parallel version by programming in C++ was presented by R.W. Price in [15]. In his work, he implemented HTM sequentially at first and analyzed speedup and efficiency of the sequential program by performing a simple pattern recognition task. Then he implemented a parallel version of HTM algorithm using OpenMP multi-threading in a multicore computer (Intel Xeon X5650 6-core CPU with 12G RAM). In his implementation, two functions ‘segmentActive’ and ‘getBestMatchingSegment’ were found to be dominant part, with approximately 90% to 98% of the total execution time consumed. However, Price’s work only makes a parallel implementation of a dominant part of the HTM algorithm, which is phase2 of the temporal pooling algorithm. There still existed a large remaining fraction of sequential code of the implementation, therefore the speedup and efficiency of parallel implementation are very low in his work.
3 Hierarchical Temporal Memory

3.1 Overview of HTM

As a biomimetic model based on the memory-prediction theory of the brain, HTM models some of the structural and algorithmic properties of the mammalian neocortex. The human neocortical circuitry is hierarchical, while HTM inherits the properties of a humanoid brain, hence an HTM network is hierarchical.

As a hierarchical structure, an HTM network is comprised of several levels. Representatively, each region stands for one level in the hierarchy, as the main unit of memory of input data and prediction in an HTM. However, a “region” is synonymous with a “level”. The word “region” is used when representing the internal function of a region, while the word “level” is used when explicitly relating to the role of the region within the hierarchy.

Regions are functionally similar, but different in size and where they are in the hierarchy. An illustration of this architecture is presented in figure 3.1-1, where four HTM regions are arranged in a four-level hierarchy. In figure 3.1-1, the arrows mean communicated information within levels, between levels, and to or from outside the hierarchy. This is similar to the information processed in a human cortex [2].

![Figure 3.1-1 A four-level hierarchy with four HTM regions](image)
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

From figure 3.1-1, we can see that it is a pyramid-shaped hierarchy which has data from only one source or sensor. The largest region locates in the lowest level, while the highest level has the smallest region. The data in this kind of HTM network come from the lowest level and output from the highest level, which means that the data transmit always from the lower level to the higher level and give feedback from the higher level to the lower level. Therefore, this HTM can be seen as a bottom-up network. In our thesis, the HTM network is considered as the bottom-up network.

If the data comes from more than one source or sensor, the HTM network can be combined by multiple HTM networks as a tree-shaped hierarchy, which shows in figure 3.1-2.

![Tree-shaped hierarchy](https://via.placeholder.com/150)

FIGURE 3.1-2 Multiple HTM networks

The inputs come from sensors shaping some patterns stored in the lower level of the hierarchy, then the patterns in the low-level are recombined at mid-levels into more complex components and mid-level patterns are moreover re-associated at high-level. The patterns learned at each level of the hierarchy are re-used when combined in novel ways at higher levels, therefore this hierarchical structure efficiently reduces training time as well as memory usage.

HTM regions are made up of a two dimensional array of columns and each of the columns contains multiple cells highly connected to other cells in the same region. These highly connected cells are able to remember several previous states. There is only one shared proximal dendrite segment in each column in an HTM region. Each cell has several distal
dendrite segments. Each dendrite segment has a great number of potential synapses, one of which connects to one of other cells. Figure 3.1-3 illustrates a small part of an HTM region.

![Figure 3.1-3 A part of HTM region](image)

3.2 Sparse Distributed Representations

In the real world, the brain always receives sensory input from various sequences of inputs, but depending on the context of previous inputs it can form different internal representations. The cells in HTM are highly interconnected but local inactivity, like true neurons in the human brain, which represents information as a sparse distributed representation (SDR). SDR guarantees that only a small percentage of neurons are always active at any one time, showing on figure 3.2-1, where dark blue cells represent active cells, while light blue cells stand for inactive cells.

In HTM networks, learning sequences and making predictions start with a SDR. The memory mechanisms within an HTM region cannot work without a SDR. When a pattern comes into an HTM region, it will be distributed to those individual cells to be memorized as a SDR. The number of possible representations in a region is much less than the number of possible input patterns, but the information of the raw patterns will not be lost, because SDR has a key property of matching similar inputs to similar representations and only needs to match a portion of the pattern to guarantee a significant match. Consequently, it can be seen that the HTM system has good robustness facing to noise and error.
3.3 Core Functions of HTM

HTM has three intimately integrated core functions of every region: learning, inference and prediction. Most pattern recognition algorithms are only able to identify some static patterns recognition, but HTM algorithm is able to learn the spatial and temporal sequences from a continuous stream of input data.

3.3.1 Learning

Brains can learn all the time and HTM tries to model this property by using an "on-line learning" principle for its region. This on-line learning is important as it can continually learn from each new input while doing inference. Each HTM region looks for spatial patterns then learns temporal patterns. Spatial patterns are the combinations of inputs that occur together often, while temporal patterns mean the sequence of those spatial patterns. Learning in an HTM region could also be interpreted as sequence memory. The complexity of spatial patterns learned by a region depends on how much memory is allocated to this region. The more allocated memory, the more complex spatial patterns learned by a region.

3.3.2 Inference

The received inputs of an HTM will be matched to previous learned spatial and temporal patterns. If the new inputs can be successfully matched to previously stored sequences, the inference and pattern matching will be operated more accurately. However, many novel inputs
of HTMs are probably similar, like human brain always is facing, but the inputs may never repeated precisely. SDR effectively copes with this kind of problem by matching only a portion of patterns with the stored sequences.

3.3.3 Prediction

In an HTM region, prediction and inference are almost the same thing. In HTM, prediction is formed in a region by matching current input with stored sequences of pattern, in order to predict what possible inputs will follow. Predictions are continuous and context-sensitive, because an HTM region will make different predictions, constantly based on different contexts. Predictions are based on what has happened in the past and what is happening now.

3.4 HTM’s Learning and Prediction

Each HTM region looks for spatial patterns then learns temporal patterns. After learning, each region makes predictions depending on its memory of sequences.

Each HTM region forms a sparse distributed representation of the input at first when a new input comes, which is called “spatial pooler”. It then forms a representation of the input in the context of previous inputs by activation a subset of the cells within each active column, representatively only one cell will be activated per column. The final step for an HTM region is to form a prediction based on the input in the context of previous inputs. These latter two steps are referred to as the “temporal pooler”.

The term "spatial pooler" works on the shared proximal dendrite segment, at the level of columns, to learn connections between input bits and columns. The "temporal pooler", which operates on distal dendrite segments, at the level of cells, to learn feed-forward connections between cells in the same region.

In HTM, for both the “spatial pooler” and the “temporal pooler”, terms such as cells, synapses, potential synapses, dendrite segments, and columns are used throughout. HTM cells receive feed-forward input coming from sensory data or from another region lower in the hierarchy via the proximal dendrite segment, shown in figure 3.4-1. Each column of cells in HTM has only one single shared proximal dendrite in order to respond to similar feed-forward input, and each proximal dendrite has an associated set of potential synapses. HTM also has lateral inputs from nearby cells through distal dendrites, illustrated in figure 3.4-2.
The "potential synapses" means there is a possibility to form a synapse between two dendrite segments of two cells which are in different columns and it has a scalar permanence value ranging from 0.0 to 1.0 which is adjusted during learning. When the permanence value is above a threshold, the potential synapse will become a functional synapse, or we can say that a synapse is established and the binary weight of such synapses is marked "1". A column will become active if the number of its valid synapses which connected to active inputs is above a threshold. In HTMs, learning involves increasing or decreasing the permanence values of all potential synapses on a dendrite segment. The connectedness of a synapse will rely on how large the permanence value is, thus the higher permanence is and the more difficult it will be to disconnect the synapse. When the permanence value is below a threshold, the synapse has no effect. In an HTM cell, the number of valid synapses on the proximal and distal dendrite segments is not always constant, but the number of potential synapses is fixed.

3.4.1 Spatial Pooler Function

The spatial pooler function could be separated into three phases:

It firstly learns the connections to each column from a subset of the inputs and determines how many established synapses on each column are connected to active inputs. Then the number of active synapses is multiplied by a “boosting” factor. The columns with the strongest activation after boosting inhibit other columns in the neighborhood of the active ones with a weaker activation. The third phase is to update the permanence values of all the potential synapses for learning. The permanence values of synapses connected to active inputs will be increased, while the permanence values of synapses connected to inactive inputs will be decreased (Hebbian rule [20]).

A new input leads to a sparse set of active columns. Different input patterns cause different levels of activation of the columns. These three phases sufficiently reflect in the sparse distributed representation, which is the fundamental function of the spatial pooler, and to be the input for the temporal learning phase at the same level.
In figure 3.4-1, four cells comprising a column which share a common proximal dendrite segment which has a set of potential synapses representing a subset of the inputs. Ten round spots stand for potential synapses. Solid spots represent valid synapses. These valid synapses have their permanence value exceed the connection threshold due to their connection to active inputs. White spots represent non-valid synapses, because each permanence value of them is lower than the threshold. The column is inactivity before activated. When the number of valid synapses is above a threshold, the column will be activated by the feed-forward input.

3.4.2 Temporal Pooler Function

The temporal pooler function can also be separated into three phases:

It firstly calculates the active state for each cell that is in a winning column (the columns which inhibit others are called winning columns). Then it computes the predictive state for each cell. In the third phase the synapses will be updated to enable learning. Phase 1 and phase 2 are performed while a network is learning as well as during inference. Phase 3 is performed during learning only.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Phase 1: cells activated by feed-forward input become activate

Each cell in the HTM region has several distal dendrite segments, each of which has many potential synapses connecting to cells of other columns. For each active column which is activated by feed-forward input, if any of its cells are already in a predictive state from a previous time step, only those cells will be activated. A cell which is in a predictive state means that the current activation was expected, the cell then becomes active from the predictive state and is chosen as the learning cell. If the input was not predicted, all cells in the column will become active when the column is activated, because without context usually cannot predict what is likely to happen next and all options are possible. Moreover, the cell which has the best matching dendrite segment (the best matching dendrite segment is the segment which has the largest number of active synapses) is chosen as the learning cell. The resulting set of activated cells is the representation of the current input in the context of previous input.

Identical inputs always lead to the same number of columns in the same position to be active, but a different combination of cells would be activated among those columns in the different context of previous inputs.

Phase 2: cells activated by lateral input enter predictive state

For every dendrite segment on every cell in the region, if the number of its established synapses which connect to current active cells exceeds a threshold, then this dendrite segment is seen as active and the cell which possesses the active dendrite segment enters a predictive state unless it already activated due to feed-forward input. When a dendrite segment is marked as active, the permanence values of all synapses associated with this segment are modified. For every potential synapse on the active dendrite segment, the permanence values of synapses connected to active cells will be increased, while the permanence values of synapses connected to inactive cells will be decreased, which are marked as ‘temporary’.

In addition to modifying the permanence values of the synapses connected with the active segment, a second segment is chosen for extending predictions further back in time. The second segment is the cell’s segment that best matches the state of the system in the previous time step. For the segment, increment the permanence values of synapses that are connected to active cells, while the permanence values of synapses connected to inactive cells will be decremented. These modifications are also marked as ‘temporary’.
Whenever a cell from being inactive becomes active due to feed-forward input, we remove any temporary marks. If the cell correctly predicted the feed-forward input, the permanence of synapses of this cell could be updated.

Phase 3: update synapses for learning

If a column has a cell in learning state, the queued segment updates are positively reinforced. If a column had a cell in predictive state at the previous time step, but not in predictive state at this time step, which means the cell stops prediction for any reason, the queued segment updates will be negatively reinforced.

![Diagram of a cell in an HTM region](image)

Figure 3.4-2 One cell of a column in an HTM region

In figure 3.4-2, ‘Cell1’ is one cell of a column in an HTM region. Every cell has several distal dendrite segments with a group of potential synapses. In this figure, there are 5 distal dendrite segments in one cell with 10 potential synapses. Valid synapses are represented by solid spots. The permanence value of each established synapse exceeds the connection threshold due to the synapse connected to an active cell. White spots stand for potential synapses connected to
inactive cells with their permanence value lower than threshold. The column in which the ‘Cell1’ is located becomes activated due to feed-forward input through the proximal dendrite segment, which is shown in the red coarse arrow in the bottom-left. The ‘Cell1’ may enter its predictive state as long as at least one of its dendrite segments is connected to enough active cells within its learning radius (learning radius is a certain range around the cell except the other cells in the same column to which it belongs), which is shown in the blue thin arrow in the right. A cell’s state of predictive or non-predictive only makes contribution to the feed-forward output of a cell and is not propagated laterally.

The output of a region is the logical OR of the state of all cells, including the cells’ active state because of feed-forward input and the cells’ predictive state by lateral input.
4 Adapteva Epiphany

Adapteva Epiphany is the given hardware used for our implementation of the HTM algorithm. This chapter will introduce the Epiphany™ many-core architecture which is developed by Adapteva [11, 18, 19].

The Epiphany™ architecture is a scalable many-core architecture using a shared-memory model. It is able to deal with parallel computing problems like image processing, communication, sensor signal processing, encryption and compression. It has many cores on a single chip interconnected by eMesh network which makes power reduction compared with a traditional crossbar interconnection. It has a good scalability which reflects in that the number of cores is able to extend to as many as 4096 individual cores on a single chip.

4.1 Introduction of Epiphany

The Epiphany architecture is illustrated below in figure 4.1-1. This architecture is made up of a 2 dimensional array of processor nodes, each of which contains an eCore Reduced Instruction Set Computer (RISC) CPU, multicore-optimized Direct Memory Access (DMA) engine, multi-bank local memory, event timer and network interface for all nodes which connect a core to the Epiphany mesh network.

FIGURE 4.1-1 the Epiphany Architecture
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

4.1.1 eCore CPU

The eCore CPU is without doubt the most important part of each processor node, which includes a general purpose program sequencer, large general purpose register file, integer arithmetic logical unit (IALU), floating point unit (FPU), debug unit and interrupt controller. The eCore CPU is showed in Figure 4.2.

![FIGURE 4.1-2 eCore CPU](image)

Two floating-point instructions and a 64-bit memory load operation can be executed per clock cycle. The register file can be seen as a temporary power-efficient storage providing operands for integer ALU and FPU. The eCore has a single direct-mapped 32 kilobytes SRAM. By load and store instructions, data can be passed between local memory and the CPU’s register file. On every clock cycle, 64 bits of data can be moved.

4.1.2 Memory Architecture

The local memory in a processor node is part of the distributed, shared memory system. Each core has 32 kilobytes of local memory. The local memory is divided into four banks that are 8 bytes wide, each 8KB in size, showing in figure 4.1-3. All banks can be accessed in parallel in each clock cycle. Data and code can be placed anywhere in the memory space or in external space, except for the memory-mapped register space and reserved space. Each CPU can access any other CPU’s local memory as the memory in each core shares a common address.
space. A processor node local memory can be accessed simultaneously by four masters: instruction fetch, load/stores, DMA and external.

For the explicit code and data memory management, the configurations of two basic linker descriptor files which come with the different Epiphany Board Support Packages have a number of key words that allow fine grained management of code and data placement from within the C/C++ source code. The keywords are "_{core_row}_" which means the row ID of the core, and "_{core_col}_" which means the column ID of the core. There are two basic linker descriptor files: "Legancy" and "fast", which significantly determine the default placement of all sections and symbols within the objects. We can divide the memory usage into user code and data, standard library and stack and these can be either included in the internal SRAM or the external SDRAM. In table 4.1-1, we show the memory management scenarios.
TABLE 4.1-1 Memory management scenarios

<table>
<thead>
<tr>
<th>File</th>
<th>USER CODE & DATA</th>
<th>STANDARD LIBRARY</th>
<th>STACK</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>legacy.ldf</td>
<td>External SDRAM</td>
<td>External SDRAM</td>
<td>External SDRAM</td>
<td>Use to run any legacy code with up to 1MB of combined code and data.</td>
</tr>
<tr>
<td>fast.ldf</td>
<td>Internal SRAM</td>
<td>External SDRAM</td>
<td>Internal SRAM</td>
<td>Places all user code and static data in local memory, including the stack. Use to implement fast critical functions. It is the user’s responsibility to ensure that the code fits within the local memory.</td>
</tr>
<tr>
<td>internal.ldf</td>
<td>Internal SRAM</td>
<td>Internal SRAM</td>
<td>Internal SRAM</td>
<td>Places all code and static data in local memory, including the stack. Use to implement fastest applications. It is the user’s responsibility to ensure that the code fits within the local memory.</td>
</tr>
</tbody>
</table>

4.1.3 2D eMesh Network

This eMesh network is 2-dimensional network, which makes high speed inter-processor communication possible. A mesh node router is connected to the four nearest-neighbors. Every core can transfer up to 8 bytes of data in every cycle between its CPU and router. Three individual mesh structures serving different types of transaction traffic comprise the eMesh Network-On-Chip (NOC), cMesh, rMesh, and xMesh and they are orthogonal, which is shown in Figure 4.1-3.
4.1.4 Direct Memory Access

Each Epiphany mesh node includes a DMA engine which enables accelerated data movement between eMesh nodes within the chip. Information can be prefetched autonomously by a DMA engine, while the DMA engine is configured under software control. The clock speed of DMA is the same as for the cores.

4.1.5 Event Timers

There are two 32-bit event timers which can operate independently to monitor key events within the processor node in each processor node. A distributed set of event timers are supported by the Epiphany architecture. The timers can be used for program debug, program optimization, load balancing, traffic balancing, timeout counting, watchdog timing, system time and numerous other purposes.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

4.2 Mapping on the Epiphany

The Adapteva Epiphany fabric is integrated to an evaluation board named anemone104 developed by BittWare, which is connected to an Altera Stratix III FPGA development board. The Altera Stratix III FPGA also provides a 32 megabyte external memory to the AN104 and a USB 2.0 interface for accessing the AN104.

For this project, the integrated development environment (IDE) Eclipse was used to develop, debug and download code to the Epiphany fabric. It is easy to create, manage and navigate C based many-core projects as well as compiling, linking and debugging by using Eclipse.

The Epiphany Software Development Kit (ESDK) enables out-of-the-box execution of applications written in regular ANSI-C and does not require any C-subset, language extensions, or SIMD style programming. The ESDK includes optimized ANSI-C compiler, robust multicore Eclipse IDE (based on Indigo), multicore debugger (based on gdb-7.3), multicore communication and hardware utility libraries and a fast functional simulator with instruction trace capability. An Epiphany complier is based on the popular GNU GCC, which supports a wide range of options, allowing for a fine tuning of the compilation process. The Epiphany assembler ‘e-as’, parses a file of assembly code to produce an object file for use by the linker ‘e-ld’. A set of libraries based on the newlib distribution of Standard C and Standard Math libraries for embedded systems are included in the ESDK, which are bundled with the ‘e-gcc’ complier. The Epiphany Hardware Utility library (eLib) also included in the ESDK, provides functions for configuring and querying the Epiphany hardware resources.

The Epiphany debugger (e-gdb) based on the popular GNU GDB is used to debug the many-core project, which allows a programmer to see what is going on inside a program while it executes. The E-GDB includes some powerful debug features, such as: interactive program load, stopping program on specific conditions, examine complete state of machine and program once program has stopped and continuing program one instruction at a time or until the nest stop condition is met. However, the epiphany implementation of GDB currently lacks support for tracing and hardware assisted watchpoints. And it starts on debug session for each core which for 16 cores somewhat is manageable, but for hundreds of processors will be unmanageable.
5 Implementation

This thesis aims at evaluating the performance of mapping the HTM algorithm onto the Adapteva Epiphany many-core architecture by programming in C.

This chapter will describe the implementation procedure of the whole work. Section 5.1 describes the HTM network we used in this thesis work. For the pattern recognition tasks, training sets are of the essence and described in section 5.2. The HTM algorithm will be mapped onto a many-core architecture, first a sequential implementation described in section 5.3. Then in 5.4 we describe some alternative mapping methods and give a detailed description of the three selected mapping methods. Finally, section 5.5 describes how the HTM algorithm simulated in OpenMP.

5.1 HTM Algorithm Programming

HTM is a relatively sophisticated machine learning algorithm and it is nontrivial to implement on the parallel computer. The first step for implementing HTM on the proposed many-core architecture is to program HTM in C. In this project, a region in HTM is made up of 16 by 16 columns, each of which contains 4 cells, because the size of training images is 16*16 pixels, illustrated in Figure 5.1-1. An ideally complete HTM network is a hierarchical construction with a certain number of levels, while only a one level HTM network has been implemented in this project. Because our training examples are not that complex, the one level HTM network is enough to process them.

![FIGURE 5.1-1 A one-level HTM Network with 16 by 16 columns](image)
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

As mentioned in chapter 3, in an HTM network, a cell has a number of synapses and a certain number of cells comprise a column, while a region is made of columns. One particular problem is how to manage the considerably small memory in processing elements. Therefore, to find a good data structure in the C programming of HTM algorithm and how to distribute this network onto processors is necessary. The data structures of this C programming are illustrated in the following figure 5.1-2.

FIGURE 5.1-2 Data structures of HTM network in C programming
Implementation

Here, \textit{isactive, wasactive, isprediction, waspredicted, islearning, waslearning} are all Boolean value, using ‘\texttt{char}’ type is better than ‘\texttt{int}’ type to save the memory. From figure 5.1-2, the certain number of segments, segment update information, temporal pooling synapses, spatial pooling synapses, cells, input radius, neighbor radius, history, core, row, column as well as learning radius is defined. In our task, each cell has set 7 distal dendrite segments, each of which has 20 synapses. The “neighborRadius” and the ‘learningRadius’ both mean a certain range around the cell except the other cells in the same column to which it belongs, but they are set to a different range. The neighbor radius is set to 1, while the learning radius is set to 7. From figure 5.1-2 we can see that the structure ‘\textit{Region}’ is the outermost layer, which nests several layers of structures. Therefore, it occupies a relatively large amount of memory space, 4.2MB. The memory usage of each structure illustrates in figure 5.1-3.

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
\textbf{Structure} & \textbf{Memory usage} \\
\hline
\texttt{Core} & \texttt{core} & 256 Bytes \\
\hline
\texttt{ParallelCore} & \texttt{coreID[coreNUM]} & 16 Bytes \\
\hline
\texttt{UINT8} & \texttt{inputData[ROW][COL]} & 1024 Bytes \\
\hline
\texttt{UINT8} & \texttt{steps[stepNUM]} & 64 Bytes \\
\hline
\texttt{Region} & \texttt{region} & 4.2 Megabytes \\
\hline
\texttt{UINT8} & \texttt{testOut[ROW][COL]} & 1024 Bytes \\
\hline
\end{tabular}
\end{table}

\textbf{FIGURE 5.1-3 Memory map}

There exist a lot of ‘for’ loops in some important functions in the HTM’s implementation. These ‘for’ loops are a very good target for parallelization, because the block of code will contain a lot of repeated calculations and significant execution time [18]. Some typical ‘for’ loops will be described in section 5.1.1 and 5.1.2.

41
5.1.1 Spatial Pooling Implementation

The spatial pooling function used to process at the level of columns. In this function, some columns will be activated by active input through feed-forward input, which shows in figure 5.1-4 and active columns are marked in blue. This function is divided into three distinct phases in our C implementation. Phase1 computes the overlap of all columns, and phase2 computes the winning columns after local inhibition, furthermore, phase3 increases of decreases synapse permanence and internal variables.

```c
1 for ( int i=columnRowStart; i<columnRowEnd; i++ )
2     for ( int j=columnColStart; j<columnColEnd; j++ ) // main part suits for parallel implementation
3         for ( int x=minX; x<=maxX; x++ ) // minX, maxX mean neighbor radius
4             for ( int y=minY; y<=maxY; y++ )
5                 if ( region.column[x][y].overlapScore > region.column[i][j].overlapScore )
```

FIGURE 5.1-4 Spatial pooling implementation

FIGURE 5.1-5 Pseudo code used in each phase in Spatial polling implementation
When parallel in columns level, showing in figure 5.1-5, ‘i’ and ‘j’ are the coordinate of a column. Here ‘i’ is iterating along the row dimension, and ‘j’ is iterating along the column dimension. Here ‘x’ and ‘y’ are coordinates within the neighbor radius of such column. Line 1 and 2 of these codes in figure 5.1-5 are the main part which are suitable to be parallel. The last line of this code snippet is used to judge whether the column[x][y] is inhibited or not. These pseudo codes are used in each phase of spatial pooling implementation respectively.

5.1.2 Temporal Pooling Implementation

As mentioned in chapter 3, temporal pooling algorithm focuses on operating at the level of individual cells within columns. In this function, some cells within active columns will be activated by feed-forward input or lateral input, which shows in figure 5.1-6 and active cells are marked in dark blue. Cells activated by feed-forward input will become active, while cells activated by lateral input will enter predictive state. If the input was not predicted, all cells in the column will become active when the column is activated, because without context usually cannot predict what is likely to happen next and all options are possible. Moreover, the cell which has the best matching dendrite segment will be chosen as the learning cell.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Some fragments of pseudo code which is fit to parallel are shown below.

```
1 for (int i=columnRowStart;i<columnRowEnd;i++) // parallel implementation in columns level,
2   for (int j=columnColStart;j<columnColEnd;j++)//and map a fixed number of columns to one core.
3   for (int c=0;c<cellsNumber;c++)  // Same operation on each core
4     for (int x=minX;x<maxX;x++)
5       for (int y=minY;y<maxY;y++)
6         for (int z=0;z<cellsNUM;z++)
7           If (region.column[x][y].cells[z].waslearning)
8             Random Chose 20 'region.column[x][y].cells[z]' connect to 'region.column[i][j].cells[c]' cell
```

FIGURE 5.1-7 Pseudo code using in each phase of temporal pooling algorithm

The code of line 1 and 2 illustrated in figure 5.1-7 is mainly used to implement in columns level, which focuses on mapping a certain number of columns to one core. The code from line 3 to line 6 is operated in each core, which means every core should deal with the same operation. Line 7 and 8 is to see if the cell was in a state of “learning” in the previous time step, then randomly choose 20 other cells within its learning radius to connect to the cells.

```
1 for ( int i=columnRowStart;i<columnRowEnd;i++)
2   for ( int j=columnColStart;j<columnColEnd;j++)
3     for ( int c=0;c<cellsNUM;c++)
4       for ( int seg=0;seg<region.column[i][j].cells[c].segmentNUM;seg++)
5         for ( int s=0;s<region.column[i][j].cells[c].segmentNUM[seg].synapseNUM;s++)
6           If (region.column[i][j].cells[c].segment[seg].TPsynapses[s].connectCell== isActive&&
7             region.column[i][j].cells[c].segment[seg].TPsynapses[s].permanence>threshold) //judge whether
8              the cell which connect to the synapse is active and the permanence of this synapse is over the threshold
```

FIGURE 5.1-8 Pseudo code using in each phase of temporal pooling implementation

Pseudo code depicted in figure 5.1-8 is used in each phase in temporal pooling implementation. The third, fourth and fifth “for” means to parallel the HTM in cells level, and segments level as well as synapses level respectively. The “for” loops showing in figure 5.1-8 are invoked many times by a lot of functions during phase2 of the temporal pooling
implementation. The code in line 6 determines if the number of active synapses that are connected to currently active cells which are called “isactive”, exceed the threshold. If they do, the dendrite segment is activated and the cell enters a predictive state.

5.2 Training Sets

In order to evaluate the performance of our HTM implementation on a many-core architecture, a simple letter recognition task has been performed. The full training set consists of 416 patterns, each of which has a resolution of 16*16 pixels. The training sets will be trained by HTM network using the selected proper mapping methods on the Epiphany many-core architecture. Our first experiment will be done using a small training set, while the second set of experiments will be done using the full training set.

5.2.1 The Small Training Set

The small training set consists of a sequence of three Latin letters. The used patterns of the small training set are shown in figure 5.2-1. Three letters are trained in order and the test image is “Y”, which means when input “Y” and it could predict the next image “N”.

5.2.2 The Full Training Set

The full training set contains 416 training examples generated from a “camera” sweep over the 26 letters of the English alphabet. Figure 5.2-2 shows the sequence of training examples.
sweeping from A to B. The 416 training examples will be used in the second experiment to be trained 50 times, in total, 20800 iterations. In the test step, any one of training examples could be input and the next one will be predicted.

![Full training set](image)

FIGURE 5.2-2 The example of full training set

5.3 Single-core Implementation

This single-core implementation establishes a baseline for comparison with parallel implementation to calculate the speedup and efficiency of parallel implementation. Since the performance evaluation mainly focuses on speedup and efficiency, it is essential to record the execution time of each mapping. Figure 5.3-1 gives the code of calculating clock cycles, hence the execution time can be recorded according to the calculation.

```c
void init_timer()
{
    int start;
    timerCount=0;
    start = e_ctimer_start(E_CTIMER_0, E_CTIMER_CLK);
    start = e_ctimer_set(E_CTIMER_0, E_CTIMER_CLK, E_CTIMER_MAX);
}

void calc_time()
{
    int timerClock;
    timerClock = E_CTIMER_MAX - e_ctimer_get(E_CTIMER_0);
    totalCycles = (timerCount*E_CTIMER_MAX) + timerClock;
}
```

FIGURE 5.3-1 Computation method of clock cycle

The HTM implementation is separated into eight steps and each step performed a corresponding function, showing in table 5.3-1. Then figure 5.3-2 illustrates the sequential
Implementation

implementation of the small training set. It is can be seen from figure 5.3-2, that the step6 and step7 uses more clock cycles than other steps and the former makes up the majority of total CPU time. This single-core implementation will now be baseline for comparison with parallel implementation.

TABLE 5.3-1 Eight implementation steps

<table>
<thead>
<tr>
<th>Training step</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Step 1</td>
<td>nextTimeStep</td>
<td>The current state of this cell (active, learning, predicting) will be set as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the previous state and the current state will be reset to no cell activity by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>default until it can be determined.</td>
</tr>
<tr>
<td>Training Step 2</td>
<td>setInputValue</td>
<td>Set input value</td>
</tr>
<tr>
<td>Training Step 3</td>
<td>columnInit</td>
<td>Columns initialize</td>
</tr>
<tr>
<td>Training Step 4</td>
<td>overlap</td>
<td>Phase1 of spatial pooling implementation</td>
</tr>
<tr>
<td>Training Step 5</td>
<td>inhibition</td>
<td>Phase2 of spatial pooling implementation</td>
</tr>
<tr>
<td>Training Step 6</td>
<td>Phase1</td>
<td>Phase 1 of temporal pooling implementation</td>
</tr>
<tr>
<td>Training Step 7</td>
<td>Phase2</td>
<td>Phase 2 of temporal pooling implementation</td>
</tr>
<tr>
<td>Training Step 8</td>
<td>Phase3</td>
<td>Phase 3 of temporal pooling implementation</td>
</tr>
</tbody>
</table>

FIGURE 5.3-2 Sequential Implementation of the small training set

47
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Table 5.3-2 gives the obvious numerical value of total clock cycles and clock cycles of each step. Apparently, step 6 occupied the most clock cycles.

<table>
<thead>
<tr>
<th>Single core implementation</th>
<th>Max clock cycles</th>
<th>Single core implementation</th>
<th>Max clock cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total clock cycle</td>
<td>245409065</td>
<td>Step5</td>
<td>2,217,266</td>
</tr>
<tr>
<td>Step1</td>
<td>12949920</td>
<td>Step6</td>
<td>141,349,367</td>
</tr>
<tr>
<td>Step2</td>
<td>1484944</td>
<td>Step6</td>
<td>53,832,536</td>
</tr>
<tr>
<td>Step3</td>
<td>2410134</td>
<td>Step8</td>
<td>25,542,442</td>
</tr>
<tr>
<td>Step4</td>
<td>5622456</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.4 Parallelization

5.4.1 Alternative Mapping Methods

To evaluate the performance of parallelism, especially to test how much our parallelism algorithm is faster than the corresponding sequential algorithm, only one mapping method cannot achieve the goal.

It is proposed at least six different methods to perform ANN on massively parallel computers in parallel in paper [14], which are training session parallelism, training example parallelism, layer and forward-backward parallelism, node (neuron) parallelism, weight (synapse) parallelism and bit parallelism. A variety of parallelism approaches could be used for the HTM algorithm which is enlightened from the paper we mentioned before. Therefore, columns level parallelism, cells level parallelism, even dendrite segments level parallelism and synapses level parallelism could be taken into account.

For an HTM network with only one level as figure 5.1-1 shows, several mapping methods could be considered, including cells level, columns level etc. Table 5.4-1 lists alternative
mapping methods. For columns level parallelism, we propose four mapping methods, single column mapping, block-based mapping, column-based mapping and row-based mapping.

<table>
<thead>
<tr>
<th>Column Level</th>
<th>Single Column</th>
<th>Distributed each column to a sequential processor core.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-Based</td>
<td>Separate an HTM region into several blocks with an equal number of columns, each or equal number of which are distributed to one processor core.</td>
<td></td>
</tr>
<tr>
<td>Column-Based</td>
<td>Distribute every column of HTM columns to one processor core, or distribute an equal number of columns of HTM columns to one processor core.</td>
<td></td>
</tr>
<tr>
<td>Row-Based</td>
<td>Distribute every row of HTM columns to one processor core, or distribute an equal number of rows of HTM columns to one processor core.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell Level</th>
<th>Distribute each cell to one core of a many-core architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendrite Segment Level</td>
<td>Distribute every dendrite segment to one core of a many-core architecture</td>
</tr>
<tr>
<td>Synapse Level</td>
<td>Distribute a certain number of synapses to one core of a many-core architecture</td>
</tr>
<tr>
<td>Partially Parallelism</td>
<td>Only parallel dominant part</td>
</tr>
</tbody>
</table>

5.4.2 Selected Columns Level Mapping Methods

The HTM algorithm has computing in columns and cells level which results in a large number of ‘for’ loops operation in C programming. Therefore, HTM is well suited for parallel implementing in many-core architecture. The HTM network established in this project is a two dimensional network with a region of 16 by 16 columns, each of which includes 4 cells, however the given many-core hardware platform has only 16 processor cores, in spite of the fact that it could be scalable up to 4096 cores. If there are more cores used to implement HTM algorithm, for instance 1024 cores, then an HTM network with 16*16*4 cells (1024 cells) could be implemented in a parallel version in the cells level. For this thesis project, the columns level parallelization is chosen to be implemented in the hardware with 16-cores, which means each core will simulate 64 cells. The selected three mapping methods based on columns level will be represented as follows.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Block-Based Mapping Method

The first mapping method is block-based, each block including 4 * 4 columns distributed to an Epiphany core to process, in total including 16 blocks, which is illustrated in figure 5.4-1. Each core implements one block of columns marked in dark blue, while 16 cores execute simultaneously.

![FIGURE 5.4-1 Block-Based Mapping Method](image1)

Column-Based Mapping Method

The second mapping method is column-based, each row of HTM columns distributed into one core to implement, which is shown in figure 5.4-2. Each core implements one row of columns marked in dark blue, while 16 cores executed simultaneously.

![FIGURE 5.4-2 Column-Based Mapping Method](image2)

Row-Based Mapping Method

The third mapping method is row-based, each row of HTM columns distributed into one core to implement, which is shown in figure 5.4-3. Each row of columns is executed by one Epiphany core marked in dark blue.
5.4.3 Communication and Synchronization

When implement an application on many-core architecture in a parallel version, communication regardless of from host-PC to the many-core architecture or inter-cores communication and synchronization, are always needed. In our task, the host-PC write 16 by 16 pixels image to shared memory, then it set all cores to run. In the running process, each core does its own job, then waiting. The host-PC collects all the data in order when all cores end of run, then it sets all cores continue to run. In the entire process, cores can read the data simultaneously from the shared memory, but only one core can write the data to the shared memory at any time.

In our task, data has dependencies, for example when the HTM network perform the training image ‘A’, each core after running should waiting for other cores with which have the dependencies, showing in figure 5.4-4. In our task, the inhibition radius equals to 1 and the learning radius equals to 7. When we use the block-based mapping method to implement the HTM on Epiphany, the HTM columns are separated into 16 blocks distributed to each core and every core has different number of active columns and cells. If the image ‘A’ is trained by HTM depending on this mapping method, the pixels are also separated to corresponding cores. Blocks with no active input data will not activate corresponding HTM columns and cells, consequently, the cores will have no work to do. Blocks with lots of active input data will activate corresponding HTM columns and cells, these cores then will have much job to deal with. Each core does its own job, waiting for other cores finished, after that goes to next step. Because each column has an inhibition radius, and each cell has a learning radius, the dependencies should be taken into account.
5.5 Simulation in OpenMP

Open Multiprocessing[16], usually called OpenMP, is a multi-threading API that supports multi-platform shared memory parallel programming in C, C++. Using OpenMP to implement parallel application gives programmers a simple and flexible interface, because OpenMP provides a portable, scalable platform. The parallelized section of shared-memory programs is executed by multiple independent threads on one or more processors and some or all of the available memory are shared. OpenMP provides a way for starting up threads, dividing work to each thread to execute and coordinating synchronization.

The main aim of our thesis project is to implement the HTM algorithm on a many-core architecture. Therefore, the extra experiment of simulating the HTM by OpenMP just want to see how much the speedup is by simulating in OpenMP and compares the speedup and efficiency with our implementation result on the proposed many-core architecture.

The HTM algorithm is simulated in a computer with 2 cores, each of which contains 2 threads, 4 threads in total and the computer is Intel® Core™ i5 CPU M 430 @ 2.27GHz × 4. Using OpenMP can make the implementation automatic parallelization. Table 5.5-1 shows the concrete data of OpenMP implementation. Figure 5.5-1 and figure 5.5-2 illustrates the simulation result of parallel implementing HTM algorithm using OpenMP to process two training sets respectively. The speedup is very low when simulates the HTM by OpenMP. If using a computer with more threads to simulate by OpenMP, we inferred that the performance probably reduced with the threads increased.
TABLE 5.5-1 Result of OpenMP implementation of HTM algorithm

<table>
<thead>
<tr>
<th>The number of threads</th>
<th>Executing time (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 thread</td>
<td>63647</td>
<td>1.0000</td>
</tr>
<tr>
<td>2 threads</td>
<td>42066</td>
<td>1.5137</td>
</tr>
<tr>
<td>3 threads</td>
<td>32606</td>
<td>1.9528</td>
</tr>
<tr>
<td>4 threads</td>
<td>31026</td>
<td>2.0523</td>
</tr>
</tbody>
</table>

FIGURE 5.5-1 Simulation in OpenMP of small training set
Phase1 is the dominant part of implementing the small training example

FIGURE 5.5-2 Simulation in OpenMP of 20800 trains
Phase2 is the dominant part of implementing the full training example
6 Results Analysis

Chapter 5 depicts different mapping methods and two experiments with different sizes of problems have been done. This chapter then will give an analysis of the project results. The result and analysis of the first experiment with small training examples will be described in section 6.1, and following that section, the result and analysis of the second experiment with full training examples will be described. Then follows a section will detail the execution time of every training example with the full training set. In section 6.4, we will give a short analysis of the communication between host-PC and hardware. The usefulness of the hardware will be analyzed in section 6.5.

6.1 Result and Analysis of the Experiment with the Small Training Set

This project has done a parallel implementation of the HTM algorithm on the Adapteva Epiphany many-core architecture with up to 16 cores using three different mapping methods and the best mapping method has been determined. Moreover, in order to evaluate the scalability of this parallel system, a trial of parallel implementation of the HTM algorithm on different number of Epiphany cores has been performed by using the best mapping method.

6.1.1 Parallel Implementation on 16 Cores

Since three mapping methods have been implemented when using 16 cores to implement the HTM algorithm, each parallel method leads to different execution result.

Result of Block-Based Mapping Methods

Figure 6.1-1 illustrates eight steps of HTM implementation on Adapteva Epiphany using 16 cores simultaneously for each step. The max clock cycle of this mapping method is 19319505. Speedup of each step is illustrated in figure 6.1-1. From figure 6.1-1 we can see that in the first five steps all cores are utilized almost evenly, however some of the 16 cores is only used to implement less clock cycle from step6 to step7. Step6, which occupies most of the execution time, thus, is the dominant part of the HTM algorithm. Of the total execution time step6 takes 62.9%, but the utilization percentage of the cores is not that high. As step6 is so
dominant, the overall speedup of the block-based mapping is equal to the speedup of step 6, 7.3146, thus the efficiency is then 0.4573.

FIGURE 6.1-1 Execution time of the block-based mapping method of the first experiment

FIGURE 6.1-2 Speedup of the block-based mapping method of the first experiment
Result Analysis

Result of Column-Based Mapping Method

Figure 6.1-3 illustrates the execution progress by distributing each column of HTM columns to one Epiphany core to implement. Speedup of each step is illustrated in figure 6.1-4.

It is very obviously that from step1 to step5, the execution time of each core is approximately the same. Step6 still accounted for the majority of execution time, but we see high utilization of cores to be concentrated on the middle four processors. Table 6.1-1 gives the clock cycle and calculated speedup of this mapping method, which is 25949537 and 5.4471 respectively. The speedup is lower than the first mapping method. The efficiency of it is only 0.3404, which means the cores are not utilized well.

Result of Row-Based Mapping Methods

Figure 6.1-5 and Figure 6.1-6 gives the illustration of the third parallel method, row-based mapping, which distributes each row of HTM columns to one core. It can be seen from figure6.1-5, 16 cores are utilized evenly in each step. The clock cycles is only 10175309, and the speedup showed in figure 6.1-6 is up to 13.8914, which is close to 16, the ideal speedup, more than the results of those two mappings. Its efficiency 0.8682 is highest among these three parallel methods. Thus it can be seen that the 16 cores are well-utilized.
Table 6.1-1 summarizes the data that was collected and calculated from implementation on 16 cores of three mapping methods. It can be seen from above results that to make a parallel implementation of the HTM algorithm by using the row-based mapping method can take advantage of all cores with a high utilization in this experiment and gained a preferable speedup.

For this small training set, the big difference between these three mapping methods is a result of training example variability. The input pattern activity will lead to different columns and cells active in the HTM network. Processors with less work will perform faster and have to
wait for the slower ones to finish. When using idle processors to do other jobs, the whole execution time would be reduced. This is because in this experiment, there exists uneven distribution that the number of active columns assigned in each core is different. To be more specific, processors may be assigned active columns need more time to execute because they have active cells with a large number of active dendrite segments, while processors may be assigned inactivated columns only need a little time to implement because they have no active cells with nothing dendrite segments active.

The number of active columns distributed to each cores is almost equal in the row-based mapping method. Therefore, it has the highest efficiency among these three parallel methods. If the number of active columns varies a lot when distributed to each core, the execution time of each core becomes uneven, consequently leading to low efficiency.

Because the row-based mapping method of the experiment gives the best performance, we tried to implement the algorithm on 2 cores, 4 cores and 8 cores using this mapping method respectively to evaluate the scalability, the results of which will represented in section 6.1.2.

6.1.2 Evaluation of Row-Based Mapping Method in the Experiment

This section gives the results of implementing the HTM algorithm by using the row-based mapping method to two cores, four cores and eight cores respectively in order to see the scalability of this parallel system. If 8 cores are used to parallel, every 2 rows of HTM columns are distributed to each Epiphany core. The rest can be done in the same manner. Table 6.1-2 gives the data of maximum clock cycles, speedup and efficiency.

<table>
<thead>
<tr>
<th>The number of cores</th>
<th>Max clock cycles</th>
<th>Speedup</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 core</td>
<td>141,349,376</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2 cores</td>
<td>74,022,835</td>
<td>1.9095</td>
<td>0.9548</td>
</tr>
<tr>
<td>4 cores</td>
<td>38,156,642</td>
<td>3.7044</td>
<td>0.9261</td>
</tr>
<tr>
<td>8 cores</td>
<td>20,118,246</td>
<td>7.0259</td>
<td>0.8782</td>
</tr>
<tr>
<td>16 cores</td>
<td>10,175,309</td>
<td>13.8914</td>
<td>0.8682</td>
</tr>
</tbody>
</table>
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Apparently, the efficiency of the HTM implementation on different numbers of Epiphany cores is different. To implement the HTM in 2 Epiphany cores through processing the pattern recognition task resulted in the highest efficiency 0.9548, because every 8 rows of columns including the similar number of active HTM columns are distributed into one core.

![Graph 1: Speedup of implementation the small training set on different number of cores using row-based mapping method](image1)

FIGURE 6.1-5 Speedup of implementation the small training set on different number of cores using row-based mapping method

![Graph 2: Efficiency of implementation the small training set on different number of cores using row-based mapping methods](image2)

FIGURE 6.1-6 Efficiency of implementation the small training set on different number of cores using row-based mapping methods
From figure 6.1-7 we see that this row-based mapping scales well because of the linear speedup, which is already defined in chapter 1. Though the efficiency trends downward, the lowest efficiency still reaches 0.8682, which is still high.

Only three training examples cannot fundamentally reflect the performance of parallel implementation of the HTM algorithm on the Adapteva Epiphany many-core architecture. Thus another pattern recognition experiment with 416 training examples is done to evaluate the performance of this parallel system, which will be discussed in next section.

6.2 Result and Analysis of the Experiment with the Full Training Set

A training set with 416 training examples is used in this experiment. This experiment trained 416 training examples repeatedly 50 times, in total 20800 iterations. The following data shows that the CPU time is dominated by phase2 of the temporal pooling algorithm, which account for almost 96%, since a major function ‘segmentActive’ is invoked many times by every cell in every column during phase2 of the temporal pooling algorithm. In the previous experiment with the small training set, the dominant part is the phase 1 of temporal pooling algorithm. However, in this experiment with the full training set, the dominant part is no longer the phase1, but the phase2 of the temporal pooling algorithm. In temporal pooling algorithm, phase2 mainly computes the predictive state of each cell, but the previous experiment only has three training examples, the effect of phase2 does not reflect too much.

Result of Implementation the Block-Based Mapping Method

Table 6.2-1 listed the execution time, speedup and efficiency of the first mapping method of the experiment. Figure 6.2-1, Figure 6.2-2 and Figure 6.2-3 illustrated the execution time, speedup and efficiency respectively.
TABLE 6.2-1 Efficiency evaluation of The Block-Based Mapping method with the full training set

<table>
<thead>
<tr>
<th>The number of cores</th>
<th>Total Execution time (Minutes)</th>
<th>Phase 2 Execution time (Minutes)</th>
<th>Total Speedup</th>
<th>Phase 2 Speedup</th>
<th>Total Efficiency</th>
<th>Phase 2 Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 core</td>
<td>448.0667</td>
<td>437.1750</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2 cores</td>
<td>228.6833</td>
<td>223.0167</td>
<td>1.9593</td>
<td>1.9603</td>
<td>0.9797</td>
<td>0.9801</td>
</tr>
<tr>
<td>4 cores</td>
<td>118.3667</td>
<td>115.2667</td>
<td>3.7854</td>
<td>3.7927</td>
<td>0.9464</td>
<td>0.9482</td>
</tr>
<tr>
<td>8 cores</td>
<td>62.9583</td>
<td>61.0250</td>
<td>7.1169</td>
<td>7.1639</td>
<td>0.8896</td>
<td>0.8955</td>
</tr>
<tr>
<td>16 cores</td>
<td>32.7583</td>
<td>31.5750</td>
<td>13.6779</td>
<td>13.8456</td>
<td>0.8549</td>
<td>0.8654</td>
</tr>
</tbody>
</table>

FIGURE 6.2-1 Execution time of the block-based mapping method with the full training set
RESULT ANALYSIS

FIGURE 6.2-2 Speedup of the block-based mapping method with the full training set

FIGURE 6.2-3 Phase 2 efficiency of the block-based mapping method with the full training set
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

Figure 6.2-1 shows the execution time of the block-based mapping method. The total execution time is represented in green, while the execution time of phase2 is represented in blue. It is easy to see that the execution time of phase2 almost occupies the total execution time, which signifies that phase2 of the temporal pooling algorithm plays an essential role in this experiment.

From figure 6.2-2 we can see that the speedup increases almost linearly with increasing the number of cores when training 416 examples 50 times and nearly close to the ideal linearly scalable line which is represented by the red dashed line, which reflects that the system is scalable.

Figure 6.2-3 gives an obvious description of efficiency. The efficiency of parallel implementation on different numbers of cores using the block-based mapping method is not constant. It declines quickly from implementing on 1 core to 8 cores, but decreases more slowly from 8 cores to 16 cores, however, the efficiency is still high, higher than 0.86 when parallel implementation on 16 cores. From this result, we suspect that the following trend of efficiency will be stable in a certain range with the increasing number of cores.

The data of the column-based mapping method and row-based mapping method is listed in Table 6.2-2 and Table 6.2-3, which have only a little difference with the block-mapping method, thus the similar figure of execution time, speedup, as well as efficiency will not be shown below.

Result of Implementation the Column-based Mapping Method

<table>
<thead>
<tr>
<th>The number of cores</th>
<th>Total Execution time (Minutes)</th>
<th>Phase 2 Execution time (Minutes)</th>
<th>Total Speedup</th>
<th>Phase 2 Speedup</th>
<th>Total Efficiency</th>
<th>Phase 2 Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 core</td>
<td>448.0667</td>
<td>437.1750</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2 cores</td>
<td>228.6833</td>
<td>223.0167</td>
<td>1.9593</td>
<td>1.9603</td>
<td>0.9797</td>
<td>0.9801</td>
</tr>
<tr>
<td>4 cores</td>
<td>117.3583</td>
<td>114.2583</td>
<td>3.8179</td>
<td>3.8262</td>
<td>0.9545</td>
<td>0.9565</td>
</tr>
<tr>
<td>8 cores</td>
<td>62.3083</td>
<td>60.4250</td>
<td>7.1911</td>
<td>7.2350</td>
<td>0.8989</td>
<td>0.9044</td>
</tr>
<tr>
<td>16 cores</td>
<td>31.9833</td>
<td>30.8563</td>
<td>14.0094</td>
<td>14.1672</td>
<td>0.8756</td>
<td>0.8854</td>
</tr>
</tbody>
</table>
Result Analysis

Result of Implementation the Row-Based Mapping Method

<table>
<thead>
<tr>
<th>The number of cores</th>
<th>Total Execution time (Minutes)</th>
<th>Phase 2 Execution time (Minutes)</th>
<th>Total Speedup</th>
<th>Phase 2 Speedup</th>
<th>Total Efficiency</th>
<th>Phase 2 Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 core</td>
<td>448.0667</td>
<td>437.1750</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>2 cores</td>
<td>228.0917</td>
<td>222.4250</td>
<td>1.9644</td>
<td>1.9655</td>
<td>0.9822</td>
<td>0.9877</td>
</tr>
<tr>
<td>4 cores</td>
<td>116.8167</td>
<td>113.7167</td>
<td>3.8356</td>
<td>3.8444</td>
<td>0.9589</td>
<td>0.9611</td>
</tr>
<tr>
<td>8 cores</td>
<td>62.0167</td>
<td>60.3083</td>
<td>7.2249</td>
<td>7.2490</td>
<td>0.9031</td>
<td>0.9061</td>
</tr>
<tr>
<td>16 cores</td>
<td>31.8083</td>
<td>30.7417</td>
<td>14.0791</td>
<td>14.2209</td>
<td>0.8799</td>
<td>0.8888</td>
</tr>
</tbody>
</table>

From the execution time tables above we see very little distinction between the different mapping methods, when the large training set is used. When the HTM network processes a pattern recognition task with a large amount of image sequences continuously using different mapping methods, the impact of training set variability becomes not very evident, because the number of active columns distributed in each cores are almost identical in any period of time. However, the best speedup is still generated by the row-based mapping method.

For processing a large number of data, it can acquire a preferable performance through making parallel implementation of HTM according to the row-based mapping method which allocates each row of HTM columns into one processor core. This parallel system is scalable, because the increase of speedup is linear of these three mappings, but row-based mapping is a little better than the others.

6.3 Execution Time of Every Training Example with the Full Training Set

The last experiment calculates the execution time of training every pattern every time in order to compare the differences between each mapping to see which one is the most sufficiently stable mapping method. The following figures only show the results of the block-based mapping method, because the results of three mappings are similar, but the detailed data will be listed in a table below.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

FIGURE 6.3-1 Each execution time of 20800 training using block-based mapping method

FIGURE 6.3-2 Each execution time of the first 5 training using block-based mapping method
Figure 6.3-1 clearly shows the execution time of every training example in the full training set by making parallel implementation of HTM on 16 cores. The full training set is trained 50 times and we will use “round” instead “time” in the following in order to avoid ambiguity. It is obvious that the execution time of the first round of training increases continuously which is illustrated in figure 6.3-2, because of the number of segments increases as incrementing the number of training examples. However, the execution time stops increasing after training the 416 examples once, but fluctuates within a certain range throughout the last 49 rounds of training, due to the fact that the number of segments has already increased to the most, during the first round of training. Since training examples contain different patterns with different amount of information that need different times to process, a fluctuation within a specific range has existed during every round of training. It is a periodic cycle from the 3rd training to the 50th training according to a period with 416, which can be seen as steady state. Because the 2nd training might be influenced more or less by the startup phase (the first round of training), it is not included in the steady state. During the last 48 rounds of repeated training, the total execution time of every training period is similar, hence the waveforms repeat periodically according to a period of 416.
The execution time of each training example during the 5th training and 45th training are illustrated in figure 6.3-3. The 5th training is represented in the blue line, while the 45th training is represented in a red dash line. It can be seen obviously that the waveform of both trainings are almost identical, because of the same training example they both possessed.

From figure 6.3-3 we can see that there is a peak value and a valley value, which is resulted in training example variability. The image 369 (see figure 6.3-4) and the image 209 (see figure 6.3-5) are the training examples corresponding to the valley and the peak in the figure 6.3-3 respectively. The former takes the least execution time, and the latter takes the most execution time. In our training examples only the blue blocks are active inputs. For the image 369, it has less active inputs to active a small number of HTM columns, thus each processor is only assigned a small number of active columns to implement. For image 209, which is an image between image ‘M’ and ‘N’, it has the most active inputs to active a large number of HTM columns, consequently, it leads to a large number of active columns to be assigned to each processor.

However there still exists a difference between each other, the data of which will be listed in Table 6.3-1 below reflected in mean, standard deviation, maximum and minimum. The above execution time figures did not provide precise and quantified differences. Hence, we calculated the mean, standard deviation, maximum and minimum values of execution time of each mapping method in order to see how much difference exists between each mapping, which listed in table 6.3-1 and table 6.3-2.
Result Analysis

TABLE 6.3-1 Comparison between three mapping method

<table>
<thead>
<tr>
<th>Mapping Method</th>
<th>Training Times</th>
<th>MEAN (Seconds)</th>
<th>STD (Seconds)</th>
<th>MAX (Seconds)</th>
<th>MIN (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-Based (B-B)</td>
<td>50 times</td>
<td>9.1433e-02</td>
<td>4.3036e-03</td>
<td>1.0019e-01</td>
<td>1.7529e-04</td>
</tr>
<tr>
<td></td>
<td>Steady state</td>
<td>9.1577e-02</td>
<td>3.1549e-03</td>
<td>1.0019e-01</td>
<td>8.3425e-02</td>
</tr>
<tr>
<td></td>
<td>5th</td>
<td>9.1577e-02</td>
<td>3.1579e-03</td>
<td>1.0016e-01</td>
<td>8.3505e-02</td>
</tr>
<tr>
<td></td>
<td>45th</td>
<td>9.1578e-02</td>
<td>3.1579e-03</td>
<td>1.0017e-01</td>
<td>8.3490e-02</td>
</tr>
<tr>
<td>Column-Based (C-B)</td>
<td>50 times</td>
<td>9.2407e-02</td>
<td>4.5534e-03</td>
<td>1.0081e-01</td>
<td>1.7504e-04</td>
</tr>
<tr>
<td></td>
<td>Steady state</td>
<td>9.2576e-02</td>
<td>3.2510e-03</td>
<td>1.0081e-01</td>
<td>8.2517e-02</td>
</tr>
<tr>
<td></td>
<td>5th</td>
<td>9.2577e-02</td>
<td>3.2540e-03</td>
<td>1.0080e-01</td>
<td>8.2629e-02</td>
</tr>
<tr>
<td></td>
<td>45th</td>
<td>9.2576e-02</td>
<td>3.2544e-03</td>
<td>1.0078e-01</td>
<td>8.2581e-02</td>
</tr>
<tr>
<td>Row-Based (R-B)</td>
<td>50 times</td>
<td>8.6789e-02</td>
<td>3.8071e-03</td>
<td>0.9506e-01</td>
<td>1.6946e-04</td>
</tr>
<tr>
<td></td>
<td>Steady state</td>
<td>8.6890e-02</td>
<td>2.9325e-03</td>
<td>0.9506e-01</td>
<td>7.6722e-02</td>
</tr>
<tr>
<td></td>
<td>5th</td>
<td>8.6889e-02</td>
<td>2.9360e-03</td>
<td>0.9501e-01</td>
<td>7.6722e-02</td>
</tr>
<tr>
<td></td>
<td>45th</td>
<td>8.6889e-02</td>
<td>2.9364e-03</td>
<td>0.9500e-01</td>
<td>7.6718e-02</td>
</tr>
</tbody>
</table>

Table 6.3-2 Comparison of the 5th training among three mapping method

<table>
<thead>
<tr>
<th>Mapping Method</th>
<th>Training Times</th>
<th>MEAN (Seconds)</th>
<th>STD (Seconds)</th>
<th>MAX (Seconds)</th>
<th>MIN (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block-Based (B-B)</td>
<td>5th</td>
<td>9.1577e-02</td>
<td>3.1579e-03</td>
<td>1.0016e-01</td>
<td>8.3505e-02</td>
</tr>
<tr>
<td>Column-Based (C-B)</td>
<td>5th</td>
<td>9.2577e-02</td>
<td>3.2540e-03</td>
<td>1.0080e-01</td>
<td>8.2629e-02</td>
</tr>
<tr>
<td>Row-Based (R-B)</td>
<td>5th</td>
<td>8.6889e-02</td>
<td>2.9360e-03</td>
<td>0.9501e-01</td>
<td>7.6722e-02</td>
</tr>
</tbody>
</table>

Table 6.3-2 gives only the data of the 5th training of each mapping method. From table 6.3-2 we can see that the C-B mapping has the highest mean value (MEAN) and the row-based mapping has the lowest mean value, which means the row-based mapping method is more time-saving than the other two mappings.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

The standard deviation (STD) shows how much variation or "dispersion" exists from the mean. A low standard deviation indicates that the data points tend to be very close to the mean, whereas high standard deviation indicates that the data points are spread out over a large range of values. C-B mapping has the highest standard deviation among these three mapping methods, which indicates that it has high volatility.

The R-B mapping has the minimum average among three mappings, and it has the lowest standard deviation. For the R-B mapping, the standard deviation of the steady state or the 5th training or the 45th training, there only exists a little variance among them, even the variance can be ignored, which means the R-B mapping is the most sufficiently stable mapping method among three mapping methods.

From the macro view, the existing tiny difference between each mapping method can be ignored. Therefore, for the three mapping methods, we can say that they have the similar performance with well scalability and high efficiency.

6.4 Analysis of Communication between Host-PC and Hardware

The proposed many-core architecture, Epiphany, is a shared memory system. There are three main programming notions, task creation, communication, and synchronization in a programming model in shared memory systems [16]. In a shared memory many-core platform, communication among parallel processes is executed through writing to and reading from the shared variables in the shared data segments.

When we implement the HTM algorithm on the Epiphany hardware, the communication between host-PC and Epiphany is essential. In the first experiment with a small training set, three image sequences are performed by the HTM network, and the algorithm is separated to several steps. When each step finished, the host-PC needs to communicate with the hardware once, in total seven communications were made while training one image sequence. When the HTM is implemented on 16 cores, the host-PC reads data from hardware from the first core to the last core in order rather than collecting data from cores which finish earlier to others which performed more slowly. Consequently, it spends a lot of time. The total execution time of the experiment with a small training set is only approximately two seconds, but the time we spent on implementing is about 10 minutes which is 300 times of the execution time. If we
use the same communication method to perform the second experiment for parallel implementing on 16 cores, at least 155 hours will be needed at least, hence we optimized it.

In the experiment with full training set, the hardware communicated with the host-PC only once when training one image sequence, which mainly spent to read data from host-PC. When we make a parallel implementation of the HTM algorithm on 16 cores, the execution time is only about 30 minutes, which is 1/3 of the total implementation time, approximately 3.5 hours.

6.5 Analysis of Hardware Usefulness for This Work

In this thesis work, the Adapteva Epiphany as our many-core architecture offers good performance when implementing HTM in a parallel version on it, which reflects in high speedup, high efficiency and good scalability.

It is easy to understand the functionalities of the Epiphany architecture because of its simple hardware design. The Epiphany architecture is ANSI C/C++ programmable, which makes the architecture accessible to every programmer whatever the programmer’s level of expertise. The shared-memory map minimizes the overhead of creating task interfaces. It is a high speed inter-processor communication system, because its 2D mesh network supports on-chip node-to-node communication latencies in nanoseconds, with zero startup overhead. The comparison between FPGA, DSP, GPU, CPU and Epiphany will show in figure 6.5-1 [21].

One prominent design of the Epiphany chip is that it has both one arithmetic logic unit (ALU) and one Floating-point Unit (FPU), which enable the Epiphany to executes both an integer and a floating-point operation on each clock cycle. But in our task, we did not use this advantage, and all types in our C code are character and integer.

<table>
<thead>
<tr>
<th>Technology</th>
<th>FPGA</th>
<th>DSP</th>
<th>GPU</th>
<th>CPU</th>
<th>Epiphany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>28nm</td>
<td>40nm</td>
<td>28nm</td>
<td>32nm</td>
<td>28nm</td>
</tr>
<tr>
<td>Programming</td>
<td>VHDL</td>
<td>C++/Assembly</td>
<td>C++/C</td>
<td>C++/C++</td>
<td>C++/C++</td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>590</td>
<td>108</td>
<td>294</td>
<td>216</td>
<td>10</td>
</tr>
<tr>
<td>Price</td>
<td>$990</td>
<td>$200</td>
<td>$499</td>
<td>$285</td>
<td>Best Value!</td>
</tr>
<tr>
<td>Chip Power (W)</td>
<td>n/a</td>
<td>22</td>
<td>135</td>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>CPUs</td>
<td>n/a</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Max MIPS</td>
<td>1,181</td>
<td>1,611</td>
<td>4,181</td>
<td>4,181</td>
<td>1,312</td>
</tr>
<tr>
<td>Max GMACs</td>
<td>3,000</td>
<td>920</td>
<td>n/a</td>
<td>n/a</td>
<td>81.2</td>
</tr>
<tr>
<td>Gflops x Core</td>
<td>n/a</td>
<td>17</td>
<td>16</td>
<td>14.4</td>
<td>15.7</td>
</tr>
<tr>
<td>1T Memory</td>
<td>nM</td>
<td>417KK</td>
<td>2.7nM</td>
<td>2.7nM</td>
<td>2.7nM</td>
</tr>
<tr>
<td>Program Efficiency</td>
<td>25-75%</td>
<td>25-75%</td>
<td>5-30%</td>
<td>50%</td>
<td>50-80%</td>
</tr>
</tbody>
</table>
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture
7 Conclusion and Suggestion to the Future Work

7.1 Conclusion

HTM is a complex algorithm which models the function of human brain. In this thesis, we programmed an HTM network in C and mapped onto the Adapteva Epiphany many-core hardware. This parallel implementation of HTM running on the selected many-core hardware significantly reduced the computing time compared to an implementation on a single-core computer.

In this thesis, three column level mapping methods which are block-based, column-based, and row-based parallelization is selected from five parallel methods to perform HTM, because the provided Epiphany many-core hardware has only 16 cores, which is not enough to parallel in cells level, let alone parallel in dendrites level and synapses level. the HTM algorithm on the Adapteva Epiphany.

In our thesis, the performance of HTM’s parallel implementation is evaluated through comparing speedup, efficiency and scalability. In the experiment with the small training set, there exists big difference between the results of the three mapping methods because of the training example variability and the row-based mapping method gives the best performance. For the experiment with the full training set we did not see this effect, instead all three mappings have almost identical results. The impact of training examples variability becomes not very apparent in this experiment, because the number of active columns distributed in each core is almost identical in any period of time.

To compare the corresponding results from Adapteva Epiphany implementation and OpenMP (2 cores with 2 threads, 4 cores with 4 threads), the performance of Epiphany implementation far outweighs the one coming from OpenMP. The good performance we gained from HTM’s Adapteva Epiphany implementation because of its advanced hardware and software design, such as C programmable, 2D mesh network, 32 kilobytes of memory in each core, and some others, which make contribute to the good performance of HTM’s parallel implementation.
Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

7.2 Future Work

In this work we have only implemented an HTM algorithm without hierarchy using three different mapping methods in a 16-core many-core architecture. There are still many aspects of the HTM implementation that need to be optimized in the future, such as to construct a multilayer HTM, to offer more optional mapping methods and several works about implementation HTM on hardware can be done in the future.

In the future, one can try to implement a multilayer HTM and evaluate it through implement high dimensional input data, such as RGB images. One can verify the correctness of inference of the HTM network and to test its performance.

We have only done the HTM parallelization on columns level. In the future, one can also evaluate other levels such as cells level or in dendrite segments level, and especially in synapses level or find out more optional mapping methods. We selected three parallel models to implement HTM on a 16-core many-core platform and discovered the dominant part. Sometimes, the dominant part can be processed in a certain number of cores and other parts could be executed using only a small number of cores to avoid the communication overhead.

We only have implemented HTM on 16 cores in a parallel version, and evaluated the performance. In the future, it would be very worthwhile to try to implement HTM on a larger Adapteva Epiphany with maybe hundreds or thousands of cores and use its functionality of floating point, further more to evaluate the performance. It would be meaningful to know how many cores at most are suitable for executing the HTM algorithm.

A preferable way to implement HTM is to discover hardware for HTM application in a variety of domains with a high generalization. So one can try to implement HTM on other many-core architectures, such as FPGA, or GPU and so on, in a parallel version and then compare the performance with the parallel implementation of the HTM on Adapteva Epiphany.
8 Reference

Implementation of Hierarchical Temporal Memory on a Many-Core Architecture

