

Technical report, IDE1159, October 2011

Performance Comparison of Multi Agent Platforms

in Wireless Sensor Networks.

MasterΩǎ ¢ƘŜǎƛǎ ƛƴ Embedded and Intelligent Systems

Bernhard Bösch

School of Information Science, Computer and Electrical Engineering

Halmstad University

ii

Performance Comparison of Multi Agent Platforms

in Wireless Sensor Networks.
aŀǎǘŜǊΩǎ Thesis in Embedded and Intelligent Systems

School of Information Science, Computer and Electrical Engineering

Halmstad University

Box 823, S-301 18 Halmstad, Sweden

iii

November 2011

iv

v

Preface

I would like to thank everyone who supported me during the work on this thesis. Without their experience and

help this thesis would not have been possible. First of all, I would like to take the chance to state my highest

gratitude to my supervisor Edison Pignaton de Freitas for his advice and great support. In addition to that I

would also like to thank my family and friends, who have encouraged me during the strenuous time of writing.

Bernhard Bösch

Halmstad University, November 2011

vi

vii

Abstract

The technology for the realization of wireless sensors has been available for a long time, but due to

progress and development in electrical engineering such sensors can be manufactured cost

effectively and in large numbers nowadays. This availability and the possibility of creating

cooperating wireless networks which consist of such sensors nodes, has led to a rapidly growing

popularity of a technology named Wireless Sensor Networks (WSN). Its disadvantage is a high

complexity in the task of programming applications based on WSN, which is a result of its distributed

and embedded characteristic. To overcome this shortcoming, software agents have been identified

as a suitable programming paradigm. The agent based approach commonly uses a middleware for

the execution of the software agent. This thesis is meant to compare such agent middleware in their

performance in the WSN domain. Therefore two prototypes of applications based on different agent

models are implemented for a given set of middleware. After the implementation measurements are

extracted in various experiments, which give information about the runtime performance of every

middleware in the test set. In the following analysis it is examined whether each middleware under

test is suited for the implemented applications in WSN. Thereupon, the results are discussed and

ŎƻƳǇŀǊŜŘ ǿƛǘƘ ǘƘŜ ŀǳǘƘƻǊΩǎ ŜȄǇŜŎǘŀǘƛƻƴǎΦ Cƛƴŀƭƭȅ ŀ ǎƘƻǊǘ ƻǳǘƭƻƻƪ ƻŦ ŦǳǊǘƘŜǊ ǇƻǎǎƛōƭŜ ŘŜǾŜƭƻǇƳŜƴǘ

and improvements is presented.

viii

ix

Contents

PREFACE ... V

ABSTRACT .. VII

CONTENTS ... IX

LIST OF FIGURES .. XI

LIST OF TABLES .. XII

LIST OF CODE LISTINGS .. XII

1. INTRODUCTION ... 1

1.1 APPLICATION AND TECHNOLOGY AREA ..1

1.2 MOTIVATION AND PROBLEM STUDIED ..1

1.3 APPROACH CHOSEN TO SOLVE THE PROBLEM ...2

1.4 THESIS GOALS AND EXPECTED RESULTS ...2

1.5 THESIS OUTLINE ...2

2 BACKGROUND ... 3

2.1 AGENTS IN ACTION ..3

2.2 MIDDLEWARE FOR AN EASIER DEVELOPMENT ...4

2.3 CENTRALIZED MOBILE OBJECT TRACKING ..5

2.4 DECENTRALIZED SEARCH ..8

3 METHODS AND TOOLS .. 13

3.1 METHODOLOGY ..13

3.2 SUN SPOTS ..13

3.3 AFME ..15

3.4 MAPS ..17

3.5 JADE - LEAP ...19

4 SYSTEM ARCHITECTURE AND DESIGN.. 23

4.1 CENTRALIZED MOBILE OBJECT TRACKING ..24

AFME ...25

MAPS ..30

JADE ..34

x

Agent Based User Interface ..35

Database and Interface ..37

4.2 DECENTRALIZED SEARCH ..38

AFME ...38

MAPS ..40

5 EXPERIMENTS AND RESULTS ... 43

5.1 CPU UTILIZATION ...47

5.2 MEMORY ..48

5.3 ENERGY ..49

5.4 WIRELESS TRAFFIC ..51

5.5 MIGRATION ...52

6 DISCUSSION .. 53

7 RELATED WORK ... 55

8 CONCLUSION AND FUTURE WORK .. 57

REFERENCES ... 59

APPENDIX ... 63

A. GLOSSARY ...63

B. SOFTWARE VERSIONS ..64

C. SOURCE CODE ..65

1. AFME ...65

2. MAPS ...67

3. JADE...69

xi

List of Figures

Figure 1 Agent migrations in the original WSN tracking application. ..6

Figure 2 The WSN for the pheromone based search with agent cloning approach. ..10

Figure 3 Pheromone base search concept with agent migration approach. ..11

Figure 4 The composition of Sun SPOTs out of different layers. Picture taken from (15)14

Figure 5 CLDC two stage verification process. Adapted from [18] ...15

Figure 6 Overview of the available JAVA versions and run configurations. Adopted from [27]20

Figure 7 JADE LEAP execution modes: (a) Stand-alone execution mode; ...21

Figure 8 Architecture of the Centralized Mobile Object Tracking application ..24

Figure 9 Class diagram AFME platform used in the Centralized Mobile Object Tracking application.26

Figure 10 Class diagram of the used module, perceptors and actuators by RAC implementation in AFME30

Figure 11 Class diagram of the MAPS agent platform and the implemented class of the RAT31

CƛƎǳǊŜ мн {ǘŀǘŜ ŘƛŀƎǊŀƳ ƻŦ ǘƘŜ ǎǘŀǘŜ ƳŀŎƘƛƴŜ ƛƳǇƭŜƳŜƴǘƛƴƎ ǘƘŜ a!t{ ōŀǎŜŘ w!¢Ωǎ ōŜƘŀǾƛƻǊ32

CƛƎǳǊŜ мо {ǘŀǘŜ ŘƛŀƎǊŀƳ ƻŦ ǘƘŜ ǎǘŀǘŜ ƳŀŎƘƛƴŜ ƛƳǇƭŜƳŜƴǘƛƴƎ ǘƘŜ a!t{ ōŀǎŜŘ w!{Ωǎ ōŜƘŀǾƛƻǊ32

Figure 14 StŀǘŜ ŘƛŀƎǊŀƳ ƻŦ ǘƘŜ ǎǘŀǘŜ ƳŀŎƘƛƴŜ ƛƳǇƭŜƳŜƴǘƛƴƎ ǘƘŜ a!t{ ōŀǎŜŘ {/!Ωǎ ōŜƘŀǾƛƻǊ33

Figure 15 Screenshot of implemented Android user interface. ..35

Figure 16 Architecture of the implement agent based Android user interface ..36

Figure 17 UML class diagram of an AFME platform supporting agent mobility. ...38

Figure 18 UML state diagram modeling the behavior of a MAPS based Decentralized Search agent.41

Figure 19 Test configurations for experiments ...44

Figure 20 Node deployment in the WSN for a) Centralized Mobile Object Tracking b) Decentralized Search46

Figure 21 Combined diagrams showing CPU load and energy needs for a) Centralized Mobile Object Tracking

and b) Decentralized Search ...50

file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894956
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894957
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894958
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894963
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894971
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894974
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894975

xii

List of Tables

Table 1 Measured CPU utilizations in % of the centralized mobile object tracking application and the

decentralized search application in comparison ... 47

Table 2 Memory utilization during execution (in kilo bytes) of the centralized mobile object tracking

application and the decentralized search application in comparison ... 48

Table 3 Energy consumption of the implementations. .. 49

Table 4 Wireless traffic results for implementations of the centralized mobile object tracking

application. .. 51

Table 5 CPU and Energy consumption results for agent migration test scenario 52

List of Code Listings

Code Listing 1 necessary source modification of MAPS internal class

MobileAgentCommunicationChannelSender .. 19

Code Listing 2 AFME platform definition for a sensor node .. 25

Code Listing 3 AFME definitions of all AFME based agents for the tracking application a) RAT, b) RAS,

c) SCA and d) RAC .. 28

Code Listing 4 Agent definition of the AFME decentralized search agent. .. 39

file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305207
file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305207
file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305209
file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305209

1

1. Introduction

1.1 Application and Technology Area

Progress in the fields of electronics and miniaturization has led to the development of small

embedded wireless sensors, which are used in large numbers in different applications. The wireless

communication capability of such sensors is the main reason for the emergence of new applications,

in which their wired counterparts are not suitable [1]. The potential of these wireless sensors can

increase even further, when they form a network of cooperative sensor nodes. These wireless sensor

networks (WSN) are an emerging and promising technology for a wide field of applications in the

civilian and military sector, such as in border line surveillance or in the monitoring of patients in

health care.

Besides their potential, the development of a wireless sensor network application is a challenging

task due to the distributed and embedded characteristics of such a network. Out of several proposed

programming paradigms to overcome this challenge, the software agent based approach is very

promising [2; 3] and is therefore addressed in this thesis. In general, the execution of software agents

requires a middleware. A great variety of middleware that supports software agents on different

hardware-platforms is available for different programming languages. Yet the choice for a suitable

middleware can be difficult, because it is hard to compare their performances directly.

1.2 Motivation and Problem Studied

The problem that is focused in this thesis is to compare the suitability of selected middleware

approaches for a specific application in the WSN domain. Several functional prototypes of two

applications, the Centralized Mobile Object Tracking and the Decentralized Search, are developed.

These prototypes make it possible to analyze their performances and needed resources. The results

provided by this analysis can be used as evaluation criteria to choose the most appropriate

middleware among those that are tested.

2

1.3 Approach Chosen to Solve the Problem

In order to solve the problem addressed in this thesis, the following approach is used to support the

process of choosing a middleware for a specific application. For the comparison of three middleware

in their performance of execution, two predefined and then implemented applications are realized

on a chosen hardware platform. The applications are a tracking application, which is a well known

application for WSN and a Decentralized Search application, which is based on a pheromone-

coordination strategy (for more detailed information about the implemented applications see

chapter 2.3 and 2.4). To be able to compare the middleware in the context of a chosen application,

prototypes of the applications are then implemented on the evaluated middleware. After these

implementations experiments are conducted, which are executed according to defined test

configurations in order to extract metrics representing the run time execution performance to

certain criteria of the middleware executing the test application.

1.4 Thesis Goals and Expected Results

¶ Implementation of functional and comparable prototypes for a given set of middleware for

the tracking and search application.

¶ Extraction of measurements about the performance and resource needs of every middleware

in the test set.

¶ Analysis of the measurements to determine the suitability of every member of the set of

middleware for the specific applications.

1.5 Thesis Outline

This thesis consists of seven main chapters in addition to this introduction. Chapter 2 provides an

overview about software agents and middleware as well as the necessary background information

for the implemented applications. In Chapter 3 the used hardware platform, its main properties and

the set of the chosen agent middleware used in this thesis are introduced. Furthermore, the

methodology of the work is presented in this chapter. Chapter 4 focuses on the overall architecture

of both applications as well as on the architecture of their components. The necessary distinctions in

the overall architectural design, which are the result of different properties and characteristics of the

different middleware, are also shown. In Chapter 5 the results are presented and the method of

extraction is shown. These results and measurements are discussed in Chapter 6. Several related

works are outlined in Chapter 7 followed by a conclusion of the work and suggestions for further

improvements and future work in Chapter 8.

3

2 Background

Programming a WSN application is not trivial due to the limitations of the used hardware platforms,

like processing power as well as memory and energy resources and the complexity of a highly

distributed wireless system. Most implementations for WSN are application- or domain-specific and

necessitate trade off in the fields of task complexity, communication patterns and resource usage.

Hence these specific implementations include most likely modules for routing mechanisms, time

synchronization, node localization and data aggregation. These modules have dependencies to their

applications and therefore these parts can hardly be reused. A WSN-aware programming paradigm is

needed to support a rapid development and a highly flexible deployment of WSN software. This

paradigm will be explained in the following subchapter. The agent-based approach has a high

potential for the use in WSN applications, as it meets the demands mentioned above.[2; 4]

2.1 Agents in action

There has been a lively discussion in the literature about the precise definition of the term software

agent and about how software agents differ from ordinary computer programs. In [5] the authors

Franklin and Graesser show the similarities and differences of several definitions for software agents

and provide a taxonomy that attempts to contain all of them. The authors also extract some mutual

concepts from the definitions discussed in their work. According to these concepts, a software agent

can be defined as a software entity or as an additional abstraction layer. Franklin and Graesser state

that a software agent has to support the following properties:

¶ Autonomy: software agents can make decision about how to reach a certain goal and which

actions to take without any interaction with the user or other programs.

¶ Reactivity: software agents are capable of receiving events and environmental changes and

trigger a responding action.

¶ Social ability: Interaction between a software agent and other entities (e.g. user, other agents

etc...) is possible and can lead to coordination, cooperation or even competition.

¶ Persistence: The execution of a software agent is continuously, in contrast to the sequential

execution of operation in normal software.

In [6] a popular definition for software agents can be found, in which behavior is a fundamental

concept. There are other works that provide various taxonomies for the classification of software

agents. Different taxonomies are presented for example in the works of Hector [7] or Sakarkar and

Shelke [8].

4

 According to [9] another essential property for a software agent in the WSN domain is agent

mobility. A mobile software agent can transfer its execution from one system to another system in

the network and can subsequently continue its operation on the target system. The process of

transferring an agent from a source system to a destination system is often called migration. While

migrating the code of the software agent, which implements its behavior, it is possible for the agent

to carry its data, also named state, during the transfer. The migration is called stateful, if the state is

included in the transmission. If the state is excluded, the migration is referred to as stateless.[10]

After the agent is transferred, the migrated agent is only executed on the destination system.

There is an additional concept called cloning in the context of agent mobility, which extends agent

migration [11]. When using agent cloning, a copy of the original agent runs on the destination system

and the original agent itself is still present on the source system. Hence, the difference to agent

migration is that with agent cloning the copy and the original are executed on both systems

ǎƛƳǳƭǘŀƴŜƻǳǎƭȅΦ ¢ƻ ŀŎŎƻƳǇƭƛǎƘ ǘƘŀǘ ǘƘŜ ŀƎŜƴǘΩǎ ŜȄŜŎǳǘion is paused, a copy is made which is

ǘǊŀƴǎŦŜǊǊŜŘ ƻƴǘƻ ǘƘŜ ǘŀǊƎŜǘ ǎȅǎǘŜƳ ŀƴŘ ǘƘŜ ŀƎŜƴǘΩǎ ŜȄŜŎǳǘƛƻƴ ƛǎ ǊŜǎǳƳŜŘΦ

The previous mentioned social property of software agents leads to multi-agent systems (MAS), in

which agents can interact with each other. It should be noticed that the interaction is not necessarily

between two or more agents, but it is also possible that an agent interacts with humans or other

entities. MAS are suited for complex tasks, which are difficult or even impossible to be performed by

one single agent or a conventional software system. [12]

2.2 Middleware for an Easier Development

The development of a MAS from the scratch is a challenging task and would exceed the time budgets

of most WSN application development projects. Therefore, many multi-agent platforms (MAP) are

provided by several companies, academic institutions or open source projects to develop, run and

manage MAS.

MAPs are implemented as an additional abstraction layer between the operating system and the

agents executed by the platform and thus they function as middleware. The software developer is

supported with a flexible framework for a rapid implementation of MAS applications by MAPs. This is

made possible through the supply of an environment, in which an agent can be executed and

through essential services e.g. agent communication, migration, scheduling and accessing system

resources. [13]

5

In this thesis the focus is on lightweight MAPs which are able to run on target systems with limited

hardware resources, because these systems are most common in a WSN. Virtual machines are also

available for such embedded systems. Due to their availability, Java as object orientated high-level

programming language can be used to develop applications for the target systems mentioned above.

Two reference mobile object tracking applications are implemented on the following Java based

MAPs: JADE, MAPS and AFME on Oracle Sunspots [14] as the chosen hardware platform capable of

the execution of Java byte code.

2.3 Centralized Mobile Object Tracking

One of the mobile object tracking applications, the Centralized Mobile Object Tracking, is based on

the work of Freitas et.al. [1] and Allgayer et.al. [15]. Contrary to their work, in which mobile agents

are used, the centralized version of the mobile object tracking presented in this thesis is

implemented with cooperating static agents. The reason for that is that one of the used MAPs cannot

support agent migration. In this section the approach proposed by Allgayer et.al. is discussed and

afterwards the modifications for the implemented tracking application without agent mobility are

demonstrated.

The WSN consists of distributed sensor nodes on predefined positions. These nodes are able to

perform processing and communication with their neighboring nodes and to sense the distance to

the target node. Depending on the characteristics of the mobile target, different types of active and

passive sensors can be used for this purpose. In the implementations that are developed in this thesis

the wireless interface is employed as sensor. The target node continuously sends radio signals, which

are called beacons. These beacons are received by the sensor nodes with their local wireless

interface. During the reception the sensor nodes measure the signal strength. Hence the software

calculates the distance between the target node and the receiving sensor node via the

omnidirectional model of electromagnetic wave propagation. This model states that the power of the

beacon signal declines quadratically over the distance.

The suggested sensor network consists of three types of nodes. The first type is the already

mentioned target node, which can be tracked by the network. The second type, the sensor node, has

the function of sensing the beacon frames broadcasted by the target. The WSN consists of several

sensor nodes, but to accomplish a successful localization of the target object at least three nodes of

this second type have to be in range of the target. The third type is a coordination node, which is

responsible for the start of the mobile agents. It also functions as sink node, in other words the

6

calculated result - in this case the location of the target ςexits the WSN over the coordination node.

Figure 1 shows the structure of the WSN with all three types of nodes for the Centralized Mobile

Object Tracking.

The authors in [1] propose an implementation with two types of software agents: Collaborative

Agents (CAs) and Resident Agents (RAs). RAs are not mobile and therefore they stay on a fix node.

These agents can either be a RA_Target (RAT), a RA_Coordinator (RAC) or a RA_Sensor (RAS)

depending on which type of node the agents are created. RAS are executed on sensor nodes. They

perform the measurements of the signal strengths of the received beacons broadcasted by the target

object. In addition to that the RAC runs on the coordinator node, which is also the starting point of

the execution of the CAs.

CAs are able to migrate between nodes. Their function is to perform the localization of the target.

Therefore, these agents communicate with their local RAS that provide the distance to the target. A

CA can either be a CA_Master (CAM) or a CA_Slave (CAS). CAS are simply forwarding the distance

information received via the local RAS to the CAM. The CAM uses this information together with its

ƭƻŎŀƭ ǊŜŀŘƛƴƎ ǘƻ ŎŀƭŎǳƭŀǘŜ ǘƘŜ ǘŀǊƎŜǘΩǎ ǇƻǎƛǘƛƻƴΦ !ƴ additional task handled by the CAM is the

coordination of CA migrations. These migrations are essential in case the target leaves the range of a

sensor node that hosts a CA.

Figure 1 Agent migrations in the original WSN tracking application.

7

Figure 1 depicts all necessary agent migrations and the tracking process in the original WSN tracking

application. The initialization of the WSN is shown from a) to c). Three RAS detect the broadcasted

beacon frames emitted by a RAT, which is also the start condition of the following step. Via

messaging service provided by the MAP, three RAS inform the RAC that a RAT is in range (Figure

1(a)). The RAC subsequently requests the CAM to migrate to the sensor node closest to the target

object (Figure 1(b)). When the CAM resumes its execution on the closest node, two agents cloned

from the CAM are sent to the other two sensor nodes, which previously have informed the

coordinator about the received beacons (Figure 1(c)). In contrast to the master agent the clones act

as slaves. Figure 1(d) shows the migration of one of the CAS when the target object has left the range

of its current host.

Due to the fact that not all available MAPs for the chosen hardware platform support agent cloning

(one even cannot perform agent migration), some modifications of the presented solution are

necessary in order to implement this application on the chosen MAPs. The mobile CAs are replaced

by static agents, the static cooperative agents (SCAs) and hosted on every sensor node. SCAs have

three possible roles: they can be inactive, master or slave. The task of managing the CA has moved

from the CAM to the RAC so that the implementation is simplified. To be able to fulfill this task the

RAC needs information about which nodes are in range of the target. Therefore, the RASs also send

their distance readings to the RAC, but in a lower frequency than to the local active CA. In case the

target object comes in range, the distance readings are sent immediately.

To minimize of complexity of the application the following limitation have to keep in mind. Only one

target node is supported, i.e. the network is able to track just one target at a time. The target node

and sensor node are on a two dimensional plane. It is assumed that the distance between neighbor

nodes assures the three nodes in the triangle are in range of each other and that the communication

is not error-prone. A routing protocol can be used for direct communication between all agent

platforms on the sensor nodes and the platform hosting the RAC.

The three sensor nodes closest to the target object calculate the position of the target object via

triangulation. Hence, the nodes have to be arranged so that three of them form an equilateral

triangle, as it can be seen in Figure 1. The position of the target object (x0, y0) can be determined by

the formula represented by (1). The formula uses the positions of the sensor nodes (xi,yi). These

positions have to be known by the calculating node as well as the distance for the participating

sensor nodes to the target object (ri) for i = 1 to 3. The cooperative agent, which acts as master and

8

which is supplied by the slaves with their distance readings, is responsible for executing this

triangulation algorithm.

ὖ0 =
ὼ0

ώ0
= ὃ 1 × ὦ (1)

 For A and b:

ὃ= 2 ×
ὼ3 ὼ1 ώ3 ώ1
ὼ3 ὼ1 ώ3 ώ2

 (2)

ὦ=
(ὶ1

2 ὶ3
2)

(ὶ2
2 ὶ3

2)

ὼ1
2 ὼ3

2 + (ώ1
2 ώ3

2)

ὶ1
2 ὶ3

2 + (ώ2
2 ώ3

2)
 (3)

The role in which a SCA acts is managed by the RAC. Therefore, the RAC uses the provided distance

information to determine the three closest sensor nodes to the target object. This information is

provided by the RAS as mentioned before. The starting condition for the triangulation is that the

target object is in range of three sensor nodes. After the RAC received distance information from at

least three RAS, it organizes this information in a list sorted by the distances. The RAC then activates

the SCAs on the closest sensor nodes according to this list and assigns their roles. This is

accomplished via messages, which contain the role and all necessary information. A SCA, destined to

act as a slave, is informed about the address of the master. The master is provided with its position

and the coordinates of the slaves to be able executed the triangulation algorithm. The RAS informs

the RAC supplementary to the repeated transmissions, if the target gets in range, if the first beacon is

received and if the target gets out of range. As a result, the response to the movement of the target

object is enhanced.

2.4 Decentralized Search

The second application used in this thesis, the Decentralized Search, is based on the pheromone-

coordination strategy presented by Freitas et al. in [16]. It can be seen as a completely decentralized

version of tracking. The authors show a pheromone-based approach to coordinate a network of

unmanned aerial vehicles (UAVs) and ground sensor nodes. It is used to forward alarms from a

ground sensor network to UAV drones. In this work virtual pheromones are used to find the sensor

node closest to the mobile node. The moving nodes (UAVs) emit radio beacon equally as in the

application described above. These beacons are stored as virtual pheromone marks on the static

sensor nodes in its range. Thereby the initial value of the pheromone mark is determined by the

9

strength of the beacon signal. As with real pheromone trails in nature, for example trails used by ants

to track food, virtual pheromone tracks fade over time. The formed pheromone trails show a

gradient concentration of pheromones, which indicates the movement of the mobile nodes. While a

static sensor wants to deliver a message to a mobile one, the message just follows this concentration

towards the increasing direction of gradient. In Figure 2 a WSN for the pheromone based search is

demonstrated. Figure 2(a) shows a small WSN with the virtual pheromone marks left by the target

objects after the mobile node moved through. The illustration also depicts a possible starting position

of the agent searching the mobile node. This WSN consists of one type of sensor node, which

executes two kinds of agents, CA and RA as described in section 2.3. Sensing the beacons and the

handling of the pheromone mark is the responsibility of a resident agent, the RA_Sensor (RAS). The

second agent type is a collaborative search agent (CSA). The mobile CSAs are responsible for finding

the closest sensor node to the mobile node by following the pheromone marks.

The first approach to implement the Decentralized Search can be seen in Figure 2(b). A CSA follows

the trail by cloning itself to the neighboring nodes of its hosting node. When a clone starts its

execution on a node, it interacts with the local RAS, which provides the current level of the

pheromone trail. By comparison between the pheromone levels of the previous and the hosting

node, the CAS decides its next step. In case the pheromone level on the current node increases, the

CAS clones itself to the new neighboring nodes and informs the CAS from which it was cloned, about

the higher level on the current node. Otherwise the CAS terminates its execution. If a CAS is informed

by one of its clones about a higher pheromone level, it also ends its lifecycle. If there is no message,

the current node is the closest one and therefore the desired destination node.

10

Due to the fact that agent cloning is not supported by all the MAPs used in this thesis, some

modification to this approach are necessary. Therefore agent migration was used, which is supported

by all the MAPs, instead of agent cloning. The algorithm implemented as agent behavior to fulfill the

search follows these steps:

Figure 2 The WSN for the pheromone based search with agent cloning approach.

90
85 65 45 0

0 0

50
25

20 15

55

35 65

0 0

75

0

80 75

b)

a)

90 85 65 45 0

0 0

50 25

20 15

55

35 65

0 0

75

0

70 80

 Sensor Node

 Target Object

 Target Track

 Search Agent

 Visited Node

 Chosen Node

 Agent Cloning

 Final Node

 Start Node a b

c d

e

11

a) The searching agent obtains a list of neighbor nodes and its current pheromone level from

the current hosting node. If no more unvisited nodes can be obtained or the pheromone

levels are less then on a previous node, the agent migrates to the node with the highest

pheromone mark, its final position and ends the search.

b) The agent executes a stateful migration to all neighbor nodes in the list, except for already

visited ones, and stores the highest pheromone level found and addresses of visited nodes

as state.

c) If there are no more nodes to visit in the list, the agent migrates to the node with the

highest pheromone level and continues with step a).

This behavior of the searching agent is also depicted in Figure 3 that depicts the pheromone based

search concept with agent migration approach. At the start node (node a) the agent gets the list of its

direct neighbors (node b and c). After visiting both nodes, the agent continues on the node with the

higher pheromone level (node c). Depending on the order of nodes (b,c or c,b), the agent might have

already been on c. If this is not the case, the agent has to perform an additional migration from b to

c. Having arrived on c, the agent obtains a new list of neighbors (d,e and a). The node a is dropped,

because the agent already knows that it has been there, so the pheromone level of node a is familiar.

In case a routing protocol is provided by either the MAP or by the hardware platform, the agent is

able to directly migrate to a node which is not in its range (e.g. from b to c). If this is not the case, the

agent has to take a detour over a node in its range (e.g. from b over a to c).

 Sensor Node

 Target Object

 Target Track

 Search Agent

 Visited Node

 Chosen Node

 Agent Cloning

 Final Node

 Start Node

90 85 65 45 0

0 0

50 25

20 15

55

35 65

0 0

75

0

80 75

a b

c d

e

Figure 3 Pheromone base search concept with agent migration approach.

12

13

3 Methods and Tools

3.1 Methodology

To be able to compare the chosen MAPs running the two applications, which are described in

Sections 2.3 and 2.4, prototypes for them have been implemented. To achieve comparable results,

the applications are implemented as similar as possible despite the different architectures and the

distinctive concepts of the selected MAPs. Therefore most parts of the code defining ŀƎŜƴǘΩǎΩ

behaviors were reused in the implementation for the different MAPS. The experiments of all tests are

done on identical hardware, in this case the same devices, to ensure that the results are not

influenced by meanderings in the hardware. Furthermore, only features and services provided by all

MAPs are used in the implementations. Different characteristics of the MAPs, which are shown in this

chapter, lead to necessary differences in the architecture of the overall system. Hence only the

implementations of similar subsystems are compared in this work. For further similarity the common

programming paradigm was chosen, therefore the agent behaviors or components develop due to

the state machine programming model.

This chapter introduces the used hardware platform the Sun Oracle Sun Spot[14] as well as the MAPs

on which the applications are implemented. Furthermore, the steps necessary to successfully use the

MAPs as middleware (MW) on the selected hardware platform are shown.

3.2 Sun Spots

Oracle Labs, the former Sun Labs, developed the Small Programmable Object Technology (SPOT) to

provide an experimental hardware platform as well as the development software needed to create a

wide range of embedded wireless applications. A SPOT device, from now on called Sun Spot, is an

embedded device, slightly bigger than a box of matches, equipped a wireless interface, battery

supply, processor unit and several built-in sensors. As it can be seen in Figure 4 a normal Spot

consists out of three different boards. There is a second type of Spots, the base stations, unlike

normal Spots they only have the processor board layer (including CPU and wireless interface), but no

sensors board and power supply. Base stations can act as interface for a personal computer (PC) to a

network out of Spots or execute code on itself.

Besides the hardware a main characteristic of such a Sun Spot is that it is programmable completely

in Java. This is made possible by the usages of a Java Virtual Machine (VM), called Squawk VM, which

designed to have a minimal footprint and therefore is suitable to run on embedded devices. The

14

Squawk VM supports the Connected Limited Device Configuration (CLDC) 1.1 and the Mobile

Information Device Profile (MIDP) 1.0. Therefore Java is the preferred programming language to

program such a device.

Figure 4 The composition of Sun SPOTs out of different layers. Picture taken from (15)

Due to the fact that Java is a high level object orientated language, the SPOT allows a more rapid

development than other embedded development platforms, which are often programmed in lower

level languages like e.g. C or nesC. Another advantage of the SPOT is the provided Software

Development Kit (SDK) and its possible integration in popular Integrated Development Environments

like NetBeans and Eclipse.[17]

In regard to WSN there is a disadvantage with SPOT. Due to the fact that the Squawk VM supports

CLDC 1.1, dynamic class loading is not possible. CLDC is per definition a Java 2 Micro Edition (J2ME)

configuration. These can be seen as a subset of libraries and of features of the Java 2 Platform,

Standard Edition (J2SE) for mobile devices, like e.g. cell phones or PDAs with limited hardware

resources. CLDC focuses on devices with limited resources. As a result, several features of the J2SE

are not supported with CLDC, like e.g. the J2SE security model. It is replaced by several simpler and

more resource friendly security concepts. One of these concepts is responsible for the prevention of

dynamic class loading, the Sandbox model. This model states that an application cannot use any

resources or libraries that are not part of its scope. This means that an application running on a J2ME

with CLDC cannot load any new class, which is not part of the application jar file. Its predefined

functionality can therefore not be extended. [18] In the context of software agents in WSN this

results in the fact that every class, which an agent might need, must already be present on the

device. Even if the agent is not running on this device, all needed classes must be available on the

device to support the potential migration of such an agent. So it is not possible to simply add a new

15

agent with new features, which need a new code, to the network without updating every node the

agent is supposed to run on.

Additional to the limitation of the security model used in CLDC there is another characteristic. In

difference to the J2SE verification method, which would need too many resources (Memory and

processing time), application and libraries must be pre-verified to be able to execute on a CLDC

device. The verification process is depicted in Figure 5. The verification is done to ensure that only

valid applications are executed on the device. This was the reason for some initial problems with the

Agent Factory Micro Edition (AFME).[18]

Figure 5 CLDC two stage verification process. Adapted from [18]

3.3 AFME

Pervasive systems are the intended area of application of AFME, a MAP which is based on the Agent

Factory Framework [19]. The MAP has a minimized need of resources and is designed for devices,

which are compliant to the MIDP of J2ME and therefore support Sun Spots. AFME operates according

to the Believe-Desire-Intention (BDI) paradigm [20]. This states that an agent is carried out in a sense-

deliberate-act cycle, which is implemented in AME as a periodically scheduled sequence of four

steps. In the first step the agent perceives information about its environment and updates the

ŀƎŜƴǘΩǎ ōŜƭƛŜŦ ǎǘŀtes. These belief states represent the set of information available to the agent about

its current status and its environment. In the second step the agent uses resolution based reasoning

ǘƻ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ŀƎŜƴǘΩǎ ŘŜǎƛǊŜǎΦ ¢Ƙƛǎ ƛǎ ŦƻƭƭƻǿŜŘ ōȅ ǘƘŜ ŘŜǘŜǊƳƛƴŀǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ ƛƴǘŜƴǘƛƻƴǎΣ

ǿƘƛŎƘ ŀǊŜ ƛƴ Ƴƻǎǘ ŎŀǎŜǎ ƛǘǎ ŘŜǎƛǊŜǎΦ LŦ ƴŜŜŘŜŘΣ ŀ ǎŜƭŜŎǘƛƻƴ ǇǊƻŎŜǎǎ ƛǎ ƛƴǾƻƪŜŘ ǘƻ ƛŘŜƴǘƛŦȅ ǘƘŜ ŀƎŜƴǘΩǎ

16

commitments, which are the set or subset of the determined desires. According to the identified

commitments, certain actions are performed by the agent through its actuators in the final step.[21]

The platform provides four main component classes that the developer has to extend for the

implementation of an application. An AFME agent is composed of perceptors, actuators and

modules.[21] tŜǊŎŜǇǘƻǊǎ ŀǊŜ ŎŀƭƭŜŘ ƛƴ ǘƘŜ ŦƛǊǎǘ ǎǘŜǇ ƻŦ ŀƴ ŀƎŜƴǘΩǎ ŜȄŜŎǳǘƛƻƴ ǎŜǉǳŜƴŎŜ ŀƴŘ ŜƴŀōƭŜ ŀƴ

agent to perceive information from its environment, from other agents or from the agent itself.

PerŎŜǇǘƻǊǎ ŀǊŜ ŀƭǎƻ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǘƘŜ ǳǇŘŀǘŜ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƭƛŜŦ ǎǘŀǘŜǎ ǘƘŀǘ ŀǊŜ ōŀǎŜŘ ƻƴ ǘƘŜ

perceived information. Actuators are called in the last step of the execution sequence. Each of them

represents a certain action, which an agent could take to fulfill its desires. Modules are used for

agent internal information exchange between perceptors and actuators. The usage of modules is

necessary due to the loose coupling of agent components. There are no references and

dependencies between one object and another object. This results in the advantage that

components can easily be replaced or updated without touching additional components. Modules

can only be employed by their agents. To enable data exchange between agents, AFME uses objects

which extend the service component. The platform also offers predefined services, e.g. the Message

Transport Service (MTS) which is used for message based communication between agents or the

Radio Migration Manager which handles agent migration. Services are directly started by the agent

platform itself.

For implementing an application with AFME, it is suggested that both the declarative model and the

imperative programming model are employed. The implementation of modules, services, perceptors

and actuators is done imperaǘƛǾŜƭȅ ƛƴ WŀǾŀΦ ¢ƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘ ǇƭŀǘŦƻǊƳ ŀƴŘ ǘƘŜ ŀƎŜƴǘΩǎ

behavior should be done in a declarative AFME language, which is a minimized version of the Agent

Factory Agent Programming Language 2 (AFAPL2). This AFME language is used to define a declarative

ǎŜǘ ƻŦ ǊǳƭŜǎ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƘŀǾƛƻǊ ŀƴŘ ǘƘŜ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘƘŜ ŀƎŜƴǘ ǇƭŀǘŦƻǊƳΦ ! ŎƻƳǇƛƭŜǊ ƛǎ

generating java code out of the definitions and hardware specific templates. Through these

templates a definition of an agent can be reused on different hardware platforms by simply switching

these templates. For example, there is a template for Sun Spots which generates a code without a

graphical user interface (GUI). A complete imperative implementation with Java is possible, but has

disadvantages like e.g. there is no syntax checking for rules and the support of rules which include

mathematical expressions is missing. Three exemplary rules can be seen below. Each rule consists out

of beliefs and actions separated trough a greater-than sign. If an AFME agent belief set includes the

beliefs on the left side of a rule, it will be committed to do one or more actions which are

represented on the right side of a rule. That the evaluation of the conditions for an action can be

17

considered to be true, a resolution-based reasoning is done. Furthermore, negation (3), variables (2)

and mathematical expressions can be applied in AFME rules.[21; 4]

b1 , b2>doSomething; (1)

c , d(?var) >doSomethingWith(?var); (2)

!a , e >doSomethingElse; (3)

Due to the fact that it is possible to use a different template for different hardware platforms AFME

can be executed on a PC which is connected to a Sun Spot base station. This combination can act as a

gateway to the WSN and/or as sink node.

3.4 MAPS

The Mobile Agent Platform for Sun Spots (MAPS) is a middleware for software agents designed for

WSN. The MAPS was developed for the SPOT and therefore utilizes some specific features of the

Squawk VM. This makes the Squawk VM a requirement for this MAP. The main characteristics of

MAPS are that they have lightweight agents, an agent server architecture, a provision of minimal

core services and a plug-in-based extensions architecture. The lightweight agent architecture ensures

agent migration and execution with high efficiency. The core services offer support for migration, for

agent naming and for communication and they provide scheduling and access to sensor readings. The

platform can be easily extended with other services due to the plug-in-based extension architecture.

MAPS itself is composed of several components. These components interact with each other via

using an event based approach. MAPS agents are implemented according to the imperative

ǇǊƻƎǊŀƳƳƛƴƎ ƳƻŘŜƭΣ ǿƘƛŎƘ ŘŜŦƛƴŜǎ ŀƴ ŀƎŜƴǘΩǎ ōŜƘŀǾƛƻǊ ƛƴ ŀ Ƴǳƭǘƛ-plane state machine. A multi-plane

state machine was chosen to enable role specific behavior. Every plane corresponds to a certain role

of an agent and the state machine represents the behavior of the agent in this role. The result of this

architecture is that three popular programming paradigms for WSN are utilized in MAPS. These

paradigms are event-, state- and agent-based programming. [4]

As previously mentioned MAPS requires specific features of the Squawk VM. The most important one

is Isolates, which is not exclusive in the Squawk VM, but is defined in Java Specification Request (JSR)

121 (Application Isolation API) [22]. Extending JSR 121, Isolates in the Squawk VM possess one

additional feature, isolate migration. This feature allows that the execution of such an Isolate can be

paused, serialized and then it can be transferred over a network or stored on a storage device. After

ǘƘŜ LǎƻƭŀǘŜ ƛǎ ǊŜƭƻŀŘŜŘ ƛƴ ŀ ƘƻǎǘΩǎ ƳŜƳƻǊȅ όŜǾŜƴ ŦǊƻƳ Ƙƻǎǘǎ ǿƛǘƘ ŀ ŘƛŦŦŜǊŜƴǘ ƳŀŎƘƛƴŜ ǿƻǊŘ ōȅǘŜ-

18

order), the execution of the Isolate is continued from an instance of the Squawk VM.[23] The main

concept of Isolates is that an application is isolated from other applications via threaded objects

managed by the VM. Isolates can be seen as a possible implementation of the sandbox model, which

is discussed in section 3.2. Using MAPS, the Isolate represents a very important concept, because the

agent platform itself and all agents are realized as Isolates.[3] MAPS utilizes the Squawk VM Isolate

migration for agent migration processes.

Although MAPS was developed for SPOT, some problems with the supplied library occurred during

the implementation of the Centralized Mobile Object Tracking and the Decentralized Search. The

MAPS library used in this work is the version 1.1. With this version, it was not possible to run the

tutorial application taken from the MAPS documentation, because of several runtime exceptions

which led to a restart of the hardware. Therefore a java decompiler was needed to obtain the source

code of MAPS, which is published under the GNU General Public License [24]. The original source of

MAPS was not available. The MAPS team provides a Subversion repository, but that was empty at the

creation time of this work (24.10.2011.) [25]. After some minor modifications to the obtained source

code were performed, all errors highlighted from the IDE are corrected and the modified version of

MAPS is now able to start on a Sun Spot. Later in the implementation process, a new problem

concerning the outgoing communication occurred: the platform stopped transmitting. After a second

source code review, an internal class was extended, which is responsible for all outgoing

communication of a node. This modification gives MAPS agents the ability to communicate over the

entire runtime. These changes can be seen in the code presented in Listing 1. In the modified version

an additional while loop, which runs as long as the node, executes the agent platform and ensures

ongoing communication and node discovery. The review of the code also revealed that MAPS does

not support agent cloning, because the responsible method in the source code is empty. This

contradicts the statement of Aiello et. al. in [26] that MAPS supports agent cloning.

19

As mentioned above MAPS provides a basic service for accessing system resources. This service is

initiated when the platform starts, regardless if needed. Therefore it is not possible, without

modifications, to use MAPS on SPOT base station because of the missing sensor board.

3.5 JADE - LEAP

JADE stands for Java Agent DEvelopment framework. JADE is a middleware for distributed MAS and

in contrast to AFME and MAPS it was not initially designed for hardware platforms with limited

resources. JADE itself cannot be executed on J2ME platforms, because it requires a Java VM

supporting Java 5. Furthermore, the memory needs of JADE exceed the capacity of most CLDC

devices. However, the execution of the MAP on devices with J2ME (CDC or CLDC) is possible through

the Lightweight Extensible Agent Platform (LEAP), which is an add-on for JADE. Figure 6 shows the

different Java platforms that are available at the time of writing. With JADE and JADE-LEAP MAS

applications can be developed that can be distributed over all Java platforms except over Java Card.

In addition to that JADE-LEAP also supports .Net, Android 2.1 and higher versions of Android. Both

JADE and JADE-LEAP provide almost the same Application Programming Interface (API) on all

supported platforms. An exception is the MIDP, because the VM provides it with a reduced set of

functionality.

original:

public void run()

{

waitForCommunications();

while (this.communicationEvents.size() > 0)

{

...

//out going message handling

...

}

}

modification:

public void run()

{

while(true){

waitForCommunications();

while (this.communicationEvents.size()

> 0) {

...

//out going message handling

...

}

}

}

Code Listing 1 necessary source modification of MAPS internal class

MobileAgentCommunicationChannelSender

20

Figure 6 Overview of the available JAVA versions and run configurations. Adopted from [27]

With AFME and MAPS every device runs a MAP and agents are hosted on the platform itself. A

difference in regard to AFME and MAPS is that JADE has an additional abstraction level called

container. With JADE agents are executed in a container, which is part of the platform. A platform

requires one main container and can be distributed over several devices. Every device is represented

through a container. In addition, it has to be mentioned that it is also possible to execute more than

one container or even more than one platform on a single device (only J2SE and J2EE). JADE-LEAP

provides two modes of operation: 1) the stand-alone execution mode and 2) the split execution

mode. In the stand-alone mode a complete agent container is started on the device. This mode can

be used on all supported platforms excluding MIDP. For MIDP devices the usage of the split execution

mode is mandatory. When operating in this mode, JADE-LEAP separates the agent container in a

frontend and a backend. The frontend, which is hosted on the mobile device, requires fewer

resources than the execution of a complete agent container. The backend running on a J2SE or J2EE

VM connects the split container to a main container. Figure 7 depicts the differences between the

stand-alone and split execution mode.[28; 29; 30]

Additional to the reduced resources requirement, the split execution mode has other advantages on

resource constrained wireless devices. While initializing the connection between the container and

the JADE runtime, which hosts the main container, the necessary communication is completely

handled through the backend. This results in a faster initialization and less wireless traffic.

21

Furthermore, the binary coding of split container internal communication, which uses the wireless

interface of the mobile device, is more efficient and also reduces the wireless traffic. Figure 7 b)

shows a possible topology, in which the execution of the main container and the backend is

performed on different devices.[30; 29]

Figure 7 JADE LEAP execution modes:

(a) Stand-alone execution mode and (b) Split execution mode (figure taken from[30])

JADE offers a lot of features and is much more powerful than AFME and MAPS, but a more detailed

description would exceed the scope of this thesis. More information about JADE can be found on the

official website [31].

Some important facts for the JADE-LEAP for MIDP conform devices are highlighted below, because

Sun Spots are chosen as hardware platform in this work. JADE-LEAP depends on a device in a system,

which is able to provide the main container for the application. Therefore it is not possible to

implement the Decentralized Search application from section 2.4. For the implementation of the

Centralized Mobile Object Tracking that has been introduced in section 2.3 with JADE-LEAP, some

properties of the MAP have to be kept in mind. Due to the fact that a backend hides the address of

the device, which hosts the frontend from the other containers on the platform [29], no direct

communication over JADEs MTS is possible between the devices that host the frontends. This could

be a disadvantage in WSN, because there is a higher utilization of the wireless interfaces in the

network. The need for a meshed routing protocol, which ensures that every node can communicate

with its backend, is another disadvantage in WSN.

22

JADE also offers a GUI for managing and debugging a whole agent platform and several service

agents like the spy-agent, which allow the visualization of the communication between all agents on

a platform.

It is not possible to use the distributed binary libraries on Sun Spots. The reason for that is related to

the dependencies that the J2ME GUI package has, which are not supported by the Squawk VM. So it

is necessary to generate the JADE-LEAP source for MIDP according to [30], followed by the removal

of any dependencies to the GUI package from the source code. It should also be noted that for the

successful generation of the JADE-LEAP source an installed Sun Java Micro Edition SDK is necessary.

This step is followed by a pre-verification of the compiled library via the pre-verifier provided by the

Sun SPOT SDK. Alternatively it is possible to directly include the JADE-LEAP source in development

projects. For a successful connection between frontends and backends a tool called socked proxy has

to be executed on a PC connected to an SPOT base station. The socket proxy allows TCP based

connection from a Sun Spot to an end point in an IP based network and is part of the Sun SPOT SDK.

23

4 System Architecture and Design

This section focuses on the architecture of the two applications in which the agent middleware are

compared. First the centralized prototype will be discussed, followed by the Decentralized Search

one. Due to the collaborative characteristics of the test applications, where different parts on

different nodes are working together in the same system, it is necessary to show every part of its

own and how the different parts cooperate between each other.

To achieve comparable results, the prototypes are implemented as similar as possible on the MAPs.

Besides the different applications, the implementation that transmits and receives the beacons is

used in both applications on all MAPs. The beacons are realized as Radiogram broadcasts and employ

ǘƘŜ wŀŘƛƻƎǊŀƳ Ŏƭŀǎǎ ƻŦ ǘƘŜ {th¢Ωǎ {ǉǳŀǿƪ ±aΦ ¢Ƙƛǎ Ŏƭŀǎǎ ŀƭǎƻ ǇǊƻǾƛŘŜǎ ŀ ƳŜǘƘƻŘ ǘƻ ǇǊƻŎŜǎǎ ǘƘŜ

received signal strength indicator (RSSI) of Radiogram connection, which is named getRssi(). The

result of this method is used to calculate the distance in the tracking application and to set the initial

value of the virtual pheromone mark utilized in the Decentralized Search application. The only

difference between both applications is the frequency, in which the beacons are emitted. In the

mobile object tracking application this frequency is 2 Hz, in the Decentralized Search application it is

0,66 Hz. The reason for the lower frequency of the beacon broadcasts in the Decentralized Search

application is that the disturbances of running agent migrations decrease.

24

4.1 Centralized Mobile Object Tracking

The Centralized Mobile Object Tracking prototypes consist of three components. The first component

is the WSN itself, which executes the application implemented on the three MAPs. The target

positions obtained from the WSN are stored in a MySql database. From there the positions are

queried and presented in the agent based GUI, which is implemented in JADE and is executes on an

Android device. The various properties and characteristics of the used MAPs result in necessary

differences in the implementations.

Spot

Base Station

RAS

COR

CA

Jade Main

Container

Jade Split

Container

Backend

Connection Jade

Split Container

Front end

Backend Agent Platform
PC

PC

PC

J2SE

J2SE

co

nt

ain

er

MySql

MySql

MySql

co

nt

ain

er

USB

J2SE

USB

USB

JDBC

JDBC

JDBC

a) AFME

b) MAPS

c)JADE

c

o

n

t

a

i

n

e

r

c

o

n

t

a

i

n

e

r

Figure 8 Architecture of the Centralized Mobile Object Tracking application

25

Several components which are used in the different implementations share a common code base in

the Centralized Mobile Object Tracking application. This common code base was only modified to fit

the different ways of message handling of the MAPs.

AFME

In Figure 8 a) the structure of the tracking application based on AFME is shown. As it can be seen the

RAC agent is executed on a J2SE platform running on a common PC. It would be possible to execute

the RAC directly on the base station, but with the disadvantage that an additional program would be

needed, running on the PC which receives the results over the universal serial bus (USB) and forward

them to the database. An advantage of the execution on the PC is that the full functionality of the

J2SE can be accessed in difference to the reduced one provided by J2ME.

1 platform Basestation Platform{

2 scheduler 2;
3 service com.agentfactory.radio.RadiogramMTS BaseStation 66;

4 create RAC RACoordinator 1000;
5 add RACoordinator always(alive);
6 start RACoordinator;
7 template Deploylet.template Baseplatlet
8 EmuMigPlatform.template RASensorAgentPlatform;
9 }

Due to the fact that AFME uses an imperative part and a declarative part for the definition of an

agent, both definitions and the way they are linked together are explained. For the execution of an

AFME based agent a defined platform is required. Such a platform definition is presented in Code

Listing 2. It specifies the platform for the coordinator nodes. The definition states that the platform

uses two schedulers, which results in a platform executed in two threads. This is followed by the

definition of the services that the platform should provide. In the illustrated example the

RadigramMTS service is providing a radiogram base message transport service on port 66 (line 3 in

Code Listing 2). This service allows message based communication between agents. After the

provided services are defined, it is specified which agents should be created and started. The value of

the agent control cycle is also defined in line 4 in Code Listing 2. In the example an agent from the

type RACoordinator , named RAC is defined with a scheduled sense-deliberate-act cycle every

1000 ms (line 4 in Code Listing 2). The initial belief states can also be set at this point for the RAC

ŀƎŜƴǘΦ ¢ƘŜ ōŜƭƛŜŦ άŀƭƛǾŜέ ƛǎ ŀŘŘŜŘ ǘƻ ǘƘŜ agents belief set (line 5 in Code Listing 2). The used keyword

Code Listing 2 AFME platform definition for a sensor node

26

άŀƭǿŀȅǎέ ŘŜŎƭŀǊŜǎ ǘƘŀǘ ǘƘŜ ŀƎŜƴǘ ŘƻŜǎ ƴƻǘ ŘǊƻǇ ǘƘŜ ōŜƭƛŜŦ ǎǘŀǘŜ ŀŦǘŜǊ ŀ ŎȅŎƭŜΦ ¢ƘŜǊŜŦƻre, a state that is

added with this keyword can be regarded as persistent, because that state is true until it is explicitly

ǊŜƳƻǾŜŘ ŦǊƻƳ ǘƘŜ ŀƎŜƴǘΩǎ ǎŜǘ ƻŦ ōŜƭƛŜŦ ǎǘŀǘŜǎ ƻǊ ǳƴǘƛƭ ǘƘŜ ŀƎŜƴǘ ƛǎ ǘŜǊƳƛƴŀǘŜŘΦ ¢ƘŜ ƭŀǎǘ ǇŀǊǘ ƻŦ ǘƘŜ

platform definition indicates which templates should be used for the code generation. The AFME

compiler uses this information to generate a Java source code for the agent platform and its agents.

Figure 9 depicts the class diagram of an AFME platform used in the tracking application. The class

RABasePlatform represents the defined agent platform and implements the Platform interface

which is provided by the AFME API. This interface defines the functionality for a minimal AFME agent

platform. The usage of a service, the RadigramMTS service, is also illustrated in this diagram.

Agents are presented as BasicRunnable objects to the platform. This class provides the basic

functionality for the execution of an agent. The exemplified platform definition is used for all nodes

in the AFME implementation of the tracking application, except for the target node. On the target

node no message transport service is needed, because the RAT does not communicate with any

other agent.

Figure 9 Class diagram AFME platform used in the Centralized Mobile Object Tracking application.

27

The declarative definition of an agent includes the used actuators, perceptors and the rules for the

resolution-based reasoning, which define the behavior of the agent. The simplest agent in the

application is the RAT, whose declarative definition can be seen in Code Listing 3 a). The agent has

one actuator named BeaconAct ŀƴŘ ƻƴŜ ǊǳƭŜΦ ¢ƘŜ ǊǳƭŜ ŘŜǘŜǊƳƛƴŜǎ ǘƘŀǘ ƛŦ ǘƘŜ ǎǘŀǘŜ άǎŜƴŘ.ŜŀŎƻƴέ

ƛǎ ōŜƭƛŜǾŜŘ ǘƻ ōŜ ǘǊǳŜ ǘƘŜ ŀŎǘƛƻƴ άǘǊŀƴǎƳƛǘǘ.ŜŀŎƻƴέ ǎƘƻǳƭŘ ōŜ ǇŜǊŦƻǊƳŜŘ όƭƛƴŜ н ƛƴ Code Listing 3

a)).The actuator responsible for this action is implemented in the class BeaconAct . The source

code of the actuator can be seen in appendix c.1.1. The mapping between declarative and imperative

parts is defined through a string parameter in the constructor of the actuator class. According to this

ǊǳƭŜΣ ǘƘŜ ŀƎŜƴǘ Ƙŀǎ ǘƻ ōŜƭƛŜǾŜ ǘƘŀǘ ǘƘŜ ǎǘŀǘŜ άǎŜƴŘ.ŜŀŎƻƴέ ƛǎ ǘǊǳŜΦ ¢Ƙƛǎ ƛǎ ŀŎŎƻƳǇƭƛǎƘŜŘ ǿƛǘƘ ŀ

ǇŜǊǎƛǎǘŜƴǘ ƛƴƛǘƛŀƭ ōŜƭƛŜŦ ŦƻǊ άǎŜƴŘ.ŜŀŎƻƴέ ƛƴ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ǇƭŀǘŦƻǊƳ ƘƻǎǘƛƴƎ ǘƘŜ ŀƎŜƴǘΦ 5ǳŜ ǘƻ

this rule the agent shows the desired behavior and emits a beacon in every scheduled sense-

deliberate-act cycle.

¢ƘŜ w!{ ƛǎ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǎŜƴǎƛƴƎ ǘƘŜ ŜƳƛǘǘŜŘ ōŜŀŎƻƴǎΦ ¢ƘŜǊŜŦƻǊŜ ǘƘŜ ŀƎŜƴǘΩǎ ŘŜŦƛƴƛǘƛƻƴΣ ǿƘƛŎƘ Ŏŀƴ

be taken from Code Listing 3 b), includes a perceptor for this task. This perceptor is named

BeaconPer (line 1 in Code Listing 3 b)) and is executed at the beginning of the sense-deliberate-act

ŎȅŎƭŜΦ LŦ ŀ ōŜŀŎƻƴ ōǊƻŀŘŎŀǎǘ ƛǎ ǊŜŎŜƛǾŜŘ ōȅ ǘƘƛǎ ǇŜǊŎŜǇǘƻǊΣ ǘƘŜ ōŜƭƛŜŦ ǎǘŀǘŜ άōŜŀŎƻƴwŜŎŜƛǾŜŘέ ƛǎ ŀŘŘŜŘ

to the belief set (see appendix c.1.2 for more information). The belief state includes two parameters:

the first parameter determines the ID of the destined agent, which should process the measured

signal strength and the second parameter is the signal strength itself. The agent rule defines that if

thƛǎ ōŜƭƛŜŦ ǎǘŀǘŜ ƛǎ ŎƻƴǎƛŘŜǊŜŘ ǘƻ ōŜ ǘǊǳŜΣ ǘƘŜ ŀŎǘƛƻƴ άƛƴŦƻǊƳέ ǎƘƻǳƭŘ ōŜ ǇŜǊŦƻǊƳŜŘ ǿƛǘƘ ǘƘŜ ǎŀƳŜ

parameters (line 3 in Code Listing 3 b)). This action is provided by the InformActuator (line 2 in

Code Listing 3 b)), which is part of the middleware and which is used to send messages over the MTS

of AFME. These messages are received from the RAC and the SCA.

28

1)act BeaconAct;

2)sendBeacon>transmittBecaon;

a)

1)per BeaconPer;

2)act InformActuator;

3)beaconReceived(?agent,?txpwr) > inform(?agent,?txpwr);

b)

1)per MTSPerceptor,PositionModPer;

2)act InfoReceiveSCAAct, InformActuator;

3)mod posMod=PositionModule;

4)message(inform,sender(?agt,?addr),?msg)>receiveIncomingInfo(?agt,?addr,?msg);

5)coordinator(?agent),newTargetPos(?pos) >inform(?agent,?pos);

c)

1)per MTSPerceptor, CoordinatorModPer;

2)act InfoReceiveRACAct, InformActuator;

3)mod corMod = CoordinatorModule;

4)message(inform,sender(?agt,?addr),?content)>receiveIncomingInfo(?agt,?addr,?content);

5)info (?agent,?msg) > inform(?agent,?msg);

d)

Both agent definitions are shown in Code Listing 3: c) for the SCA and d) for the RAC. In order to

receive the messages from the MTS, both agents use the MTSPerceptor , which is also provided

from AFME (line 1 in Code Listing 3 Ŏύ ŀƴŘ ŘύύΦ ¢Ƙƛǎ ǇŜǊŎŜǇǘƻǊ ŀŘŘǎ ǘƘŜ ǎǘŀǘŜ άƳŜǎǎŀƎŜέ ǘƻ ǘƘŜ ŀƎŜƴǘΩǎ

belief set. This belief state includes three parameters: the message type, the ID of the sending agent

and the message itself. As mentioned in section 3.3 of this thesis, it is not possible to share data

between actuators and perceptors directly. Hence the functionalities of RAC and of SCA are

implemented as modules, which act on the data provided by the actuators that handle the

άǊŜŎŜƛǾŜLƴŎƻƳƛƴƎLƴŦƻέ ŀŎǘƛƻƴΦ ¢ƘŜǎŜ ŀŎǘǳŀǘƻǊǎ ŀǊŜ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ ǘƘŜ ŎƭŀǎǎŜǎ

InfoReceiveSCAAct of the SCA and InfoReceiveRACAct of the RAC. Furthermore, both

agents use perceptors to perceive data from their modules and to update their sets of belief states.

For the PositionModule , which performs the tracking algorithm and which is executed by a SCA

in the role of the master, the perceptor is implemented in the class PositionModPer . This

Code Listing 3 AFME definitions of all AFME based agents for the tracking application

a) RAT, b) RAS, c) SCA and d) RAC

29

perceptor receives new target positions that are calculated from the module and extends the belief

ǎŜǘ ǿƛǘƘ ŀ ƴŜǿ ǎǘŀǘŜ άƴŜǿ¢ŀǊƎŜǘtƻǎέΦ ¢Ƙƛǎ ǎǘŀǘŜ Ŏƻƴǘŀƛƴǎ ǘƘŜ Ǉƻǎƛǘƛƻƴ ƻŦ ǘƘŜ ǘŀǊƎŜǘ ƻōƧŜŎǘΦ LŦ ǘƘŜ

ōŜƭƛŜŦ ǎǘŀǘŜ άƴŜǿ¢ŀǊƎŜǘtƻǎέ ƛǎ ŎƻƴǎƛŘŜǊŜŘ ǘƻ ōŜ ǘǊǳŜΣ ǘƘŜ ŀƎŜƴǘ ŘŜŎƛŘŜǎ ƛƴ ǘƘŜ ǊŜŀǎƻƴƛƴƎ ǎǘŜǇ ƻŦ ǘƘŜ

sense-deliberate-act cyŎƭŜ ǘƘŀǘ ǘƘŜ ŀŎǘƛƻƴ άƛƴŦƻǊƳέΣ ŀƎŀƛƴ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ InformActuator ,

should be performed. According to the second rule (line 5 in Code Listing 3 c)) in ǘƘŜ {/!Ωǎ ŘŜŦƛƴƛǘƛƻƴ

ǘƘŜǊŜ ƛǎ ŀ ǎŜŎƻƴŘ ǎǘŀǘŜΣ ǘƘŜ ǎǘŀǘŜ άŎƻƻǊŘƛƴŀǘƻǊέΣ ǿƘƛŎƘ Ƙŀǎ ǘƻ ōŜ ǘǊǳŜ ŦƻǊ ŀƴ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘƛǎ

άƛƴŦƻǊƳέ ŀŎǘƛƻƴ ŀƴŘ ǿƘƛŎƘ ǇǊƻǾƛŘŜǎ ǘƘŜ ŀŘŘǊŜǎǎ ƛƴŦƻǊƳŀǘƛƻƴ ƻŦ ǘƘŜ w!/ ŀǎ ǇŀǊŀƳŜǘŜǊΦ

The RAC receives messages that contain the signal strength readings and supplementary messages

that include the target positions. These messages are handled by its actuator,

InfoReceiveRACAct , in order to process incoming MTS traffic. Signal strength readings are

forwarded to the coordinator module to manage the roles of the SCA in the WSN. Due to movement

or the activation of the target, the role of a SCA might need to be changed. If this is the case, the RAC

perceives all necessary information via the module. The RAC then informs the affected agents to

switch their roles and to change their parameters. For example, if the master is located on a different

node due to target movement, the address of the agent that acts as new master is a parameter for

SCA agents in the role of a slave. This functionality is provided by CoordinatorModPer perceptor

ŀƴŘ a!t{Ωǎ InformActuator . Incoming target positions are stored in the database through a

common interface which is used in all prototypes of this application.

Figure 10 shows a class diagram, which contains all used actuators and perceptors of the RAC. The

figure illustrates the relation of inheritance between the implemented classes and the classes

provided by AFME API. In the class diagram can be seen that both actuators are subclasses of the

Actuator class that the perceptors are subclasses of the Perceptor class and that the

CoordinatorModule is also a subclass of the Module class. This is true for every actuator,

perceptor and module in all AFME based implementation. The class diagram also illustrates the

methods, which had to be implemented to substitute the abstract definitions of the superclasses.

To fulfill the requirement of an almost similar implementation on all agent platforms, the internal

structure of the implemented AFME modules is designed to function as a state machine. This

programming model was chosen because it allows an almost similar implementation on the other

platforms. This is due to the fact that MAPS agents are implemented according to event- and state-

programming paradigms, as described in chapter 3.4. It is also possible to implement JADE based

agents following this paradigm.

30

Figure 10 Class diagram of the used module, perceptors and actuators by RAC implementation in AFME

MAPS

In contrast to AFME, MAPS cannot be executed on a base station (see chapter 3.4) and it cannot run

on other VMs, because of its dependency on the Squawk VM isolates. Therefore, a normal Sun Spot

has to host the RAC agent and has to act as sink node of the WSN.

The class diagram in Figure 11 shows the most important classes involved when implementing a

MAPS based application. The MAP is represented through a class called MobileAgentServer

with its interface IMobileAgentServer that utilizes the MobileAgentExecutionEngine

through its interface. The MobileAgentExecutionEngine is the core component of the

middleware. MAPS agents, which extend the Agent class provided by MAPS and which provides the

agents with the requirements for the executions as Squawk VM Isolates, are created and started

from the MobileAgentExecutionEngine . These Isolates are managed by the

InterIsolateServer , both provided by the SPOT SDK. For the implementation of a MAPS agent

at least two classes have to be created. One class represents the agent itself and the other class

ƛƳǇƭŜƳŜƴǘǎ ŀ ǇƭŀƴŜ ǘƘŀǘ Ŏƻƴǘŀƛƴǎ ǘƘŜ ǎǘŀǘŜ ƳŀŎƘƛƴŜΣ ǿƘƛŎƘ ŘŜŦƛƴŜǎ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƘŀǾƛƻǊΦ !ǎ

presented in chapter 3.4, MAPS supports role based programming that is achieved via the multi-

plane state machine implementation. Therefore, it would be possible to implement the three roles of

31

SCA within a three-plane state machine, but for a higher consistency in the different

implementations, every MAPS based agent in this work utilizes a single-plane state machine.

Figure 11 Class diagram of the MAPS agent platform and the implemented class of the RAT

The class diagram in Figure 11 also contains the agent and the agent plane classes implementing the

RAT agent. The implementation of these two classes can be seen in appendix c.2.1 and c.2.2. As it can

be seen the class RATAgent , representing the agent, includes a static main function which is called

when the isolate responsible for the execution of the agent starts. The implemented state machine of

the RAT has two states, in which one of them is responsible by the setup state in which the

initialization of the state machine and dependencies is realized. In this case a timer is created,

responsible for the scheduled and repeatedly creation of a timed event. After the initialization a state

change moves the agent in the work state, in which on every timer event a beacon is created. A UML

state diagram of this state machine is shown in Figure 12.

32

Figure 12 State diagram of the state machine implementing the MAPS based w!¢Ωǎ ōŜƘŀǾƛƻǊ

The state machine that realizes the desired behavior for the RAS agents is illustrated in Figure 13. The

ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛǎ ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ w!¢Ωǎ ǎǘŀǘŜ ƳŀŎƘƛƴŜΦ 9ǉǳŀƭƭȅΣ ŀ ǘƛƳŜǊ ƛǎ ǳǎŜŘ ǘƻ ǇŜǊƛƻŘƛŎŀƭƭȅ ŎǊŜŀǘŜ

timed events while staying in one Work state. The timed event triggers an attempt to receive a

beacon broadcast on the wireless interface. If no beacon is obtained, the attempt runs into a defined

timeout. If a beacon is received, its signal strength is measured and message events are transmitted

to a local active SCA and the RAC.

Figure 13 State diagram of the state machine implementing the MAPS based RASΩǎ ōŜƘŀǾƛƻǊ

33

The coordinator agent also operates on a similar state machine that consists out of a setup and a

work state. If a message containing signal strength information is received via MTS, the agent

updates its list of active nodes and sorts it according to the received signal strength. If state changes

of SCA are necessary, the agent requests the changes from the SCA via the event based messaging

system of MAPS. Furthermore, the agent reacts on message events, which contain the target

positions and uses the USB interface to transmit the target positions to a connect PC.

¢ƘŜ {/!Ωǎ ǎǘŀǘŜ ƳŀŎƘƛƴŜ Ŏƻƴǎƛǎǘǎ ƻǳǘ ƻŦ ŦƻǳǊ ǎǘŀǘŜǎΥ ŀ {ŜǘǳǇ ǎǘŀǘŜ ŀƴŘ ƻƴŜ ǎǘŀǘŜ for every possible

ǊƻƭŜ ƻŦ ǘƘŜ ŀƎŜƴǘΦ ¢ƘŜ ¦a[ǎǘŀǘŜ ŘƛŀƎǊŀƳ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ {/!Ωǎ ǎǘŀǘŜ ƳŀŎƘƛƴŜ ƛǎ ŘŜǇƛŎǘŜŘ ƛƴ

Figure 14. The initialization that is done in the Setup state is followed by a transition into the Sleep

state, in which the agent reacts only to requests of the RAC to change its role. In case of such a

request, the agent switches its states either from Sleep state to one of the two working states,

Master or Slave or the other way around. A direct transition from one of the two working states to

the other one is not implemented. In both working states the agent can receive parameters from the

RAC, which are necessary to fulfill its task. For a SCA acting in the role of a slave, the parameter

includes the ID and address of the SCA that acts as master. Otherwise the parameter consists out of

the addresses and positions of the nodes, which host the SCA acting as slave and the position of the

maǎǘŜǊΩǎ ƴƻŘŜΦ

Figure 14 State diagram of the state machine implementing the MAPS based {/!Ωǎ ōŜƘŀǾƛƻǊ

34

JADE

JADE based agents are implemented with a behavior based approach. Therefore the JADE API

provides an abstract object form type Behaviour , which has to be extended when implementing

new types of behaviors. But the implementation of a custom subclass of Behaviour is not

mandatory because JADE also provides predefined behavior classes for usage or extension. In this

work only two types of predefined behaviors are utilized. A cyclic behavior implemented in the class

CyclicBehaviour . This subclass of Behaviour , repeatedly executes an implemented method

similar to a method call in a loop. The second behavior is implemented in the JADE class

TickerBehaviour , where an implemented method is repeatedly scheduled for execution after a

give time span. Due to the requirement of comparable implementations, the agent behaviors

developed for this prototype are internally implemented as state machines, driven from a

CyclicBehaviour or TickerBehaviour . Their internal structure is almost identical to

behavior defining planes of the MAPS implementations. ¢ƘŜ w!¢Ωǎ ōŜƘŀǾƛƻǊ for example is

implemented as TickerBehaviour . The implementation of the JADE RAT agent can be taken

from appendix c.3.1.

35

Agent Based User Interface

Figure 15 Screenshot of implemented Android user interface.

The GUI of the tracking application is implemented with the JADE middleware. The main task of the

D¦L ƛǎ ǘƻ ǾƛǎǳŀƭƛȊŜ ǘƘŜ ǘŀǊƎŜǘ ƻōƧŜŎǘΩǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ǘƘŜ ǇŀǘƘ ǿƘƛŎƘ ƛǘ ǘƻƻƪ ǘƘǊƻǳƎƘ ǘƘŜ ²{bΦ ¢ƘŜ

growing popularity of mobile applications and smartphones has led to the decision to implement the

GUI for the mobile object tracking application on the Android platform. This choice induced the

implementation of a mobile application prototype, which features mobile real time tracking and

monitoring. A screenshot of the implemented Android user interface can be seen in Figure 15. In the

visualization of the WSN in the GUI, sensor nodes and their positions are represented through green

dots. The actual position of the target is indicated with a small red dot. Former target positions are

illustrated with blue dots. The track, on which the target has moved, is visualized with yellow lines

between the target positions.

The implementation of the GUI requires independence from the MAP, on which the running WSN

tracking application is implemented, because the GUI can then be used with AFME and MAPS

implementations of Centralized Mobile Object Tracking application. Hence, the agents that are

relevant for the GUI are executed on a JADE platform, which is independent from the WSN

component of the application, although JADE could host the GUI relevant agent on the same JADE

platform as the other JADE agents. If the GUI relevant agents were executed on the same JADE

platform, a direct communication between the GUI agents and the JADE implementation of the RAC

agent would be possible, but the GUI could not be operated with AFME and MAPS.

36

The GUI utilizes the split container execution mode for the agents that are hosted on an ANDROID

device, just as in the tracking application implemented with JADE. Two cooperating agents are

developed to realize an agent based GUI, because agent mobility is not supported by split

containers[30]. The architecture of agent based GUI implementation is depicted in Figure 16.

A GUI Host Agent (GHA) is performed on a main container that runs on the PC connected to the WSN.

The PC provides the data base management system (DBMS) which hosts a database for the

Centralized Mobile Object Tracking application. The GHA is responsible for the query of this

database. It uses the same database interface as the RAC agents and the MAPS host tool to store the

tracking results. More information about the realization of the database and its interface is presented

in the next subchapter. After the database query the GHA informs the second type of GUI agents,

which is called GUI Android Agent (GAA) and which is executed on ANDROID devices, via JADE MTS

on request.

The GAA has to request the information about the track of the target positions from the GHA. After

the first request the GHA also informs the GAA continually about updates in the target positions. The

GAA receives the information via MTS and forward it to an ANDROID Activity for visualization. An

Activity represents a view or page of an ANDROID application. The development of ANDROID

applications is not the focus of this thesis. Therefore, interested readers are referred to [32] for more

information. In case a GAA is terminated, the agent informs the GHA to now lower send target

location updates.

Agent Platform
GUI Host Agent
GUI Android Agent
Jade Main Container
Jade Split Container
Backend

Connection Jade Split
Container Frontend to
Backend

PC

J2SE

co

nta

ine

r

MySql

co

nta

ine

r

JDBC

c

o

n

t

a

i

n

e

r

c

o

n

t

a

i

n

e

r

IP based network

Figure 16 Architecture of the implement agent based Android user interface

37

Database and Interface

The main task of the MySql database is to store the positions of the target object. This is

accomplished over Java Database Connectivity (JDBC), which provides an API to access database with

Java. Additionally to the main task, the database also contains positions of all sensor nodes forming

the WSN.

The interface to the database is implemented through a single class, which is designed according to

the well known singleton design pattern [33] and which allows an object based access and storage of

information. Therefore, the interface can be used without any local references of the object. To store

a new target position in the database only one line of code is necessary:

Common.getInstance().getDB().add(new Position(x,y));

As a result of the object orientated interface, the creation of data classes that simply include data is

necessary. In the code line exemplified above a class, which only contains variables for a value of x

and y and which represents a target position, is implemented. The free DBMS MySql hosts the

database of the Centralized Mobile Object Tracking application. The database also includes tables to

store results of measurements. This allows the realization of an automated process that stores the

results for the comparisons of the tested MAPs.

38

4.2 Decentralized Search

The Decentralized Search application is developed on the existing implementations of the centralized

tracking application. Some components are modified in the Decentralized Search. The target object,

its platform and its agent can be reused with one modification: the frequency, in which the beacons

are emitted, is 0,66 Hz.

The RAS of the Centralized Mobile Object Tracking application can also be employed in the

Decentralized Search. Its behavior differs only in the recipients that receive the information of the

beacon frames and in the handling of the virtual pheromone mark. The difference is that a RAS only

informs the CSA of current value of the virtual pheromone mark via local message broadcast, if the

CSA is present on the sensor node of the RAS. Furthermore, the RAS stores the value of the

pheromone reading and decreases it over time to simulate the fading of the mark, similar to a

pheromone trail in the real world.

AFME

Figure 17 UML class diagram of an AFME platform supporting agent mobility.

Due to the fact that the Decentralized Search utilizes agent mobility in its search algorithm, the

definition of the AFME platform for sensor nodes has been modified to support agent mobility.

Figure 17 depicts a UML class diagram that represents the generated JAVA classes, which result from

the changes in the definition of the platform. As it can be seen the JAVA classes that represent such a

platform implement the MigrationPlatform interface additionally to the Platform interface.

This MigrationPlatform interface provides the necessary functionality for the agent mobility to

the platform. Furthermore, a platform supporting agent mobility has to provide a service to manage

agent migration. In this case, corresponding service implemented in the class RadioMigManager

39

has to be used for migration on Sun Spots over the wireless interface. This required additional service

is illustrated in the class diagram in Figure 17. In contrast to the previous used MTS of AFME, which

offers system wide message transportation, the MTS in the Decentralized Search is only used for

node internal communication. Therefore, the MTS in this application does not listen to any incoming

messages on the wireless interface. The sensor node, on which the migration platform is executed,

hosts the modified version of the RAS. This informs the mobile CSA about the current value of the

pheromone mark. To be able to fulfill its task the CSA receives the pheromone readings only from a

local RAS. AFME does not support broadcast messages and therefore the RAS has to register the CSA

so that the CSA can receive information about the pheromone trail from the RAS.

1) per MTSPerceptor, SW01Per;
2) act InformActuator, MigrateActuator, SearchBestNodeAct, DeregisterAct;

3) searchState(?state),parameter(?p),message(inform,sender(?agt,?addr),?lread),visitedNodes(?oldNodes),highestSearchReading(?hr4s)
 > search4bestNode(?state, ?p, ?lread, ?oldNodes, ?hr4s);

4) deploy,destAddr(?destaddr) > par(deregisterAtRAS , migrate(?destaddr,null));

Code Listing 4 Agent definition of the AFME Decentralized Search agent.

The definition of the CSA can be taken from Code Listing 4. After the CSA is resumed or started on a

node, the registration of the CSA to the RAS is initiated via the already known InformActuator .

¢ƻ ƳƛƎǊŀǘŜ ǘƻ ŀƴƻǘƘŜǊ ƴƻŘŜΣ /{! ǘǊƛƎƎŜǊǎ ǘƘŜ ŀŎǘƛƻƴ άƳƛƎǊŀǘŜέ ǇǊƻǾƛŘŜŘ ŦǊƻƳ ǘƘŜ

MigrateActuator that is part of the AFME API (line 2 in Code Listing 4). The rule for the

migration (line 4 Code Listing 4) declares that if both a state deploy and a state destAddr , which

contains the address of the destination node, are believed to be true, two action should be

ǇŜǊŦƻǊƳŜŘΦ CƛǊǎǘΣ ǘƘŜ /{! ǳƴǎǳōǎŎǊƛōŜǎ ƛǘǎŜƭŦ ŦǊƻƳ ǘƘŜ w!{ ǿƛǘƘ ǘƘŜ ŀŎǘƛƻƴ άŘŜǊŜƎƛǎǘŜǊ!ǘw!{έ ƛƴ ƻǊŘŜǊ

to stop the transmission of messages. This action is provided by an actuator named

DeregisterAct . Second, the migration of the CSA is executed. Due to the fact that CSA is a

mobile agent, all inner states have to be available on the agents destination node and they have to

ōŜ ƛƴ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƭƛŜŦ ǎŜǘ ƛƴ ƻǊŘŜǊ ǘƻ ōŜ ǘǊŀƴǎƳƛǘǘŜŘΦ IŜƴŎŜΣ ǘƘŜ ŘƛƳŜƴǎƛƻƴ ƻŦ ǘƘŜ ǊǳƭŜ ǘƘŀǘ ƛǎ

responsible for driving the search algorithm implemented as state machine contains all necessary

parameters. This rule is illustrated in line 3 of Code Listing 4. For more details on the state machine

see the next sub-section. The states searchState , parameter, visitedNodes and

highestSearchReading are contain data needed for the search algorithm, e.g.

visitedNodes contains a list with already visited nodes which is required to avoid that a node is

again chosen as migration destination(line 3 in Code Listing 4 Agent definition of the AFME

40

Decentralized Search agent.). If the perceptor SW01Per perceives a push on the first button on a

Sun Spot, it starts the Decentralized Search by adding the required state to the belief set.

MAPS

Similar to the AFME based application, the MAPS application reuses the same modified components

and agents as in the Centralized Mobile Object Tracking application. Therefore, for the discussion of

the RAT and RAS implementations see subchapter 4.1 MAPS. In contrast to AFME, MAPS supports

broadcast message events (local and remote). Hence, the implementation of the registration process

as described in the previous sub-section is not necessary.

After the initialization is done in a Setup state, the CSA is in a state in which the agent handles

incoming message events, as illustrated in Figure 18. If the agent receives a pheromone reading, the

reading is compared to the highest reading that has been achieved so far. If the reading is of a higher

value than the previous one, the agent stores the value and the node address in its internal states.

The CSA checks an internal list of nodes, which should be visited by the CSA. If there are nodes in the

list, the agent migrates to the next node in the list. If the list is empty, the agent checks whether the

current hosting node is the node with the highest pheromone mark so far. In this case the list of

nodes that has to be visited is extended with unvisited neighboring nodes of the current hosting

node. If the pheromone mark is not the highest one, the agent migrates to the node with has the

highest pheromone mark so far. After a migration process the agent is in a New node state, in

which the new hosting node is added to the list of already visited nodes. Afterwards the agent

transits into the Read state in order to continue the execution of the search. Under the circumstance

that the CSA cannot obtain any new neighboring nodes while being executed on the node with the

strongest pheromone mark, the agent transits into a final Finished state and ends the search

algorithm.

41

Figure 18 UML state diagram modeling the behavior of a MAPS based Decentralized Search agent.

42

43

5 Experiments and Results

For the evaluation of the MAP performances in the execution of test prototypes, four criteria are

identified. The utilization of a nodes CPU and its memory are chosen to be the first criteria, because

they represent a ƴƻŘŜΩǎ ŘŜƎǊŜŜ ƻŦ ŎŀǇŀŎƛǘȅΦ 9ƴŜǊƎȅ ŎƻƴǎǳƳǇǘƛƻƴ ƛǎ ŀ ǾŜǊȅ ƛƳǇƻǊǘŀƴǘ ŦŀŎǘƻǊ ŦƻǊ

embedded wireless devices due to their limited power supply. Thus, the energy consumption is also

identified to be one of the evaluation criteria. Directly responsible for a certŀƛƴ ǇŀǊǘ ƻŦ ŀ ƴƻŘŜΩǎ

energy consumption is the degree of usage of the wireless interface. Therefore, the network traffic

created by the different MAP is also used as criteria. In regard to agent mobility, the migration time is

the last of the chosen criteria. To be able to evaluate several MAPs according to their performances,

a test scenario that realizes agent mobility is defined to measure the chosen criteria in a migration

context.

The distributed characteristics of the developed test system and the different states, in which its

components can operate, require a definition of the test configurations for both applications, the

Centralized Mobile Object Tracking and the Decentralized Search. Configuration 1 represents an

empty node as reference, on which no agent or agent platform is executed. A RAT and its platform

are hosted according to Configuration 2. Due to the two different applications, which lead to

different test scenarios, a distinction between the configurations has to be made. This distinction

refers to all configurations that include a higher number than 2. In Configuration 2 the only

difference in the implementation of the two applications is the frequency of the emitted beacons.

For the Centralized Mobile Object Tracking application in the Configuration 3T a sensor node hosts

one RAS and one inactive SCA. This leads to the conclusion that no target node is present in the range

of the sensor node. Hosted active SCAs in the role of master or slave with an active target object in

range are found in Configuration 4T and Configuration 5T.

Four different possible configurations are used for the Decentralized Search application. In

Configuration 3S a sensor node executes RAS including its platform. In Configuration 3S no target

node is in range in contrast to Configuration 4S, in which a target node is in the range. These two

possibilities also exist, if the sensor node is additionally hosting a registered but inactive CSA. This

leads to Configuration 5S, which has a registered but inactive CSA and in which the target is not in

range. In Configuration 6S the CSA is also registered and inactive, but the target is in range. A

migrating CSA has the focus on the Migration Test Configuration, because in this configuration three

sensor nodes are arranged in a row and the CSA migrates from the first one over the second one to

the third one.

44

All of these configurations are illustrated in Figure 19. They represent fixed setups of nodes for the

conducted experiments. Due to these configurations an extraction of metrics is achieved that

represents information about the execution of the two test applications. The metrics are extracted

during system runtime by an instrumented code. This instrumented code is realized as a separate

thread. It is executed pseudo parallel to the relative implementations and it measures the criteria

over a defined time span.

Configuration 1:

Configuration 3T

Configuration 2:

Spot

RAS

RAT

SCA

inactive

SCA as

Master

SCA as

Slave

CSA

Configuration 3T:

Configuration 4T and 5T:

Search Application:

Configuration 3S:

Configuration 4S:

Configuration 5S:

Configuration 6S:

Node 1

Node 2

Node 3

Step 1 Step 2 Step 3

Tracking Application:

Migration Test Configuration:

Figure 19 Test configurations for experiments

45

The instrumented code is implemented in several classes designed to interfere as less as possible

ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊΩǎ ƳŜŀǎǳǊŜƳŜƴǘǎΦ !ƴ ŀŘŘƛǘƛƻƴŀƭ ŎƭŀǎǎΣ ƛƴ ǿƘƛŎƘ ǘƘŜ ǎŜǇŀǊŀǘŜ ǘƘǊŜŀŘ ŦƻǊ ǘƘŜ ŜȄŜŎǳǘƛƻƴ

measurements is started, is responsible for managing the execution and the timing of the different

measurements. To minimize side effects between different measurements, several precautions were

ǘŀƪŜƴΣ ŜΦƎΦ Ƴŀƴǳŀƭ Ŏŀƭƭǎ ǘƻ ǘƘŜ ±aΩǎ ƎŀǊōŀƎŜ ŎƻƭƭŜŎǘƻǊ ŦƻǊ ǘƘŜ ƳŜƳƻǊȅ ƳŜŀǎǳǊŜƳŜƴǘ ŀƴŘ ǎŜǾŜǊŀƭ

pauses were performed. These pauses allow the system to settle or the garbage collector to finish.

In addition to that the measurement managing class is also responsible for transmitting the results of

measurements to a nearby sink node via radiogram broadcast. It should be noted that the radiogram

functionality is provided by the libraries of the SPOT SDK and therefore has no dependencies to any

MAPs. Through an independent implement process on PC the measurement result is received and

forwarded to the database for storage and data preparation.

The deployment of the nodes in the WSN can be seen in Figure 20 as well as the minimu

communication range for one Sun Spot. The figure shows in a) the deployment of the sensor nodes

for the Centralized Mobile Object Tracking application. The nodes are arranged in a way that they

form equilateral triangles with a side length of two meters. The deployment of the sensor nodes for

the Decentralized Search is illustrated in figure 20 b). In this application four nodes form a two by

four meter rectangle.

46

Figure 20 Node deployment in the WSN for a) Centralized Mobile Object Tracking b) Decentralized Search

0
0 2 m

m

a) Centralized Mobile Object Tracking:

b) Decentralized Search:

Spot

Communication

Range

0
0 2

4

m

m

1,7

2

47

5.1 CPU Utilization

The first criterion for the evaluation is the CPU utilization of the hosting node in a certain state. The

SPOT API does not provide a method for monitoring the CPU. Therefore, an energy saving feature of

SPOT is utilized to determine the CPU load. The CPU of a Sun Spot is automatically set to a sleep

ƳƻŘŜ ǘƻ ǇǊŜǎŜǊǾŜ ŜƴŜǊƎȅΣ ƛƴ ŎŀǎŜ ǘƘŜ /t¦ ƛŘƭŜǎΦ {ƻ ƛǘ ƛǎ ǇƻǎǎƛōƭŜ ǘƻ ƳŜŀǎǳǊŜ ŀ {ǳƴ {ǇƻǘΩǎ /t¦ ƭƻŀŘ

through the proportion of the runtime to the time span, in which the CPU is in sleep mode. A Sun

Spot has also a third operation mode, the so called Deep Sleep mode, but this mode was deactivated

for these CPU measurements.

 The results of the CPU measurements can be seen in Table 1. The cyclic emission of the beacon

frames require more processing time in the Centralized Mobile Object Tracking application than in

the Decentralized Search application. The reason for this difference is the higher frequency of the

beacons. As it can be seen in Table 1 JADE has the lowest load for configuration 1 to 3T in the

Centralized Mobile Object Tracking application, but in configuration 4T and 5T JADE utilizes the CPU

more than the others MAPs. This can be explained by the split execution mode of JADE. Local

execution is therefore very efficient, but if it comes to an interaction with other agents, JADE has a

higher demand for processing time in comparison to the AFME and MAPS. This is also displayed in

the results of Configuration 5T, in which JADE needs almost twice as much processing time than the

other MAPs. The comparison between AFME and MAPS in both applications show that MAPS has a

lower CPU utilization than AFME. This is the result of the more complex architecture of AFME.

Table 1 Measured CPU utilizations in % of the Centralized Mobile Object Tracking application and the

Decentralized Search application in comparison

CPU Load in %

Centralized Mobile Object
Tracking

Decentralized
Search

AFME MAPS JADE AFME MAPS

Configuration 1
(Empty node) 0,26 0,26 0,26 0,26 0,26

Configuration 1
(Empty node)

Configuration 2
(Target Sunspot) 16,56 12,56 10,39 9,05 8,64

Configuration 2
(Target Sunspot)

Configuration 3T
(Inactive SCA) 3,42 3,63 3,14 5,68 1,75

Configuration 3S
(RAS no Target)

Configuration 4T
(SCA as Slave) 22,43 20,89 27,35 7,30 4,52

Configuration 4S
(RAS with Target)

Configuration 5T
(SCA as Master) 31,87 26,95 59,28 9,26 2,53

Configuration 5S
(RAS and CSA no

Target)

 10,77 5,28

Configuration 6S
(RAS and CSA with

Target)

48

5.2 Memory

Java Applications executed in a Java VM have to use the VM memory management that utilizes a

garbage collector to free objects, which are no longer referenced. To save energy, the garbage

ŎƻƭƭŜŎǘƻǊΩǎ ŎƻƭƭŜŎǘƛƻƴ ǇǊƻŎŜǎǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ ǘƘŜ {ǉǳŀǿƪ ±a ƛǎ ǎǘŀǊǘŜŘ ŀǎ ǎƻƻƴ ŀǎ ŀƭƳƻǎǘ ŀƭƭ ƳŜƳƻǊȅ

resources are reserved. Although it is a great feature to preserve energy, it is most obstructive for

memory monitoring. To overcome this effect, manual calls to the garbage collector are used to free

unused memory before a measurement is taken.

 Table 2 Memory utilization during execution (in kilo bytes) of the Centralized Mobile Object Tracking

application and the Decentralized Search application in comparison

The results of the memory related measurements are shown in Table 2. As it can be seen, MAPS is

the one MAP that uses the most memory and hence shows the worst results. In comparison with

AFME, which has a modular architecture, MAPS has a monolithic structure and instantiates all

platform components in the beginning, even if they are not needed. JADE shows an almost constant

low memory need regardless of the test configuration. The reason for this is the split execution

mode, in which the backend of the agent container is not executed on the mobile device. Thus, JADE

is the best memory preserving MAP in the centralized object tracking application. In the

Decentralized Search application AFME presents the best results, because of its modular

architecture.

Used Memory in
kilo bytes

Tracking
Application

Decentralized Search

AFME MAPS JADE AFME MAPS

Configuration 1
(Empty node)

86 86 86 86 86 Configuration 1
(Empty node)

Configuration 2
(Target Sunspot)

91 109 103 91 109 Configuration 2
(Target Sunspot)

Configuration 3
(Inactive SCA)

110 130 105 98 116 Configuration 3
(RAS no Target)

Configuration 4
(SCA as Slave)

124 132 109 97 113 Configuration 4
(RAS with Target)

Configuration 5
(SCA as Master)

138 159 115 108 131

Configuration 5
(RAS and DSA no

Target)

 108 131

Configuration 6
(RAS and DSA
with Target)

49

5.3 Energy

The SPOT API provides access to the information about the remaining capacity of the battery in

milliamp hours. Therefore, this information is used to determine the energy consumption of the

Spot. Three measurements with a different run time were performed: 10 sec, 30 sec and 300 sec. The

results of these measurements are then used to calculate the energy consumption.

Table 3 Energy consumption of the implementations.

Consumed Energy
(mA)

Tracking
Application

Decentralized Search

AFME MAPS JADE AFME MAPS

Configuration 1
(Empty node)

54,00 54,00 54,00 54,00 54,00 Configuration 1
(Empty node)

Configuration 2
(Target Sunspot)

60,30 68,57 61,56 56,63 66,94 Configuration 2
(Target Sunspot)

Configuration 3
(Inactive SCA)

69,25 79,66 63,18 59,75 78,90 Configuration 3
(RAS no Target)

Configuration 4
(SCA as Slave)

84,49 98,26 73,89 60,33 70,74 Configuration 4
(RAS with Target)

Configuration 5
(SCA as Master)

86,34 81,60 77,17 67,12 78,33

Configuration 5
(RAS and DSA no

Target)

 67,71 70,06

Configuration 6
(RAS and DSA
with Target)

The results of the nodes energy consumption are presented in Table 3. Differently to the presented

results for the CPU utilization, in which JADE has high values for test configurations that involve agent

communication, the energy consumption of JADE is quite moderate in comparison to the processor

load. Together with the CPU load results that, due to the more efficient coding in the backend

frontend connection as mentioned in Section 3.5, a compression algorithm is reducing the usage of

the wireless interface by shrinking the amount of data which has to be transferred.

The influence of the CPU utilization on energy consumption can be seen in Figure 21 which shows a

combined diagram depicting the CPU load together with the consumed energy for both applications.

Furthermore, the figure visualizes that MAPS needs the most energy of all MAPs in almost every test

configuration. This can also be explained wiǘƘ a!t{Ωǎ monolithic structure.

