- Standardisering av snöröjningsplan -

Instruktioner, råd och tips för snöröjning
av tak med stora spännvidder

Herman Gustafsson

Martin Albertsson

- 2012 -
Abstract

The Swedish winters 2009/10 and 2010/11 were rich in snow and many roofs collapsed, mainly large span frames. Investigations were made and the amount of snow was not the primary cause, instead there were several other causes. One of these was that in some cases roofs were shoveled in an unfavorable manner which affected the load patterns negatively, so causing the roofs to collapse. Most people lack the knowledge of how shoveling will affect the roof. Had there been an increased understanding regarding shoveling, some roofs could have been prevented from collapsing.

Through both qualitative and quantitative research in the form of interviews and calculations the theoretically best ways to shovel a selection of roof types is presented in the report. The roof structures covered are 3-compartment, continuous and Gerberspliced metal roof decks. The calculations only concern the bending moments in the decks. The results show that different methods are required depending on the type of structure. Therefore it is very important to know what kind of a building is to be shoveled.

To ensure that this information should be easy to understand and apply, a template has been designed with tips and advice for the structural engineer on how to establish a plan for shoveling. The plan for shoveling should then be passed on to the property owner with instructions, tips and advice on how to attend to his property before, during and after the snow has fallen.

Key words: snow, roof, shoveling, clearing
Innehållsförteckning

1. Inledning ... 1
 1.1 Bakgrund .. 1
 1.2 Syfte .. 1
 1.3 Metodbeskrivning .. 1
 1.4 Avgränningar ... 1
 1.5 Referensgrupp .. 2
2. Beräkningar .. 3
 2.1 Allmänt .. 3
 2.2 Förutsättningar beräkningar: .. 3
 2.3 3-facksplåt ... 3
 2.3.1 Fall 1, skotta från ena sidan till den andra: ... 3
 2.3.2 Fall 2, skotta ändfacken först: .. 4
 2.3.3 Fall 3, skotta mittenfacket först: .. 5
 2.3.4 Sammanfattning ... 5
 2.4 Kontinuerlig plåt ... 6
 2.4.1 Fall 1, skotta från gavlarna in: .. 6
 2.4.2 Fall 2, skotta från mitten och ut: .. 8
 2.4.3 Sammanfattning ... 10
 2.5 Gerberskarvat plåt .. 10
 2.5.1 Kopplat .. 10
 2.5.2 Äkta Gerbersystem .. 10
 2.5.3 Sammanfattning ... 20
3. Resultat och diskussion .. 22
4. Referenslista ... 23

Bilaga 1 - Snörojningsguide
Bilaga 2 – Tabeller
Bilaga 3 – Exempel på snörojningsplaner
Förord

Halmstad 11 maj 2012

Martin Albertsson

Herman Gustafsson
Sammanfattning

Vintrarna 2009/10 och 2010/11 var snörika och många tak rasade in, främst hallar med stora spännvidder. Utredningar gjordes och mängden snö var inte det avgörande utan det fanns att flertalet olika faktorer. En av dessa var att man i vissa fall skottade taken på ett ogyrnasamt sätt och påverkade belastningarna negativt, vilket ledde till att taken rasade in. Allmänt brister kunskapen om hur skottningen påverkar taket. Hade man haft ökad förståelse rörande skottning hade en del tak kunnat hindras från att rasa ner.

Genom både kvalitativ och kvantitativ forskning i form av intervjuer och beräkningar har de teoretiskt bästa sätten att skotta tagits fram i rapporten. De takkonstruktioner som berörs är 3-fack, kontinuerlig och Gerberskarvad plåt. Beräkningarna berör enbart momenten i plåtarna. Resultatet visar att det krävs olika metoder beroende på typ av konstruktion. Därför är det ytterst viktigt att veta vilken typ av byggnad det är som ska skottas.

För att denna information ska vara lätt att förstå och tillämpa har det utformats en mall med tips och råd för konstruktören hur denne ska upprätta en snöröjningsplan. Snöröjningsplanen ingår i en snöröjningsguide som sedan skickas vidare till fastighetsägaren med instruktioner, tips och råd för hur hantering av sin fastighet skall ske före, under och efter snön fallit.
1. Inledning

1.1 Bakgrund
"Perioden februari till mars 2010 var mycket snärkt i stora delar av landet och som en följd av detta inträffade ett mycket stort antal takras. Många av rasen var dramatiska och ledde till stor uppmärksamhet i media, vilket fick politiska konsekvenser med frågor i riksdagen och den 8 mars 2010 samlade miljöminister Andreas Carlsgren berörda myndigheter och SP för att diskutera den uppkomna situationen. Kort efter detta möte fick Boverket regeringens uppdrag, att i samråd med berörda myndigheter och organisationer utreda om det fanns behov att ändra gällande författningar eller vidta andra långsiktiga åtgärder baserat på erfarenheterna från takrasen." ¹

1.2 Syfte
Ta fram det teoretiskt säkraste sättet att skotta för att undvika ras. Att ge en ökad förståelse för hur stor inverkan snöröjning av ett tak kan ha. Att det är lika krävande att skotta i rätt ordning, som medför en mindre risk för takras, som att skotta fel. Även utforma en mall åt konstrukteuren, för att denne enkelt skall kunna göra en snöröjningsplan.

1.3 Metodbeskrivning

1.4 Avgränsningar

1.5 Referensgrupp

Dessa personer har hjälpt till med projektet genom intervjuer och konsultation.

Kaj Linnsén, Svensk Hallteknik, Stockholm

Johan Martinsson, J3M Byggkonsult AB, Smålandsstenar

Anders Henriksson, Byggkonsult Henriksson Stranne Handelsbolag, Kungshamn

Nikolaj Tolstoy, Utvecklingsledare, Boverket, Karlskrona

Carl-Johan Johansson, Senior Advisor, SP Sveriges Tekniska Forskningsinstitut, Borås

Jan Wikström, Ordförande, Byggtanken AB, Halmstad

John Lindström, Konstruktör, WSP Byggreglering, Sundsvall

Niklas Eriksson, Teknisk Säljare, Lindab, Halmstad

Tobias Lennartsson, EAB, Smålandsstenar

Richard Gegö, Chef BI, Sveriges Byggindustrier, Halmstad

Wolfgang Dreyer-Suhr, J3M Byggkonsult AB, Statiker, Smålandsstenar

Håkan Ingvarsson, Ranaverken, Tråvad

Fisnik Nika, Bygga och Bo, Halmstad
2. Beräkningar

2.1 Allmänt

2.2 Förutsättningar beräkningar:
- Program: Frame Analysis 6.2
- Spännvidd: 6 m
- Egentyngd: 0,5 kN/m² (dimensionerande last)
- Snölast: 2,0 kN/m² (dimensionerande last)

2.3 3-facksplåt
En 3-facksplåt är en plåt som ligger över tre fack. Ett fack är mellanrummet mellan två takstolar. Har takstolarna t. ex c/c 6m, så blir då plåten 3*6 = 18m. Eftersom en och samma plåt ligger över flera fack så gör det att de olika facken "hjälps åt" och ger medhåll åt varandra. Nåckelen blir dock att facken beror av varandra, vilket gör att så fort lasten ändras i ett fack, påverkas de andra.

Nedan följer momentkurvor för en 3-facksplåt vid tre olika fall av snörjning. Vid varje fall skottas 2m breda remsr mitt i facken.

Figur 1. Momentkurva för jämnt fördelad belastning.

2.3.1 Fall 1, skotta från ena sidan till den andra:

Figur 2. Momentkurva där fack 1 är skottat.

Fältmomentet minskar drastiskt i fack 1, stödmomentet i stöd 3 ökar med 6.6%.
Beräkningar – 3-facksplåt

Figur 3. Momentkurva där fack 1 och 2 är skottade.

Fältmomentet i fack 3 har ökat med 7.0% från det ursprungliga värdet.

Att skotta från ena sidan till den andra är det enklaste rent praktiskt men det syns då här att både stöd- och fältmoment påverkas negativt.

2.3.2 Fall 2, skotta ändfacken först:

Figur 4. Momentkurva där fack 1 är skottat.

Samma som ovan, fältmomentet minskar drastiskt i fack 1, stödmomentet i stöd 3 ökar med 6.6%.

Figur 5. Momentkurva där fack 1 och 3 är skottade.

Här övertogs vare sig ursprungligt maximalt fält- eller stödmoment.

Att börja skotta i kanterna är alltså bättre med tanke på fältmomentet, då det ursprungliga maximala värdet aldrig övertogs.
2.3.3 Fall 3, skotta mittenacket först:

Fältmomenten i fack 1 och 3 ökar med 9.7% från det ursprungliga värdet.

Figur 7. Momentkurva där fack 1 och 2 är skottade.

Fältmomentet i fack 3 har ökat med 7.0% från det ursprungliga värdet.

Att börja skotta i mitten är alltså bättre med tanke på stödmomentet, då det ursprungliga maximala värdet aldrig överstigs.

2.3.4 Sammanfattning

Nedan summeras alla momentvärden för de tre olika fallen:

Tabell 1. Momentfördelning vid extrempunkterna vid skottning från ena sidan till den andra.

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>1</td>
<td>3,8</td>
<td>-6,7</td>
<td>3,1</td>
<td>-9,6</td>
<td>7</td>
</tr>
<tr>
<td>1, 2</td>
<td>4,4</td>
<td>-5</td>
<td>0,081</td>
<td>-7,8</td>
<td>7,7</td>
</tr>
</tbody>
</table>

Tabell 2. Momentfördelning vid extrempunkterna vid skottning av ändfacken först.

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>1</td>
<td>3,8</td>
<td>-6,7</td>
<td>3,1</td>
<td>-9,6</td>
<td>7</td>
</tr>
<tr>
<td>1, 3</td>
<td>3,7</td>
<td>-7,3</td>
<td>4</td>
<td>-7,3</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Tabell 3. Momentfördelning vid extrempunkterna vid skottning av mittenacket först.

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>2</td>
<td>7,9</td>
<td>-7,3</td>
<td>-1</td>
<td>-7,3</td>
<td>7,9</td>
</tr>
<tr>
<td>2, 1</td>
<td>4,4</td>
<td>-5</td>
<td>0,081</td>
<td>-7,8</td>
<td>7,7</td>
</tr>
</tbody>
</table>
Beräkningar – 3-facksplät – Kontinuerlig plät

- Ursprungligt moment vid jämnt fördelad belastning
- Reducerat moment mot det ursprungliga
- Ökat moment mot det ursprungliga
- Ökat moment mot det ursprungliga maximala fält- respektive stödmomentet

Det är svårt att fastslå ett sätt som är bäst vid snörjning av 3-facksplät. Vilket sätt som är bäst beror på plåten, ifall det är stöd- eller fältmomentet som är känsligast. År fältmomentet känsligast bör kantfacken, fack 1 och 3, skottas först i varje plät. År det stödmomentet som är känsligast bör mittenfacket, fack 2, skottas först. Sämst sättet är att skotta från ena sidan till den andra. Då ökas både maximala fält- och stödmoment.

2.4 Kontinuerlig plät
Kontinuerlig plät skarvas så att alla plätar sitter ihop, så den räknas som en enda hel plät. Därför måste hela taket tas i beaktning när beslut av hur skottnings bör utföras skall tas. Detta innebär att om taket är stort och har många takstolar, finns det mängder med ordningsföljer att skotta de olika facken i. Dock kan sägas att det finns två sätt som är praktiska och kan vara rimliga att titta närmare på:

- Fall 1, skotta från gavlarna och jobba inåt fack för fack.
- Fall 2, skotta från mitten och jobba utåt fack för fack

Nedan följer momentkurvor för ett kontinuerligt tak med 7 fack vid de två olika fallen av snörjning. Vid varje fall skottas 2m breda remsor mitt i facken.

Figur 8. Momentkurva för jämnt fördelad belastning.

2.4.1 Fall 1, skotta från gavlarna in:

Figur 9. Momentkurva där fack 1 är skottat.
Figur 10. Momentkurva där fack 1 och 7 är skottade.

Figur 11. Momentkurva där fack 1, 7 och 2 är skottade.

Figur 12. Momentkurva där fack 1, 7, 2 och 6 är skottade.

Figur 13. Momentkurva där fack 1, 7, 2, 6 och 3 är skottade.

Figur 14. Momentkurva där fack 1, 7, 2, 6, 3 och 5 är skottade.

Tabell 4. En sammanställning av alla momentkurvor för skottning enligt Fall 1.
Beräkningar – Kontinuerlig plåt

- Ursprungligt moment vid jämnt fördelad belastning
- Reducerat moment mot det ursprungliga
- Ökat moment mot det ursprungliga
- Ökat moment mot det ursprungliga maximala fält- respektive stödmomentet

Det visar sig att snörjning från gavlarna och in är lämpligt då man vill få bort de värsta ursprungliga momenten (Fältmoment 1 och 7, Stödmoment 1 och 6) då de aldrig överstigs någon gång under snörjningen. Detta lämpar sig bäst om alla plåtorna är likadana på taket då de i så fall dimensionerats för stöd- och fältmomenten längst ut mot gavlarna.

Har dock plåtorna dimensionerats för olika laster t.ex. att gavelplåtornas är förstärkta, så att resterande plåtar är dimensionerade för det näst största fältmomentet (Fack 3 och fack 5), då när bara mittenfacket ej är skottat, uppstår en momenthöjning från 3,6 kNm till 4,7 kNm i fack 4, vilket motsvarar en ökning på 30,6%. Om plåten var dimensionerat för 4 kNm har det överskridits med 17,5%. Även Stödmoment 4 får en momentökning på 9,2 % från dess ursprungliga värde.

2.4.2 Fall 2, skotta från mitten och ut:

Figur 15. Momentkurva där fack 4 är skottat.

Figur 17. Momentkurva där fack 4, 3 och 5 är skottade.
Beräkningar – Kontinuerlig plåt

Figur 18. Momentkurva där fack 4, 3, 5 och 2 är skottade.

Figur 19. Momentkurva där fack 4, 3, 5, 2 och 6 är skottade.

Figur 20. Momentkurva där fack 4, 3, 5, 2, 6 och 1 är skottade.

Tabell 5. En sammanställning av alla momentkurvor för skottning enligt Fall 2.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Fakturavstånd</th>
<th>Stödmoment 1</th>
<th>Stödmoment 2</th>
<th>Stödmoment 3</th>
<th>Stödmoment 4</th>
<th>Stödmoment 5</th>
<th>Stödmoment 6</th>
<th>Stödmoment 7</th>
<th>Stödmoment 8</th>
<th>Stödmoment 9</th>
<th>Stödmoment 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4</td>
<td>7</td>
<td>0,4</td>
<td>2,0</td>
<td>-2,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>4,5</td>
<td>0,4</td>
<td>2,0</td>
<td>-2,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>4,5,5</td>
<td>0,5</td>
<td>2,0</td>
<td>-2,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>4,5,5,5</td>
<td>0,6</td>
<td>2,0</td>
<td>-2,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>4,5,5,5,5</td>
<td>0,7</td>
<td>2,0</td>
<td>-2,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>-0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

- □ Ursprungligt moment vid jämnt fördelad belastning
- □ Reducerat moment mot det ursprungliga
- □ Ökat moment mot det ursprungliga
- □ Ökat moment mot det ursprungliga maximala fält- respektive stödmomentet

Det visar sig att snörejning från mitt och ut är bättre om gavelplåtorna är förstärkta gentemot plåtarna i mitten. Då blir den största procentuella ökningen 23,3% vilket uppstår i fack 2 och 6.

Dimensioneras däremot alla plåtar likadant, så kommer både ursprungliga maximala fält- och stödmoment ökas.
2.4.3 Sammanfattning

Skottas taket enligt fall 1, från gavlarna in, så överstigs aldrig de ursprungliga maximala fält- och stödmomenten för konstruktionen. Detta är bäst lämpat om lika tjock plåt används över hela taket, då den dimensionerande lasten aldrig överskrids.

Skottas taket enligt fall 2, från mitten och ut, blir momentskillnaderna för plåtarna i mitten inte lika stora som vid fall 1. Detta är bäst lämpat om gavelplåtarna är förstärkta.

2.5 Gerberskarvad plåt

2.5.1 Kopplat

2.5.2 Äkta Gerbersystem
Äkta Gerbersystem är att varvannat fack är fritt från leder. Detta medför att risken för fortskridande ras minskar. Äkta Gerbersystem finns i tre olika alternativ:

- Ojämnt antal fack med led i gavelfacken.
- Ojämnt antal fack utan led i gavelfacken.
- Jämst antal fack.

2 Luleå tekniska universitet, (2010), ”Utredning av takras B-hallen, Luleå, 2010”, LTU, Luleå
Beräkningar – Gerberskavyd plåt

2.5.2.1 Ojämnt antal fack med led i gavelfacken

Figur 22. Visor hur lederna är placerade i ett akta Gerbersystem med ojämnt antal fack med led i gavelfacken.

Ett vedertaget sätt att skotta tak är att skotta remor i varje fack. Applicerar det på taket och skottning inleds från vänster får vi följande resultat.

Figur 23. Momentkurva för jämst fördelad belastning.

Figur 24. Momentkurva där fack 1 är skottat.

Fältmomentet i fack 2 ökar med 16 % vid snörjning av en 2m bred remsa i fack 1. Ofta dimensioneras takplåtarna i gavlarna efter gavelfackens moment i detta fall 8,6 kNm och resterande plåtar efter övriga facks moment i detta fall 5,6 kNm som ger plåten i fack 2 en överbelastning. Detta är en onödig belastning då den går att undvika genom metoden som redovisas i efterföljande stycke.

Figur 25. Momentkurva för jämst fördelad belastning.
Figur 26. Momenkurva där fack 6 är skottat.

Endast fältmomentet i fack 6 reduceras, som inte innehåller någon led.

Figur 27. Momenkurva där fack 6 och 4 är skottade.

Endast fältmomentet i fack 4 reduceras.

Figur 28. Momenkurva där fack 6, 4 och 2 är skottade.

Endast fältmomentet i fack 2 reduceras.

Figur 29. Momenkurva där fack 6, 4, 2 och 7 är skottade.
Beräkningar – Gerberskarvad plåt

Figur 30. Momentkurva där fack 6, 4, 2, 7 och 1 är skottade.

Figur 31. Momentkurva där fack 6, 4, 2, 7, 1 och 3 är skottade.

Tabell 6. En sammanställning av alla momentkurvor för skottnings av ojämnt antal fack med led i gavelfacken.

<table>
<thead>
<tr>
<th>Momentkurv1</th>
<th>Momentkurv2</th>
<th>Momentkurv3</th>
<th>Momentkurv4</th>
<th>Momentkurv5</th>
<th>Momentkurv6</th>
<th>Momentkurv7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>d=10</td>
<td>d=10</td>
<td>d=10</td>
<td>d=10</td>
<td>d=10</td>
<td>d=10</td>
<td>d=10</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Ursprungligt moment vid jämnt fördelad belastning
- Reducerat moment mot det ursprungliga

Resultatet visar att den här ordningen att skotta inte förvärrar situationen på något sätt. Som en påminnelse är att hele facken är skottade, eftersom det är det praktiskt enklaste sättet, och försämrar inte resultatet.

Förväxlas ordningsföljden kan det innebära stora ofördelaktiga belastningar vilket visas nedan.

Figur 32. Momentkurva där fack 1 är skottat.

Fack 2 får en fältmomentökning av 43 % jämfört med ursprungslaget.
2.5.2.2 Ojämnt antal fack utan led i gavelfacken

Figur 33. Visar hur lederna är placerade i ett äkta Gerbersystem med ojämnt antal fack utan led i gavelfacken.

Ett vedertaget sätt att skotta tak är att skotta remser i varje fack. Applicerar det på taket och skottning inleds från vänster får vi följande resultat.

Figur 34. Momentkurva för jämnt fördelad belastning.

Figur 35. Momentkurva där remsa i fack 1 är skottat.

Figur 36. Momentkurva där remsa i fack 1 och 2 är skottade.

Här ser vi att fältmomentet i fack 3 ökar med 16 % om man skottar en 2m bred remsa i fack 1 och 2. Ofta dimensioneras takplåtarna i gavlarna efter gavelfacket som moment i detta fall 8,6 kNm och resterande plåtar efter övriga facks moment i det här fallet 5,6 kNm som ger plåten i fack 3 en överbelastning. Detta är en onödig belastning då den går att undvika genom metoden som redovisas i efterföljande stycke.

Ordningen att skotta denna typ av tak är framtagen genom prövning av en mängd olika scrarion. Den ordning som visas här är den bästa om man vill få bort maximala momentet så fort som möjlig. Nedan följer nu momentkurvor i hänsyn till den ordning taket ska skottas.
Figur 37. Momenkurva för jämnt fördelad belastning.

Figur 38. Momentkurva där fack 1 är skottat.
Fältmomentet reduceras i fack 1, som inte innehåller någon led. Maximalt fältmoment reduceras.

Figur 39. Momentkurva där fack 1 och 7 är skottade.
Endast fältmoment fack 7 reduceras.

Figur 40. Momentkurva där fack 1, 7 och 3 är skottade.
Endast fältmoment fack 3 reduceras.
Beräkningar – Gerberskarvad plåt

Figur 41. Momentkurva där fack 1, 7, 3 och 5 är skottade.

Endast fältmoment fack 5 reduceras.

Figur 42. Momentkurva där fack 1, 7, 3, 5 och 2 är skottade.

Figur 43. Momentkurva där fack 1, 7, 3, 5, 2 och 6 är skottade.

Tabell 7. En sammanställning av alla momentkurvor för skottnings av ojämnt antal fack utan led i gavelfacken.

<table>
<thead>
<tr>
<th>Skottad fack</th>
<th># Moment 1</th>
<th># Moment 2</th>
<th># Moment 3</th>
<th># Moment 4</th>
<th># Moment 5</th>
<th># Moment 6</th>
<th># Moment 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 4, 5</td>
<td>-0.7</td>
<td>0.3</td>
<td>-0.8</td>
<td>-0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>1, 2, 4, 6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5, 6</td>
<td>-0.5</td>
<td>-0.7</td>
<td>-0.8</td>
<td>-0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Ursprungligt moment vid jämnt fördelad belastning
- Reducerat moment mot det ursprungliga

Resultatet visar att den här ordningen att skotta inte förvärvar situationen på något sätt. Som en påminnelse är att helt facken är skottade, eftersom det är det praktiskt enklaste sättet, och försämrar inte resultatet.

Förväxlas ordningsföljden kan det innebära stora ofördelaktiga belastningar vilket visas nedan.
Beräkningar – Gerberskarvad plåt

Figur 44. Momentkurva där fack 6 är skottat.

Fältmoment i fack 5 får en fältmomentökning av 43 % och fack 7, 36 % jämfört med ursprungsläget.

2.5.2.3 Jämmt antal fack

Figur 45. Visar hur lederna är placerade i ett äkta Gerbersystem med jämmt antal fack.

Ett vedertaget sätt att skotta tak är att skotta remsa i varje fack. Applicerar det på taket och skottning inleds från vänster får vi följande resultat.

Figur 46. Momentkurva för jämnt fördelad belastning.

Figur 47. Momentkurva där fack 1 är skottat.

Figur 48. Momentkurva där fack 1 och 2 är skottade.

Här ser vi att fältmomentet i fack 3 ökar med 16 % om man skottar en 2m bred remsa i fack 1 och 2. Ofta dimensioneras takplatserna i gavlarna efter gavelfackets moment i detta fall 8,6 kNm och resterande platser efter övriga facks moment i det här fallet 5,6 kNm som ger plåten i fack 3 en
Beräkningar – Gerberskarvad plåt

överbelastning. Detta är en onödig belastning då den går att undvika genom metoden som redovisas i efterföljande stycke.

Ordningen att skotta denna typ av tak är framtagen genom prövning av en mängd olika scenarion. Den ordning som visas här är den bästa om man vill få bort maximala momentet så fort som möjlig. Nedan följer nu momentkurvor i hänsyn till den ordning taket ska skottas.

Figur 49. Momentkurva för jämnt fördelad belastning.

Figur 50. Momentkurva där fack 7 är skottat.

Fältmomentet i fack 7 reduceras, som inte innehåller någon led.

Figur 51. Momentkurva där fack 7 och 8 är skottade.

Figur 52. Momentkurva där fack 7, 8 och 1 är skottade.
Endast fältmomentet i fack 1 reduceras.

Figur 53. Momentkurva där fack 7, 8, 1 och 3 är skottade.

Endast fältmomentet i fack 3 reduceras.

Figur 54. Momentkurva där fack 7, 8, 1, 3 och 5 är skottade.

Endast fältmomentet i fack 5 förändras.

Figur 55. Momentkurva där fack 7, 8, 1, 3, 5 och 2 är skottade.

Figur 56. Momentkurva där fack 7, 8, 1, 3, 5, 2 och 6 är skottade.

Tabell 8. En sammanställning av alla momentkurvor för skottning av jämnt antal fack.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.2</td>
<td>0.1</td>
<td>-0.6</td>
<td>3.9</td>
<td>-0.4</td>
<td>-3.6</td>
<td>-0.6</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>-0.7</td>
<td>4.2</td>
<td>-0.6</td>
<td>3.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>3</td>
<td>3.3</td>
<td>-0.7</td>
<td>4.2</td>
<td>-0.6</td>
<td>3.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>4</td>
<td>4.4</td>
<td>-0.7</td>
<td>4.2</td>
<td>-0.6</td>
<td>3.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>-0.7</td>
<td>4.2</td>
<td>-0.6</td>
<td>3.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

19
Beräkningar – Gerberskarvad plåt

- Ursprungligt moment vid jämnt fördelad belastning
- Reducerat moment mot det ursprungliga

Resultatet visar att den här ordningen att skotta inte förvärvar situationen på något sätt. Som en pämninnelse är att hela facken är skottade, eftersom det är det praktiskt enklaste sättet, och försämrar inte resultatet.

Förväxlas ordningsföljden kan det innebära stora ofördelaktiga belastningar vilket visas nean.

Figur 57. Momentkurva där fack 2 är skottat.

Fack 3 får en fältmomentökning av 43 % och fack 1, 36 % jämfört med ursprungsläget.

2.5.3 Sammanfattning

Figur 58. Visar hur lederna är placerade i ett kopplat Gerbersystem.

Figur 59. Visar hur lederna är placerade i ett äkta Gerbersystem med ojämnt antal fack med led i gavelfacken.

Figur 60. Visar hur lederna är placerade i ett äkta Gerbersystem med ojämnt antal fack utan led i gavelfacken.

Snöröjning av kopplat Gerbersystem (Figur. 58) skottas i samma ordning som plåten monterats. I figur 58 monterades plåten från vänster till höger förutom de två sista plåtarna där fack 7 monterades före fack 6.

Snöröjning av äkta Gerbersystem är komplicerat. Det är känsligt vid snöröjning i fel ordning. Som en slutsats av beräkningarna blir det aldrig fel vid äkta Gerbersystem om skottning sker enligt följande:

Tak med ojämnt antal fack (Figur. 59 och 60) inleds med snöröjning av oledade fack, symmetriskt från gavlarna mot mitten. Därefter skottas ledade fack från gavlarna mot mitten.

Tak med jämnt antal fack (Figur. 61) skottas på samma sätt som ovan förutom att det gavelfack som har en led i sig skottas direkt efter att de facken närmast gavlarna utan led skottats.

Vid snöröjning av Gerbersystem skottas alltid hela fack.
3. Resultat och diskussion

Resultaten visar att det krävs olika tillvägagångssätt för att uppnå så säker skottning som möjligt, för olika konstruktioner.

Snöröjning av en kontinuerlig plåt kan gå till på många olika vis. De två fall som berörs visas följande: Skottas taket från gavlarna in, så överstigs aldrig de ursprungliga maximala fält- och stödmomenten för konstruktionen. Ökning av ursprungliga moment sker dock i enskilda fack. Om taket skottas från mitten och ut, blir momentskillnaderna för plåtarna i mitten inte lika stora. Dock ökas de ursprungliga maximala momenten som finns i gavelfacken. Det förstnämnda fallet är att föredra om det ligger lika tjock plåt över hela taket. Är plåten förstärkt i gavlarna eller om takstolarna i gavlarna är inflyttade, är det senare fallet att föredra.

22
4. Referenslista

Carl-Johan Johansson, Camilla Lidgren

Jan Strömberg, Milan Veljkovic: Utredning av takras B-hallen, Luleå, 2010
Avd. Byggkonstruktion – Stålbyggnad
Luleå tekniska universitet 2010.

Bilaga 1 - Snöröjningsguide
Snöröjningsguide

Instruktioner, tips och råd till dig som fastighetsägare av en byggnad med stor spännvidd för hur hantering av ditt tak skall ske före, under och efter snön fallit.

- 2012 -

Martin Albertsson
Herman Gustafsson
Inledning

"Många tak (10 % av de som rasade) var under snöröjning när raset inträffade "Erfarenhet från takras i Sverige vintarn 2009/10 och 2010/11 s 18:

Vill du veta mer om hur den här snöröjningsguiden har tagits fram kan du läsa mer i rapporten "Standardisering av snöröjningsplan - Instruktioner, råd och tips för snöröjning av tak med stora spännvidder"
Förberedelser
innan snöen faller

Det är viktigt att man förbereder sig innan vintern kommer för att veta hur man ska gå till väga när snön väl kommer. Dessa förberedelser är bra att göra i god tid då det kan vara för sent om man väntar tills första snön har fallit.

Här är några punkter att se över i förberedande syfte:

En besiktning av taket bör göras för att fastighetsägaren skall få en statuskontroll och eventuellt åtgärda skador som upptäcks. Kontrollera även att säkerhetsanordningar på taket är intakta. Det kan också vara läge för fastighetsägaren att märka ut installationer på taket för att minimera risken att de skadas vid snöröjning. Kan vara t.ex en parabol, antenn, kabel, ledning m.m.

Kontrollera att vattenavrinningen fungerar som den ska, att brunnar och stuprör inte är tillämpa.

Detta är viktigt att kontrollera och åtgärda även vintertid eftersom brunnar och stuprör alltid riskerar att täppas igen. Den snö som ligger närmast taket, smålar även på vintern. Om man då håller rent i avrinningssystemen kan detta medföra att det går att undvika skottning, då smalt snö alltid kan rinna av.

Det kan vara bra att lägga in snöröjningsguiden i kvalitetssystemet. Det är då lätt att ta fram den när den behövs och det är större chans att den förs vidare vid byte av driftsansvarig.
Dags för snörjning

När snö har kommit är det viktigt att snörjningen utföras på rätt sätt. Viktigt att inte skotta i onödan då varje takarbete är riskfyllt. Behövs dock snörjning måste arbetet utföras enligt snörjningsplanen för att den skall genomföras så säkert som möjligt, både för takkonstruktionen samt den personliga säkerheten.

Detta dokument skall läsas igenom innan varje snörjningsarbete.

Mäta snö

För att man ska veta om man bör skotta skall snölasten fastställas. Ibland kan man få mäta på flera ställen då snö nästan aldrig ligger jämnt fördelad på ett tak. Man kan mäta vid en extrempunkt (där snö är som djupast) och vid ett generellt fall (där ett medelvärde på snödjuret uppskattas).

Räkna sedan enligt formeln:

\[
Q_{snö} = \frac{m}{0.07854 \cdot d \cdot d}
\]

\(m \ [g] = \) vikt av uppsamlad snö
\(d \ [cm] = \) innerdiameter på röret

\(Q_{snö} \ [kg/m^2] = \) vikt av snö per kvadratmeter. Detta värde jämförs med gränserna på snörjningsplanen.

Exempel: Vi använder ett rör med innerdiametern 12 cm som vi trycker genom snö ner till takytan. Vi samlar upp snö som vägs upp till 1250 gram.

\[Q_{snö} = \frac{1250}{0.07854 \cdot 12 \cdot 12}\]

\(Q_{snö} = 159.15 \ [kg/m^2]\)
Det är endast nödvändigt att skotta där snölasterna ligger över gränserna. Dara för att snön behövs skottas bort på ett stall av taket, är det inte nödvändigt att skotta hela taket.

Tänk på att även om det inte snöt sen du senast mätte snön, kan snön fördelats om på taket p.g.a. vind, vilket kan leda till att du behöver göra en ny mätning. Även regn kan öka densitet på snön och ny mätning kan behövas.

Det finns hjälpmedel för att mäta lasterna utan att behöva gå upp på taket. Man kan måta nedbörning på takullan med hjälp av ett s.k. "Early System Warning".

Riskbedömning

Innan varje snörjningsarbete behöver man alltid göra en allmän riskbedömning, t.ex. invändig besiktning och riskanalys på tak. Även väderleksförhållanden såsom kraftiga vindar, snöoväder, ösregn eller dimma, bör has i åtanke vid en riskbedömning.

Sprid ut er

Det är viktigt att alla som skall skotta taket, inte skottar i samma fack. Om flera jobbar i samma fack belastas taket lokalt och risken för ras ökas. Var noga med att skotta symmetriskt över taket d.v.s. skotta motsvarande sida på samma takhalva och även motsvarande på andra sidan nocken.

Drivbildning

Lägre belägna tak

Tänk på att du aldrig skall skotta ner snö på lägre belägna tak då detta medför stor risk att det lägre belägna taket kan rasa ner. Detta gäller alla typer av byggnader även skärmtak, tak på uteplatser m.m.

Sarg

Har du en sarg runt taket kan det vara svårt att bli av med snön. Man ska inte behöva lyfta snön över sargen, då det kan orsaka arbetsskador, utan man kan då bygga upp en liten ramp av snö upp till kanten.

Istappar

Istappar är viktiga att få bort främst där människor kan vistas. Det är viktigt att man inte väntar för länge med att ta bort dem då de kan bli väldigt stora och lossna. En istapp på en meter kan väga upp till 20 kg.
Sno mot vaggen

Man ska försöka förhindra att snön man skottar ner från taket lägger sig nere på marken och skapar stora vallar som trycker på väggen. Det är bra om man kan få bort den snön så snabbt som möjligt.

Undvika skador på ytskiktet

Många tak skadas under snöröjningen och för att undvika detta kan ett bra sätt vara att inte skotta ända ner till ytskiktet, utan att lämna kvar en decimeter snö på taket.

Besiktning

Efter ett snöröjningsarbete utförts är det bra att gå upp på taket och göra en övergripande besiktning så att det inte är någonting som tagit skada. Dels uppstickande föremål och även att ytskiktet på taket är helt.

Säkerhet

Plåt- och Ventilationsbranschernas Centrala Arbetsmiljökommitté har gett ut en bra broschyr som innefattar det mesta och viktigaste inom säkerhet på tak vid snöröjning. Den hittar du på länken nedan:

Boverket har gjort en sammanställning av gällande regler för säkerhet på tak. Den hittar du på länken nedan:
Instruktioner för konstruktören

Den här sidan riktar sig till den konstruktör som ska framställa snörjningsplanen. Det konstruktören ska göra är att upprätta den individuella snörjningsplanen med hjälp av instruktioner och ritningar samt tips och råd enligt nedanstående. Även exemplen i Bilaga 3 är till för att lättare kunna se hur en snörjningsplan kan se ut. När snörjningsplanen är färdigställd skickas endast snörjningsguidens 6 sidor samt snörjningsplanen vidare till fastighetsägaren av byggnaden. Hur vi kommit fram till de olika metoderna finns att läsa i vår rapport "Standardisering av snörjningsplan - Instruktioner, råd och tips för snörjning av tak med stora spännvidder".

Utförande vid olika upplagstyper

1-facksplåt

Ordningsföljden att skotta ett tak med 1-facksplåt är således att skotta bort mindre remser (20-30 % av fackbredden) mitt i alla fält symmetriskt över hela taket för att på så sätt snabbt bli av med de värsta belastningarna sett över hela taket, därefter avlägsna kvarvarande snö på samma sätt. Symmetriskt innesär att man skottar motsvarande sida på samma takhalva samt motsvarande på andra sidan nocken.

2-facksplåt

2-facksplåten står väl emot ojämna snöläster eftersom den oftast dimensioneras efter stödmomentet som vid jämn snölast är betydligt större = (50 – 60 %). Detta betyder att det viktigaste är att avlägsna snö mitt i fält först för att på så sätt reducera stödmomentet. Ordningsföljden att skotta ett tak med tvåfacksplåt är således att skotta bort mindre remser (20-30 % av fackbredden) mitt i alla fält symmetriskt över hela taket för att på så sätt snabbt bli av med de värsta belastningarna sett över hela taket, därefter avlägsna kvarvarande snö på samma sätt. Symmetriskt är att man skottar motsvarande sida på samma takhalva samt motsvarande på andra sidan nocken.

3-facksplåt

Det visas här att det är svårt att fastså en sätt som är bäst vid snörjning av 3-facksplåt.

Vilket sätt som är bäst beror på plåten, ifall det är stöd- eller fältmomentet som är känsligast. År fältmomentet känsligast bör ändfacken, fack 1 och 3, skottas först i varje plåt. År det stödmomentet som är känsligast bör mittenfacket, fack 2, skottas först. Detta går dock ej att följa till punkt och pricka då det beror på hur känsliga fält- och stödmomenten är.

För att underlätta att välja ordningsföljd att skotta kan man nedan se hur de olika fält- och stödmomenten ändras vid snörjning av 2m remser på en 3-facksplåt, c/c 6m, snölast 2 kN/m, egentydig 0,5 kN/m:
Ändfacken först

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>1</td>
<td>3,8</td>
<td>-6,7</td>
<td>3,1</td>
<td>-5,6</td>
<td>7</td>
</tr>
<tr>
<td>1, 3</td>
<td>3,7</td>
<td>-7,3</td>
<td>4</td>
<td>-7,8</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Mittenfacket först

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>2</td>
<td>7,9</td>
<td>-7,3</td>
<td>-1</td>
<td>-7,3</td>
<td>7,9</td>
</tr>
<tr>
<td>2, 1</td>
<td>4,4</td>
<td>-5</td>
<td>0,081</td>
<td>-7,8</td>
<td>7,7</td>
</tr>
</tbody>
</table>

- Ursprungligt moment vid jämnt fördelad belastning
- Reducerat moment mot det ursprungliga
- Ökat moment mot det ursprungliga
- Ökat moment mot det ursprungliga maximala fält- respektive stödmomentet

Kontinuerlig

Skottas taket enligt **fall 1**, från gavlarna in, så övertogs alltid de ursprungliga maximala fält- och stödmomenten för konstruktionen. Detta är bäst lämpat om lika tjock plåt används över hela taket, då den dimensionerande lasten aldrig överskrids. Nedan kan man se hur de olika fält- och stödmomenten ändras vid snöröjning av fall 1, vid snöröjning av 2m remsm på en 7-facks kontinuerlig konstruktion, c/c 6m, snölast 2 kN/m², egentyg 0,5 kN/m²:

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>2</td>
<td>7,9</td>
<td>-7,3</td>
<td>-1</td>
<td>-7,3</td>
<td>7,9</td>
</tr>
<tr>
<td>2, 1</td>
<td>4,4</td>
<td>-5</td>
<td>0,081</td>
<td>-7,8</td>
<td>7,7</td>
</tr>
</tbody>
</table>

Skottas taket enligt **fall 2**, från mitten och ut, blir momentskillnaderna för plåtarna i mitten inte lika stora som vid **fall 1**. Detta är bäst lämpat om gavelplåtarna är förstärkta. Nedan kan man se hur de olika fält- och stödmomenten ändras vid snöröjning av **fall 2**, vid en 7-fackskonstruktion:

<table>
<thead>
<tr>
<th>Skottade fack</th>
<th>Fältmoment 1</th>
<th>Stödmoment 1</th>
<th>Fältmoment 2</th>
<th>Stödmoment 2</th>
<th>Fältmoment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inga</td>
<td>7,2</td>
<td>-9</td>
<td>2,3</td>
<td>-9</td>
<td>7,2</td>
</tr>
<tr>
<td>2</td>
<td>7,9</td>
<td>-7,3</td>
<td>-1</td>
<td>-7,3</td>
<td>7,9</td>
</tr>
<tr>
<td>2, 1</td>
<td>4,4</td>
<td>-5</td>
<td>0,081</td>
<td>-7,8</td>
<td>7,7</td>
</tr>
</tbody>
</table>

Gerberskarv

Vid Snörjning av kopplat Gerbersystem är principen att det skottas i samma ordning som plåten är monterad. På bilderna nedan monteras plåten från vänster till höger förutom de två sista plåtarna där fack 7 monteras före fack 6. Vid snörjning av Gerbersystem skottas inte remser, utan hele fack avlägsnas innan vidare snörjning fortlöper.

Äkta Gerbersystem skottas olika beroende på om det är jämnt eller ojämnt antal fack.

Figuren visar hur lederna är placerade i ett äkta Gerbersystem med ojämnt antal fack med led i gavelfacken.

Figuren visar hur lederna är placerade i ett äkta Gerbersystem med ojämnt antal fack utan led i gavelfacken.

Tak med ojämnt antal fack inleds med snörjning av oledade fack, symmetriskt från gavlarerna mot mitten. Därefter skottas ledade fack från gavlarerna mot mitten.

Tak med jämnt antal fack skottas på samma sätt som ojämnt antal förutom att det gavelfack som har en led i sig skottas direkt efter att de facken närmast gavlarerna utan led röjts.

Vid snörjning av Gerbersystem skottas alltid hela fack.
Föreskrifter och förklaringar

Den skrivna texten på ritningen ska vara de viktigaste punktarna så att de inte kan försummas eller glömmas bort. Symboler och dylikt utformas av konstruktören men exemplet i Bilaga 3 är till som hjälpmedel vid utformningen. Ämnen nedan är de saker som alltid bör vara med på ritningen.

Snögränser

Här är det två gränser som ska sättas. En undre gräns när det är dags att börja skotta och en övre när man inte får beträda taket. Enheten som gränserna ska sättas till är kg/m². Om det ska upprättas en snöröjningsplan på en äldre byggnad, ta reda på vilken snözon byggnaden befann sig i när den dimensionerades. Tänk även på att snögränserna kan variera över en byggnad p.g.a. tillbyggnad och/eller m.m. En viktig sak att tänka på är att konstruerat byggnaden är att titta på vilka säkerhetsklasser de olika byggnadsdelarna är dimensionerade efter. Att sätta en väldigt låg undre gräns för att vara på såkra sidan och på så sätt skicka upphörda personer på takarbete när det inte behövs medför en onödig risk för arbetarna. Vidare att sätta för hög undre gräns kan innebära att man inte hinner skotta vid ett ihållande snöfall och det kan leda till att den övre gränsen uppnås då man inte får beträda taket.

Drivbildning

Det är viktigt att belysa att de delar av taket som är värst belastade skottas först så att jämn snölast råder eftersom ordinarie snöröjning baseras på jämn snölast.

Lägre belägna tak

Man bör aldrig skotta ner snö på lägre belägna byggnader, altaner, skärmtak m.m. Om detta medför att vägen skottaren skall gå för avläsning av snön blir lång, kan konstruktören då rita ut vägar s.k. gångar.

Gångar

Gångar är något konstruktören kan rita ut på snöröjningsplanen för att underlätta snöröjningen då det blir en kortare väg för skottarna att gå till takkanten där de skottar ner snön. Dessa gångar går tvärs över facken, så det är viktigt att de inte är bredare än en skyffelbredd. Använd gångar sparsamt då de i för stor uträckning kan påverka belastningarna väsentligt på ett ogynnsamt sätt.

Orientering

Märk ut vilket hål som pekar mot norr på snöröjningsplanen så att det tydligt framgår vilket sida av huset som är vilken.

Märka ut dörrar

Märk ut alla ingångar/utgångar på snöröjningsplanen så som entré, nödutgångar, portar m.m. så att de som ska utföra snöröjningen inte skottar för någon ingång av misstag.
|-------|
Tabell 6. En sammanställning av alla momentutkast för skottring av framre antal fack.

<table>
<thead>
<tr>
<th>Fack</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Tabell 7. En sammanställning av alla momentutkast för skottring av framre antal fack vid led i gavelracken.

<table>
<thead>
<tr>
<th>Fack</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>

Tabellen visar momentutkast vid skottring av ett kontinuerligt skotsat tex som skatts från mitt och ut.
Bilaga 3 – Exempel på snöröjningsplaner
FÖRESKRIFTER

Orsaker:
Om snön uppnår ___ kg/m², ska taket skottsas.
Om snön uppnår ___ kg/m², för taket ej beträddas, utredning krävs, kontakt konstruktör.

Drivbildning: Skotta alltid där dessa har uppstått först och se till så att snön ligger lätt på taket innan skottning enligt skottningsplan startas.

Var noga med att skotta symmetriskt över taket d.v.s. skotta motsvarande dela på samma takhalva och även motsvarande på andra sidan noden.

Lägre belägna tak: Skotta aldrig ner snö på lägre belägna tak då det kraftigt ökar risk för takras.

Remor, skottas först för att inte fördela om snölasten på taket i för stor utsträckning. En remas sträcker sig över båda sidorna av noden.

Övriga, för att minska avstånd vid oavlastning av snö. Får vara max 1 skyfellbredd.

FÖRKLARINGAR

1. Där i fasad

Orsning fält ska skottas i:
Börja med remor 1, från gavlarna till mitten. sedan remor 2. från gavlarna till mitten.

A-H: Takstolar
I: Takfor
J: Taknock

Typ av plåttillgjutning: kontinuerlig, samma plåt över hela taket

HÖGSKOLAN
HÄLMSTAD

BYGGSELLOPSPROGRANMETT

RITAD AV: Herman Gustafsson
DOK AV:
DATUM: HALMSTAD 2012-3-27

SKALA: 1:___

SIGN:
Datum:
REV: K1
Annan byggnad. Ingen snö får skottas ner här!

1 skyffelbredd

Gränser:
Om snön uppnår ___ kg/m², ska taket snörjas.
Om snön uppnår ___ kg/m², får taket ej
beträddas, utredning krävs, kontakta konstnär

Drivbildningar: Skotta alltid där dessa har
upptäckts först och avse till så att snön ligger
jämst fördelad på taket innan röjning enligt
snörjningsplan stärkas.

Ett fält sträcker sig över båda sidor av nocken.

Var noga med att skotta symmetriskt över taket
d.v.s skotta motsvarande sida på samma
takhalva och även motsvarande på andra sidan
nocken.

Lägre belägna tak: Skotta alltid ner snö på
lägre belägna tak då det kraftigt ökar risken för
takras.

Gånger, för att minska avstånd vid
avlastning av snö. Får vara max 1 skyffelbredd.

FÖRKLARINGAR

1 Dörr i fasad
 Ordning fällt ska skottas i. Börja
 med 1, sen 2, 3 osv.

A-G Takstolar
H-I Taklock

Typ av plåtläggning

Äkta gerbersystem, skarv i fick AB,
CD, EF.

SNÖRJNINGSSPLAN
Fastighetsnamn

HÖGSKOLAN
HALMSTAD

BEHANDLINGSÅRSPLAN

RITAD AV
Herman Gustafsson

SIGN

Datum
HALMSTAD 2012-3-27

SKALA 1:___

REV

K3

HÖGSKOLAN
HALMSTAD

BEHANDLINGSÅRSPLAN

RITAD AV
Herman Gustafsson

SIGN

Datum
HALMSTAD 2012-3-27

SKALA 1:___

REV

K3