This is the submitted version of a paper presented at SSBA Symposium 2013 (SSBA2013), Goteborg, 14-15 March.

Citation for the original published paper:

Biometric Recognition Using Periocular Images.
In: (ed.),

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-21552
Biometric Recognition Using Periocular Images

Fernando Alonso-Fernandez, Josef Bigun
Halmstad University. Box 823. SE 301-18 Halmstad, Sweden
Email: feralo,josef.bigun@hh.se

Abstract—We present a new system for biometric recognition using periocular images based on retinotopic sampling grids and Gabor analysis of the local power spectrum at different frequencies and orientations. A number of aspects are studied, including: 1) grid adaptation to dimensions of the target eye vs. grids of constant size, 2) comparison between circular- and rectangular-shaped grids, 3) use of Gabor magnitude vs. phase vectors for recognition, and 4) rotation compensation between query and test images. Results show that our system achieves competitive verification rates compared with other periocular recognition approaches. We also show that top verification rates can be obtained without rotation compensation, thus allowing to remove this step for computational efficiency. Also, the performance is not affected substantially if we use a grid of fixed dimensions, or it is even better in certain situations, avoiding the need of accurate detection of the iris region.

I. INTRODUCTION AND RELATED WORK

Periocular recognition has gained attention recently in the biometrics field [1], [2], [3], [4], [5], [6], [7], [8], [9] due to demands for increased robustness of face or iris systems. Periocular refers to the face region in the immediate vicinity of the eye, including the eye, eyelids, lashes and eyebrows (Figure 1). Faces and irises have been extensively studied [10], [11], but periocular recognition has received revived attention recently, with suggestions that it may be as discriminative by itself as the face as a whole [5], [8]. Periocular region can be easily obtained with existing setups for face and iris, and the requirement of high user cooperation can be relaxed. An evident advantage is its availability over a wide range of acquisition distances even when the iris texture cannot be reliably obtained (low resolution, off-angle, etc.) [12] or under partial face occlusion (close distances). Most face systems use a holistic approach, requiring a full face image, so the performance is negatively affected in case of occlusion [10]. Also, the periocular region appears in iris images, so fusion with the iris texture has a potential to improve the overall recognition [9].

Most of the studies for periocular recognition have used Local Binary Patterns (LBP) [13] and, to a lesser extent, gradient orientation (GO) histograms [14] and Scale-Invariant Feature Transform (SIFT) keypoints [15]. The best performance is consistently obtained with SIFT features (rank-one recognition accuracy: 81-94%, EER: 7%), followed by LBPs (rank-one: 74-87%, EER: 19%) and GO (rank-one: 67-90%, EER: 22%) [3], [7]. Comparison with face or iris is also done in some cases. For example, Park et al. [3] reported a rank-one accuracy of 99.77% using the whole face, but when the full face is not available (simulated by synthetically masking the face below the nose region), accuracy fell to 39.55%. This points out the strength of periocular recognition when only partial face images are available, for example in criminal scenarios with surveillance cameras, where it is likely that the perpetrator masks parts of his face. In the same direction, Miller et al. [5] found that, at extreme values of blur or down-sampling, periocular recognition performed significantly better than face. On the other hand, both face and periocular matching using LBPs under uncontrolled lighting were very poor, indicating that LBPs are not well suited for this scenario. Finally, Woodard et al. [9] fused periocular and iris information from near-infrared (NIR) portal data finding that periocular identification performed better than iris, and the fusion of the two modalities performed best. In most of these studies, periocular images were acquired in the visible range. Periocular on visible light works better than on NIR, because it shows melanin-related differences [7]. On the other hand, many iris systems work with NIR illumination due to higher reflectivity of the iris tissue in this range [16]. Unfortunately, the use of more relaxed scenarios will make NIR light unfeasible (e.g. distant acquisition, mobile devices, etc.) so there is a high pressure to the development of algorithms capable of working with visible light [17].

Here, we come up with a periocular recognition system based on retinotopic sampling grids positioned in the pupil center, whose receptive fields consist in a set of modified Gabor filters designed in the log-polar frequency plane [1], [2]. This setup have been used in texture analysis [18], facial landmark detection and face recognition [2], and real-time face tracking and liveness assessment [1], [19], with high discriminative capabilities. We use the CASIA-IrisV3-Interval database [20] and the BioSec database [21]. Although not directly comparable, our system achieves competitive verification rates in comparison with existing periocular recognition approaches [3], [7].

II. RECOGNITION SYSTEM

A. Sampling grid

Our recognition strategy is based on a sparse retinotopic sampling grid obtained by log-polar mapping [1], [2], which is positioned in the pupil center (Figure 2, left). The grid has log-polar geometry, meaning that the density of sampling points decreases exponentially with the distance from the center. Such non-uniform sampling, with frequency decreasing from the center to the periphery, imitates the arrangement of photoreceptors in the human retina [22]. Each point of the grid is associated with a receptive field of the human eye. At each point, a Gabor
decomposition of the image is performed to the effect that they mimic the simple cells of the primary visual cortex having the same receptive field but different spatial directions and frequencies [23]. The sparseness of the sampling grid allows direct filtering in the image domain without needing the Fourier transform, with significant computational savings [2] and even feasibility in real time [19]. In our experiments, we use a grid of 81 points arranged in 5 concentric circles, with 16 points per circle plus the point at the grid center. We also consider one case of non-concentricity between pupil and sclera circles (see the “adaptive” configuration in Table I). For similitude with other previous works [7], [3], we also use a rectangular grid of 117 points, distributed uniformly in 9 rows and 13 columns (Figure 2, right).

The circular grid is configured in several ways, employing different values of radius of the innermost and outermost circles (see Table I, circular geometry): i) using pupil and sclera radius of the target image (cases 1-3), ii) using pupil radius of the target image only (cases 4-5), or iii) no usage of the pupil or sclera radius (cases 6-7). In ii) and iii), the average pupil and/or sclera radius of the whole database is used. This way, we evaluate the potential benefit of adapting the grid to the dimensions of the target eye, compared with placing a grid of constant size. Similarly, width of the rectangular grid is built with two different configurations, one using the sclera radius of the target image and the second using the average sclera radius (see Table I, rectangular geometry). Height of the rectangular grid is 4/6 of its width [3]. Due to smaller image size, there is less periocular region available in CASIA database (compare images of Figure 1), thus some configurations of the sampling grid has to be reduced accordingly to ensure that it is mostly contained in the image (note the multiplicative term \(k \) in Table I, second column, which equals to 2 with BioSec database and 1.3 with CASIA).

Fig. 1. Left/right: periocular sample images.

Fig. 2. Sampling grids. Image is from the BioSec database.

A. Databases and protocol

We use the CASIA-IrisV3-Interval [20] and the BioSec baseline [21] databases. CASIA has 2,655 NIR images of
280×320 pixels (height×width) from 249 contributors in 2 sessions, with 396 different eyes (the number of images per contributor and per session is not constant, and not all the individuals have images of the two eyes). The BioSec database has 3,200 NIR images of 480×640 pixels from 200 individuals in 2 sessions. Each person contributes with 4 images of the two eyes per session (thus, 400 different eyes). We have manually annotated all images of the database, computing the radius and the center of the iris and the sclera circles, which are used as input for the experiments.

We consider each eye as a different user. Verification performance experiments with the CASIA database are as follows. Genuine matches are obtained by comparing each image of a user to the remaining images of the same user, avoiding symmetric matches. Impostor matches are obtained by comparing the 1st image of a user to the 1st image of the next 100 users. With this procedure, we obtain 9,018 genuine and 31,477 impostor scores. With the BioSec database, genuine matches for a given user are obtained by comparing the 4 images of the 1st session to the 4 images of the 2nd session. Impostor matches are obtained by comparing the 2nd image of the 1st session of a user to the 2nd image of the 2nd session of all the remaining users. With this, we obtain 400×4×4=6,400 genuine and 400×399=159,600 impostor scores. Note that experiments with the BioSec database are made by matching images of different sessions, but these inter-session experiments are not possible with CASIA-IrisV3-Interval, since it does not contain session information.

B. Results

EER results with the different sampling grid configurations are given in Table I. It is observed that rotation compensation does not have appreciable effects in the Gabor magnitude (EER is reduced up to 4.7% in the best case), but there is a substantial improvement with phase vectors (up to 50% with BioSec, 70% with CASIA). The positive result, however, is that Gabor magnitude without rotation compensation performs similar to phase vectors after rotation compensation with circular grids, and even much better if we use square grids (EER is about 50% less). This would allow to save computational time by suppressing rotation compensation.

Comparing circular and rectangular grids (Figure 4, 1st row), there is no clear winner. With CASIA, circular grids perform slightly better, but with BioSec, the best geometry depends on the DET region. Also remarkably, BioSec database has higher error rates than CASIA. Apart from differences given by the sensor (which cannot be assessed with the information available), one reason could be that experiments with BioSec are inter-session. On the contrary, one can think that BioSec images are bigger (480×640 vs. 280×320 pixels) with more pericircular region available, so error rates should be lower. One way

![Fig. 4. First row: Circular vs. rectangular grid (best cases of Table I, with and w/o rotation compensation). Second row: Grid adaptation to the target image (best cases of Table I depending whether the sampling grid makes use of the pupil and/or sclera radius values of the target image, with rotation compensation).](image-url)
to assess the latter would be to increase the density and number of grid points with Biosec, a direction that we are currently exploring.

We now evaluate the effect of adapting the grid to the dimensions of the target eye (Figure 4, 2nd row). With CASIA and circular grids, adaptation both to the pupil and sclera radius is always best. However, if the outer dimension of the grid is fixed, performance is not too much affected (EER from 5.68% to 6.18%). With rectangular grids on CASIA, using a grid of constant dimensions does not have a dramatic impact either (EER too much affected). For low FRR, both circular and rectangular grids of fixed dimensions, or it is even better in certain situations. These are available even when the iris texture is less constrained, or it is even better in certain situations.

IV. Conclusion

We propose the use of retinotopic sampling grids positioned in the pupil center for recognition using pericircular images. The local power spectrum is sampled at each grid point by a set of Gabor filters tuned to different frequencies and orientations [1], [2]. The system is evaluated with two databases acquired using iris sensors. One advantage of pericircular systems is that existing setups for face and iris can be used for recognition purposes.

We compare the use of Gabor magnitude and phase vectors. We also carry out rotation compensation experiments by shifting the grid of the query image to find the best match with the test image. Results show that rotation compensation does not have appreciable effects in the Gabor magnitude, but produces a significative performance improvement with phase vectors. In any case, Gabor magnitude without rotation compensation already performs at similar or better levels than phase vectors after rotation compensation.

Depending on the database, it is better to use circular or rectangular grids. We also evaluate the effect of adapting the grid to the dimensions of the target eye. Although adaptation is the optimal solution in most cases, the performance is not too much affected if we use a grid of fixed dimensions, or it is even better in certain situations.

The only requirement of our system is the availability of the center of the eye and, in some cases, of the pupil radius. These are available even when the iris texture is difficult to extract [12].

Future work includes comparison and fusion of our approach with other existing pericircular recognition algorithms [7] and evaluation on images in the visible spectrum [3]. Also, existing works do not focus on detection of the pericircular region (it is manually extracted), but on texture analysis only. Only Park et al. [3] used a Viola-Jones face detector plus heuristics measurements to extract the pericircular region, so successful extraction relies on an accurate detection of the (whole) face. We will explore the use of eye detectors that does not need the whole face. In this sense, the sampling grid and Gabor decomposition used in this work has been already used for the task of facial landmark detection [1], [2], [19], and will be the source of future work.

Acknowledgment

Author F. A.-F thanks the Swedish Research Council and the EU for for funding his postdoctoral research. Authors also acknowledge the CAISR research program of the Swedish Knowledge Foundation, the EU Btbi02 project (FP7-ITN-238803) and the EU COST Action IC1006 for its support. Authors also would like to thank L.M. Tato-Pazo for her valuable work in annotating the iris database.

and to the Biometric Recognition Group (ATVS-UAM) for making the iris part of the BioSec database available for our experiments.

References