Technical report, IDE59 October 2011

PerformanceComparsonof Multi AgentPlatforms
In Wireless Sensorativorks.
MasterQa ¢ KEnhekded andg/Intelligent Systems

Bernhard Bdsch

_OQSK Oy
7
o “ School of Information Science, Computer and Electrical Engineering
Halmstad University
4y

Performance Comparison of Multi Agent Platforms
In Wireless Sensor Networks.

a I a (BesR @ Embedded and Intelligent Systems

School of Information Science, Computer and Electrical Engineering
Halmstad University

Box 823, 801 18 HalmstadSweden

November2011

Preface

I would like to thank everyonevho supported meduring the work on this thesis. litiout their experience and
help this thesis would not have beepossible. First of all would like to take the chaneto state my highest
gratitude to my supervisor Edison Pignaton de Freifas his advice andyreat support. In addition tothat |

would alsolike to thank my family and frienge/ho have encouraged me during the strenuous time of writing.

Bernhard Bosch

Halmstad UniversityNovember2011

Vi

Abstract

The technology for the realization of wireless sendwsbeenavailable for a long timebut due to
progress and development ielectrical engineeringsuch sensors can be manufactureast
effectively and in large numbersnowadays. This availability and the possibility of creating
cooperatingwireless networkswvhich consist of such sensors nodesasled to arapidly growing
popularity of a technology named Wireless Sensor Networks (WSN). Its disadvantage is a high
complexity inthe task of programming applicatiebased on WSNvhichis a result ofits distributed

and embedded characteristid.o overcome this shortcoming, software agents have been identified

as a suitable programming paradigithe agent basedpproach commonly uses a middleware for

the execution othe software agentThis thesiss meant to cenpare such agermiddlewarein their
performancein the WSN domairiTherefore two prototypes of applicatisbased on different agent
models are implemented for a given setrofddleware After the implementation measurements are
extracted in various experiments, which give information about the runtime performance of every
middleware in the test setin the following analysiit is examined whether each middleware under

test is suited fo the implemented applications in WSN. Thereupon, the results are discussed and
O2YLI NBR 6AGK G(G(KS dzZikK2NDa SELISOGFGA2Y&ad CAYI ff

and improvements is presented.

Vii

viii

Contents

PREFACEcuuitoitatts it imtse st sse st 52121t v
CONTENT S, ettt ettt ettt emr et e et e e ettt et et e te e e e e e e e e et et e eeeeeeteaeaeeeeeeaanaeseiameaeeeeeaaaneeeeennnss] IX
RSy T T =1 USSR X
LIRSy] =T8OS Xl
LIST OIOODELISTINGS . ..ctitieeiiie ittt ettt e e e e ettt e e e e et e e s e e e ettt e e e e e s s e s e en ettt e e e e e s s e sesnrnnnreneeees XIi

1. INTRODUCTIQN. ..o e e ma e e s s s s s sese s e e e e e emnrnne 1
1.1 APPLICATIONNDTECHNOLOGAREA. cuutttiiiiiteieie sttt r et e e e s e e e e r e e e s e s s e b aa e s e e aeae e as 1
1.2 MOTIVATION ANBROBLENBTUDIED.uuutriiiiiiieieieiis it r e s e e s s s r s s e e e s e s ran e s e e enae e as 1
1.3 APPROACEHOSEN TEOLVE THEROBLEM........uuutttieiiiiieeeasssasssassitneneeeesesessssssssnsssrnnseeeeeeeessssssnnnnnnenn 2
1.4 THESISOALS ANBXPECTEBRESULTS. .. ueeitiiiiiiiiiiiitreseeeeteetee e s s s s e et e e e tae e e e e s sa s e e e eaeaeseaeeesaanane 2
1.5 THESISUTLINE ..ot tiiiettttee ittt e e e e e e s e s s sttt e e e e e e s s e s ettt e e e e e e 4 e e s s b e s b e e s ettt e e e e e e s e e ans b nnne e e eeeeeeeeeens 2

2 BACKGROUNDL.....cciiiiiiiiieeee s 3
2.1 AGENTS IN ACTION. ¢1tttteetitiauittrteeeeetettteaesssaaaee e s e s ettt e taaeeesesaa s e Eae e e et e eaeeeaeessa s nnnbnre s et e eaeeessssanannnnnn 3
2.2 MIDDLEWARE FOR BABIERDEVELOPMENT.ccciiiiiiitrrreeeeteeeeeeessssssiinnnneeeeeeeeeesessssssnnnnnnnneeeneeesssnnnnnnnn b
2.3 CENTRALIZEAOBILEOBIECTRACKINGutttrereeeteeeesessasissntreeeeeeteaesassassssbnsennse e et e e e e s e saasssrnennereeeeaeeeeens 5
2.4 DECENTRALIZEBARCH. .. .uttttiiiitiiie ettt e e a e e e e e e e e e e s e s s e s e e e e e e e e e e e e e s s bbb raaeeeeeee s 8

3 METHODS AND TOQLS......cuiiueiueimessimeessesssessseesseesesssessssesssssssesssssssessssssssssssmssesssssssssssssssssenns 13
3.1 VIETHODOLOGY. ..t tttttttteeetassaittresese ettt e e e e e e saaaas b e et e e e et e e e e e e s s n e b b e s et e et e e eeeeeeesaa s nnrbe s e e e eeeeeeesaasnannnnn 13
S U NS =0 1 - PP P PP TPPPTP 13

G TR T 15
R Y Y s TP PP U PP TP 17
3.5 JADE LEAR .o e et e et et ettt et et a—a— et e e e e e e e e e e aeaeeaeeeeennrnra 19

4 SYSTEM ARCHITECTBRIRE DESIGN......cccoii it me s 23
4.1 QOENTRALIZEAOBILEOBIECTRACKINGciiiiitttteetteeeeeeseas sttt e e e e e e s s e s bbb e et et e e e e e e s sannnnsnneeeeees 24

F N Y PP U PP PPTPRPTRRR 25
L S SO P PP PP PP UTT TR PR 30
] B PP PP TP PP PT TR 34

Agent Based USEr INTEITACEe ittt e e e e e e e e e e e eaenee e 35

Database and INTEIMACE..........cvii it e e e nnne s 37

A B o1 s 7Y 4 =3 7 Lot PSSR 38
PP PPPTPTPPPPPRON 38

5 EXPERIMENTS AND RIEID......coiiiiiiiiiiiiiiii ittt ettt e e ettt e a e e e e e e e e aan e anrame e e e e e e e e e e e 43
ST R 1 = U U T2y 1 T N SR 47
LA |V 1=V T PP PR P 48
TR I = N[12T} OO PTP R PPPPPP 49
5.4 WWIRELESBRAFFIC ...ttt ititeuiee sttt asteestteestteanteesaeeateesseeateaasseesseeanseessseanseessseeaaaeesseeaneeeteensseanseessanesnes 51
LR T |V 1] 27 T TP PP 52

6 DISCUSSIOIN. ...ttt eett ettt e e ettt e et et ame et et et et ettt eeaeaeaeaeeaeaeaata et eaeaaeaaaaaaesasesesaaaaaameaaeeaans 53
7 RELATED WO RK ...ttt ettt bttt nass bbb s ettt e teeeeeeeeeenres 55
8 CONCLUSION AND FUBUWRORKceteieeeeeeeeeietee et ettt ettt ettt e e e e e e e e e e e e s et e et e e e e e e e e e e e s e e e s e s e s e s s aame e 57
REFERENCES. ... ittt e ettt bttt bttt e e sttt st e £t e e e ettt et e e e et et e e e e eeeneeeeeeees 59
APPENDIX .o 63
A. BLOSSARY. ittt e e e e e e e e r e e e e 63

B. SOFTWARKERSIONS.utttttieteteeeeeasasaaae et e ettt e e e e s s s s s s et ettt e e e e e e e s snb b e s ane et e e eeeeeeesaannnnnnreeeeeesd 64
ORS00 (1. 3 00] =S PO EP PP TP PPPPPN 65

1 A E e e e et e e et e e e et e et e e eenba e aaaee 65

2 LN T TP PP PPPPPPPPPPP 67

3 JADKE .. e e ettt e e e e e e e aeeas 69

List of Figures

Figure 1 Agent migrations in the original WSN tracking appliCatian...............coocveeeriiiiiiieieiniiiieesiiieee 6
Figure 2 The WSN for the pheromone based search with agent cloning appraach........ccccccceeeeeiiiiins 10
Figure 3 Pheromone base search concept with agent migration approach...........cccccccoeeviiiiiiiiiineneennn. 11
Figure 4 The composition of Sun SPOTSs out of different layers. Picture taken fram.(15)...............c...... 14
Figure 5 CLDC two stage verification process. Adapted from.[18]..........ccooiiiiiiriiiiiieniee e 15
Figure 60verview of the available JAVA versions and run configurations. Adopted fram.[27]............... 20
Figure 7 JADE LEAP execution modes: (a)-8tamel eXxecution Mode;...........cooouvveieiiiiiieieniiiieee e 21
Figure 8 Architecture of the CentraliZzddbile Object Tracking application...........cccocvveveiiiiiiieeeniiienees 24

Figure 9 Class diagram AFME platform used in the Centralized Mobile Object Tracking applicatio......26

Figure 10 Class diagram of the used module, perceptors and actuators by RAC implementation.in. ARBAE

Figure 11 Class diagram of the MAPS agent platform and the implemented class of the RAT.............. 31

CAIdzNBE mH {dF3GS RAFANIY 2F GKS adlraS YLOKAY.S.32YLX SYSy
CA3IdzNBE mo {dGFdS RAFANIY 2F GKS adlasS YLOKAY.S.32YLX SYSy

Figue14$tiS RAIF AN Y 2F GKS adldS YFOKAYS AYLIESY.S3BGAYI (K

Figure 15 Screenshot of implemented Android USEIBIEE.............ocueiiiiiiiiiiieee e 35
Figure 16 Architecture of the implement agent based Andrs@ interface............cccccvvvviciiinii e, 36
Figure 17 UML class diagram of an AFME platform supporting agent mobility.............cccccceeeeeennnnnnn. 38

Figure 18 UML state diagram modeling the behavior of a MAPS based Decentralized Search.agent..41

Figure 19 Test configurations for eXperiments.............covvviiiiiieeiiicccre e e e e e e e e eeeeeseseseeeeeeenn A

Figure 20 Node deployment in the WSN for a) Centralized Mobile Object Tracking b) Decentralized .S&arch
Figure 21 Combined diagrams showing CPU load and energy needs for a) Centralized Mobile Object Tracking

and b) DecentraliZed SEALCKL.uiii i 50

Xi

file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894956
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894957
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894958
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894963
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894971
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894974
file:///C:\Users\servax\Google%20Drive\MT-BBoesch.docx%23_Toc323894975

List of Tables

Table 1 Measured CPU utilizations in % of the centralized mobile object tracking applicatioe and
decentralized search application in COMPAriSQDN..........cccccuuiiiiiiiiiiiirer e e e e a7
Table 2 Memory utilization during execution (in kilo bytes) of the centratfibdile object tracking
application and the decentralized search application in COMpPariSON.........ccccccvvvviieeeeeceeeeenn. 48
Table 3 Energy consumption of the IBIpENtAtioNS. ... 49
Table 4 Wireless traffic results for implementations of the centralized mobile object tracking

2T o] o] [0 110 o FA OO P PP PPPP R PPPPPPPRRPP 51

Table 5 CPU and Energy consumption results for agent migration test scenario.................... 52

List of Code Listings

Code Listing 1 necessary sourtadification of MAPS internal class

MobileAgentCommunicatioNChannNelSENAEY..........cccciiiiireeeee e 19
Code Listing 2 AFME platform definition for a SENSOIE.cccvviiiieiiiiiiieeee e 25
Code Listing 3 AFME definitions ofAflIME based agents for the tracking application a) RAT, b) RAS,
C) SCA AN 0) RAC ..ottt e e et e e e e sk e et e e e s snb e e e e e e e e e annbrn e e e e e e e aaen 28
Code Listing 4 Agent definition of the AFME deadized search agent..........cccccvvvvvveiieiieeenee.n. 39

Xii

file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305207
file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305207
file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305209
file:///C:\Users\servax\Desktop\Master%20Thesis%20All\Report\MT-BBoesch.docx%23_Toc323305209

1. Introduction
1.1 Applicationand Technology Area

Progress in the fields of electronics and miniaturization has led to the development of small
embedded wireless sensors, which are used in large numbers in different applications. The wireless
communication capability of such sensors is the main reasothéoemergence of new applications,

in which their wired counterparts are not suitabj&]. The potential of these wireless sensors can
increase even further, when they form a network of cooperative sensor nodes. Wikedess sensor
networks (WSN) are an emerging and promising technology for a wide field of applications in the
civilian and military sector, such as in border line surveillance or in the monitoring of patients in

health care.

Besides their potential, thelevelopment of a wireless sensor network application is a challenging
task due to the distributed and embedded characteristics of such a network. Out of several proposed
programming paradigms to overcome this challenge, the software agent based approeety is
promising[2; 3]and is therefore addressed in this thesis. In general, the execution of software agents
requires a middleware. A great variety of middleware that supports software agents on different
hardwareplatforms is available for different programming languages. Yet the choice for a suitable

middleware can be difficult, because it is hard to compare their performaglicectly.

1.2 Motivation and ProblemStudied

The problemthat is focusedin this thesis is tocomparethe suitaklity of selectedmiddleware
approachesfor a specific application in the WSN doma8everal functional prototypesf two
applications the Centralized Mobile Object Tracking and the Decentralized Semecteveloped
These prototypesnake it possible t@nalyz their performances and needed resources. The results
provided by ths analysis canbe used as evaluation criteriato choose the most appropriate

middlewareamong those that are tested

1.3 ApproachChosen to Solve therBblem

In order to solve the problem addressed in this thesis, the following approach is used to support the
process of choosing a middleware for a specific application. For the comparison of three middleware
in their performance of execution, two predefined atiten implemented applications are realized

on a chosen hardware platform. The applications are a tracking application, which is a well known
application for WSN and ®ecentralized Searchpplication, which is based on a pheromene
coordination strategy (fo more detailed information about the implemented applications see
chapter 2.3 and 2.4). To be able to compare the middleware in the context of a chosen application,
prototypes of the applications are then implemented on the evaluated middleware. Aftesethe
implementations experiments are conducted, which are executed according to defined test
configurations in order to extract metrics representing the run time execution performance to

certain criteria of the middleware executing the test application.

1.4 Thess Goalsand Expected Results

1 Implementation of functional and comparable prototypes for a given set of middleware for
the tracking and search application.

1 Extraction of measurements about the performance and resource needs of every middleware
in the teg set.

1 Analysis of the measurements to determine the suitability of every member of the set of

middlewarefor the specific applications.

1.5 Thesis Outline

This thesis consists gevenmain chaptersin addition tothis introduction Chapte 2 providesan
overview aboutsoftware agents and middleware as well as the necesBackground information
for the implemented applicationdn Chapter 3he used hardware platfornits main properties and
the set ofthe chosen agentmiddleware used in this thesiare introduced Furthermore the
methodology of the work is presentad this chapter. Chapter 4 focuses on theverallarchitecture

of both applications as well asn the architecture ofheir componentsThe necessaryistinctions in
the overall architecturbdesign which are the result of different properties and characteristics of the
different middleware are also shown In Chapter 5 the resultsire presentedand the method of
extraction isshown. These results and measurements are discussed in Chapteev@ral elated
works are outlined inChapter 7followed by a conclusion of the worland suggestions foiurther

improvements and future worln Chapter8.

2 Background

Programminga WSN application is not trivial due to the limitations of the usartiware platforms,
like processing power as weds memory and energy resourcesid the complexity of a highly
distributed wireless systenMost implementationsfor WSN areapplication or domainspecific and
necessitatetrade off in the fields of task amplexity, communication patterns and resource usage
Hence thesespecificimplementations includenost likely modulesfor routing mechanisms, time
synchronization, node localization and data aggregatidrese modulefave dependencies to their
applicatiors and thereforethese partscanhardy be reused A WSMNaware programming paradigm is
needed to support a rapid development and a highly flexible deployment of wé&iWare This
paradigm will be explained in the following subchapt&he agentbased approachthas a high

potential for the use iIWSNapplicationsas it meets the demands mentioned abdze 4]

2.1 Agents in action

There has been a lively discussion in the literature about the precise definition of the term software
agent and about how software agents differ from ordinary computer programfb]lthe authors
Franklin and Graesser showetkimilarities and differences of several definitions for software agents
and provide a taxonomy that attempts to contain all of them. The authors also extract some mutual
concepts from the definitions discussed in their work. According to these coneeptstware agent

can be defined as a software entity or as an additional abstraction layer. Franklin and Graesser state

that a software agent has to support the following properties:

1 Autonomy: software agents can make decision about how to reach a cgainand which
actions to take without any interaction with the user or other programs.
1 Reactivity: software agents are capable of receiving events and environmental changes and
trigger a responding action.
1 Social ability: Interaction between a software agent and other entities (e.g. user, other agents
etc...) is possible and can lead to coordination, cooperation or even competition.
9 Persistence: The execution of a software agent is continuously, in cottrés¢ sequential
execution of operation in normal software.
In [6] a popular definition for software agents can be found, in which behavior is a fundamental
concept. There are other works tharovide various taxonomies fdhe classification of software
agents. Different taxonomies are presented for example in the works of HE€tor Sakarkar and
Shelkd8].

According to[9] another essential property for a software agent in the WSN domain is agent
mobility. A mobile software agent can transfer its execution from one system to another system in

the network and can subsequently continue its operation on the target system.piideess of
transferring an agent from a source system to a destination system is often cailigdtion. While

migrating the code of the software agent, which implements its behavior, it is possible for the agent

to carry its data, also namestate, duringthe transfer. The migration is calletiateful, if the state is

included in the transmission. If the state is excluded, the migration is referred statedesq10]

After the agent is transferred, the migrated agent is atgcuted on the destination system.

There is an additional concept calletbningin the context of agent mobility, which extends agent
migration[11]. When using agent cloning, a copy of the original agent runs on the degtiratstem

and the original agent itself is still present on the source system. Hence, the difference to agent
migration is that with agent cloning the copy and the original are executed on both systems
AAYdzZ GFyS2dzated ¢2 | OO020hls paused, & Kdpyl is inddé whiclBiS y G Q&
OGN YAaFSNNBR 2yiG2 GKS GFNBSG aeadsSy FyR GKS |3Syi

The previous mentioned social property of software agents leads to Hamggtnt systera (MAS) in
whichagents can interact with each other. It should beiped that the interactioris not necessarily
between two or more agentdyut it is also possible that an agent interacts with humans or other
entities. MAS are suited famomplex taskswhich are diffialt or even impossible tbe performedby

one singleagentor a conventional software systerni?]

2.2 Middleware for an EasierDevelopment

The development of a MAS from the scratch is a challenging task and would exceed the time budgets
of most WSN application development projects. Therefore, many +agént platforms (MAP) are
provided by several companies, academic institutions or opemcgoprojects to develop, run and

manage MAS.

MAPs are implemented as an additional abstraction layer between the operating system and the
agents executed by the platform and thus they function as middleware. The software developer is
supported with a fletble framework for a rapid implementation of MAS applications by MARis. is
made possible through the supply of an environment, in which an agent can be executed and
through essential services e.g. agent communication, migration, scheduling and agcessiem

resources[13]

In this thesis the focus is on lightweight MAPs which are able to run on target systems with limited
hardware resources, because these systems are most common in a WSN. Virtual machines are also
availabbe for such embedded systems. Due to their availabiligva as object orientated higével

programming language can be used to develop applications for the target systems mentioned above.

Two reference mobile object tracking applications are implemént@ the following Java based
MAPs: JADE, MAPS and AFME on Oracle Sufisppés the chosen hardware platform capable of

the execution of Java byte code.

2.3 Centrdized Mobile Object Tacking

One of the mobile object tracking applications, tBentralized Mobile Object Trackinig based on

the work of Freitas et.a[l] and Allgayer et.al15]. Contrary to their work, in which mobile ags

are used, the centralized version of the mobile object tracking presented in this thesis is
implemented with cooperating static agents. The reason for that is that one of the used MAPs cannot
support agent migration. In this section the approach praabdy Allgayer et.al. is discussed and
afterwards the modifications for the implemented tracking application without agent mobility are

demonstrated.

The WSN consists of distributed sensor nodes on predefined positions. These nodes are able to
perform pro@ssing and communication with their neighboring nodes and to sense the distance to
the target node. Depending on the characteristics of the mobile target, different types of active and
passive sensors can be used for this purpose. In the implementatiaharh developed in this thesis

the wireless interface is employed as sensor. The target node continuously sends radio signals, which
are called beacons. These beacons are received by the sensor nodes with their local wireless
interface. During the recepmin the sensor nodes measure the signal strength. Hence the software
calculates the distance between the target node and the receiving sensor node via the
omnidirectional model of electromagnetic wave propagation. This model states that the power of the

beacon signal declines quadratically over the distance.

The suggested sensor network consists of three types of nodes. The first type is the already
mentioned target node, which can be tracked by the network. The second type, the sensor node, has
the function of sensing the beacon frames broadcasted by the target. The WSN consists of several
sensor nodes, but to accomplish a successful localization of the target object at least three nodes of
this second type have to be in range of the target. The third tgpa toordination node, which is

responsible for the start of the mobile agents. It also functions as sink node, in other words the

5

calculated result in this case the location of the targeéexits the WSN over the coordination node.
Figurel shows the structure of the WSN with all three types of nodes forGeatralized Mobile
Object Tracking

The authors in1] propose animplementation with two types of software agents: Collaborative

Agents (CAs) and Resident Agents (RAs). RAs are not mobile and therefore they stay on a fix node.
These agents can either be a RA _Target (RAT), a RA_Coordinator (RAC) or a RA_Sensor (RAS)
depending on which type of node the agents are created. RAS are executed on sensor nodes. They
perform the measurements of the signal strengths of the received beacons broadcasted by the target
object. In addition to that the RAC runs on the coordinator nodeich is also the starting point of

the execution of the CAs.

CAs are able to migrate between nodes. Their function is to perform the localization of the target.
Therefore, these agents communicate with their local RAS that provide the distance targlee A

CA can either be a CA_Master (CAM) or a CA_Slave (CAS). CAS are simply forwarding the distance
information received via the local RAS to the CAM. The CAM uses this information together with its

f 20! ¢ NEFRAYy3 (2 OI t Odzdditiondl taskkndndleéd biNEh& GAMEIs thé2 & A G A
coordination of CA migrations. These migrations are essential in case the target leaves the range of a

sensor node that hosts a CA.

Sensor Node
(6] (0] (€] & @ (o)
(€] 0] (6] o [6) o o &)
Coordinator
6] o) o) @ o o o @)
(a) (b)
O 19} o b & o]
RAS active
RAS inactive
9 & o [}
o >4 @ O RAC
CAM
& @ o . o o) o .) CAS
(©) (d) RAT

Figurel Agent migrations in the original WSNacking application.

Figurel depicts all necessary agent migrations and the tracking process in the original WSN tracking
application. The initi&ation of the WSN is shown from a) to c). Three RAS detect the broadcasted
beacon frames emitted by a RAT, which is also the start condition of the following step. Via
messaging service provided by the MAP, three RAS inform the RAC that a RAT is (Figange

1(a)). The RAC subsequently requests the CAM to migrate to the sensor node closest to the target
object (Figure 1(b)). When the CAM resumes its execution on the closest node, two agents cloned
from the CAM are sent to the other two sensor nodes,ialihpreviously have informed the
coordinator about the received beacons (Figure 1(c)). In contrast to the master agent the clones act
as slaves. Figure 1(d) shows the migration of one of the CAS when the target object has left the range

of its current host

Due to the fact that not all available MAPs for the chosen hardware platform support agent cloning
(one even cannot perform agent migration), some modifications of the presented solution are
necessary in order to implement this application on the choSExPs. The mobile CAs are replaced

by static agents, the static cooperative agents (SCAs) and hosted on every sensor node. SCAs have
three possible roles: they can be inactive, master or slave. The task of managing the CA has moved
from the CAM to the RA&b that the implementation is simplified. To be able to fulfill this task the

RAC needs information about which nodes are in range of the target. Therefore, the RASs also send
their distance readings to the RAC, but in a lower frequency than to the lotek &A. In case the

target object comes in range, the distance readings are sent immediately.

To minimize of complexity of the applicatitime following limitation have to keep in mind. Only one
target node is supported.e. the network is able to tragkist one target at a timeThe target node

and sensor node are on a two dimensional plane. It is assumedhbatistance betweemeighbor
nodesassures the three nodes in the triangle are in range of each other and that the communication
is not errorprone. A routing protocol can be used for direct communication between all agent

platformson the sensor nodes and the platform hosting fRAC

Thethree sensor nodes closest to the target object calculate the position of the target object via
triangulation. Hence, the nodes have to be arranged so that three of them form an equilateral
triangle, as it can be seen figurel. The position of the target object (x0, y0) can be determined by
the formula represented by (1). The formula uses the positions of the sensor nagdgs These
positions haveto be known by the calculating node as well as the distance for the participating

sensor nodes to the target object)(for i = 1 to 3. The cooperative agent, which acts as master and

which is supplied by the slaves with their distance readings, is nsgge for executing this

triangulation algorithm.

00: (*b =0 1X(I) (1)
For A and b:
N I
N ‘2)
L (12 1) @l @ (A @)
0= . . .)) 3
(12 153 12 g2 + (% @) 3

The role in which 8CA acts is managédxy the RACTherefore the RACuses the provided distance
information to determine the three closest sensor nodes to the target object. This information is
provided by the RAS as mentioned befoféwe starting condition for the triangulation is that the
target objectis in range of three sensor nodeSfter the RAQeceived distance information from at
least threeRAS|t organizeghis information in a list sorted by the distanceshe RAC theactivates
the SCAson the closest sensor nodes according to this list and assigns their igs. is
accomplished via messages, which contain the role and all necessary inforrdafOA. destined to
act asa slave is informed abouthe address of the mastefhe mastelis provided with its position
and thecoordinatesof the slaves to be able executed the triangulation algoritfiine RAShforms
the RAC supplementary to the repeated transmissions, if theetaggts in range, if the firdieacon is
received and if thedrget gets out of range. As a resulietresponse to the movement difie target

object is enhanced.

2.4 DecentralizedSearch

The second application udan this thesis the Decentralized Searchs based on the pheromone
coordination strategy preented by Freitas et al. [d6]. It can be seen as a completely decentralized
version of trackingThe authos show a pheromondased approach to coordinate a network of
unmanned aerial vehicledJAVs)and ground sensor nodedt is used to forward alarms from a
ground sensor network t&JAVdrones.In thiswork virtual pheromones are used to find the sensor
node closest to themobile node The moving nods (UAVskemit radio beacon equally as in the
application described abov@hese beaconare stored asvirtual pheromonemarks on the static

sensor nodes ilits range Thereby the initial vale of the pheromone mark idetermined by the

8

strengthof the beacon signal. As witkal pheromondrailsin nature for examplérails used by ants

to track food, virtual pheromone tracks fadever time. The formed pheromone trails show a
gradient concentration of pheromones, which indicetee movement of the mobile nodes. While a
static sensor wants to deliver a message to a mobile drentessage just follows this concentration
towards the increasing direction of gradiemt Figure 2 a WSN for the pheromone based search is
demonstrated.Figure2(a) shove a small WSN with the virtual pheromone marks left by the target
objects after themobile nodemovedthrough. Theillustration also depicts a possible starting position
of the agent sarching the mobile node. This WStdnsists of one type of sensor node, which
executes two kinds of ageés, CA and RA as describedsattion 2.3. Sensing the beacons and the
handling of the pheromone &k is the responsibility of eesident agent, the RAensor (RAS). The
second agent type is a collataive search agent (CSA). Thebile CSAs are responsible for finding

the closest sensor node to¢hmobile node by following thpheromone marks.

The first approach to implement thBecentralized Searotenbe seen in Figure 2(b). A CSA follows

the trail by cloning itself to the neighboring nodes of its hosting node. When a clone starts its
execution on a node, it interacts with the local RAS, wipabvides the current levebf the
pheromone trail. By comp&gson between the pheromone levels of the previous ahd hosting

node, the CAS decides its next step. In case the pheromone level on the current node increases, the
CAS clones itself to the new neighimg nodes and informs the CABm which it was cloed, about

the higher level on the current node. Otherwise the CAS terminates its execution. If a CAS is informed
by one of its clones about a higher pheromone level, it also ends its lifecycle. If there is no message,

the current node is the closest one@therefore the desired destination node.

80 70 55 0 0
@ @ @ @ @
90 * N 65 45 0
® ® o o o
75 35 65 .50 25
O O O . ©
0 0 0 20 15
® o ® @ >

b)

@ Sensor Node

* Target Object

---- Target Track
Search Agent
@ Visited Node
(O Chosen Node
<+— Agent Cloning

@ Final Node

(O start Node

Figure2 The WSN for the pheromone based search with agent cloning approach

Due to the fact that agent cloning is heupported byall the MAR used in this thesis, some
modification to this approach are necessary. Therefore agent migratamusedwhich is supported
by all the MAPs, instead of agent cloninthe algorithm implemented as agent behavior to fulfill the

search follows these steps:

10

a) Thesearching agent obtains a list of neighbor nodes and its current pheromone level from
the current hosting node. If no more unvisited nodes can be obtained or the pheromone
levels are less then on a previous node, the agent migrates to the node with theshig
pheromone mark, its final position and ends the search.

b) Theagent executes a stateful migration to all neighbor nodes in the list, except for already
visited ones, and storeshe highest pheromone level found and addresses of visited nodes
as state.

c) If there are no more nodes to visit in the list, the agent migsate the node with the

highest pheromone level and continues with step a).

This behavior of the searching agent is also depicted in Figure 3 that depicts the pheromone based
search concept ith agent migration approach. At the start node (node a) the agent gets the list of its
direct neighbors (node b and c). After visiting both nodes, the agent continues on the node with the
higher pheromone level (node c). Depending on the order of hodesofix,b), the agent might have
already been on c. If this is not the case, the agent has to perform an additional migration from b to
c. Having arrived on c, the agent obtains a new list of neighbors (d,e and a). The node a is dropped,
because the agerdlready knows that it has been there, so the pheromone level of node a is familiar.

In case a routing protocol is provided by either the MAP or by the hardware platform, the agent is
able to directly migrate to a node which is not in its range (e.g. framd). If this is not the case, the

agent has to take a detour over a node in its range (e.g. from b over a to c)

75 80 55 0 0 @ Sensor Node
@ @ @ @ @
T 4 * Target Object
---- Target Track
9 Y 85 . 65 45 0
? < O <+ @ @ Search Agent
— . A A ' g
R R I @ visited Node
75 35 65 50 25 O Chosen Node
O ® O @w——©
1 <+— Agent Cloning
@ rinal Node
0 0 0" 20 15
@ @ [b < @ O start Node

Figure3 Pheromone base search concept with agent migration approach.

11

12

3 Methodsand Tools

3.1 Methodology

To be able to compare thehosen MAPsunning thetwo applications which are desdoed in
Sections 2.3 and 2.4yrototypes for themhave been implementedl'o achievecomparable results

the applications are implementeds similar as possible despite the different architectuasred the
distinctive concepts of he selectedMAPs. Therefore most parts of the codeefiningF ISy i Q& Q
behaviorswerereused in the implementation for the different MAPISe experiments of all tests are
done on identical hardware, in this case the same devices, to ernbatethe results are no
influenced by meanderings in the hardwaFarthermore, only features and services provided by all
MAPSs are used in the implementations. Different characteristics of the MAPs, which are shown in this
chapter, lead to necessary differences in the architecturghef overall systemHence only the
implementations of similasubsystems are compared in this woRar further similarity the common
programming paradigm was chosen, therefore the agent behaviors or components develop due to

the state machine programming model.

This chapterintroduces the usedhardware platform the Sun Oracle S8pof14] as well as the MAPs
on which theapplicationsare implemented Furthermore, the steps necessarysaccessfully use the

MAPs as middleware (MW) on the selected hardware platfarenshown.

3.2 SunSpots

Oracle Labs, the former Sun Labs, developed3mall Programmable Object Technology (SPOT) to
provide an experimentalhardwareplatform as well as thelevelopmentsoftware needed to create a

wide range of embedded wirelesgpplications.A SPOT device, from now on cal®dnSpot,is an
embedded deice, slightly bigger #n a box of matches, equipped a wireless interface, battery
supply, procesw unit and severabuilt-in sensors.As t can be seen irFigure4 a normal Spot
consists out of three different boards. There is a second type of Spots, the base stations, unlike
normal Spots they only have the processor boasgr (including CPU and wireless interfada)t no
sensors board and power suppBase stations can act as interface for a personal computer (PC) to a

network out of Spots or execute code on itself.

Besides the hardware a main characteristic of su&raSpot is that it is programmable completely
in JavaThis is made possibley the usages of a Java Virtual Machine (VM), called Squawk VM, which

designed to have a minimal footprint and therefore is suitable to run on embedded devVibes.

13

Squawk VM suppts the Connected Limited Device Configuration (CLDC) 1.1thendvViobile
Information Device Profile (MIDR).0. Therefore Java is the preferrggtogramming language¢o

program such a device.

SunSPOT

SUNROOF

SENSOR
BOARD

FPROCESSOR
BOARD

BATTERY

Figure4 The composition of SurSPOTSs out of different layers. Picture taken from (15)

Due to the fact that Java is a high level object orientated language, the SPOT allows a more rapid
development than other embedded development platforms, which are often programmed in lower
level langages like e.g. C or nesC. Another advantage of the SPOT is the provided Software
Development Kit (SDK) and its possible integration in popular Integrated Development Environments
like NetBeans and EclipfEr]

In regard to WSNhere is a disadvantage with SPOT. Due to the fact that the Squawk VM supports
CLDC 1.1, dynamic class loading is not possible. CLDC is per definition a Java 2 Micro Edition (J2ME)
configuration. These can be seen as a subset of libraries and of featithe dava 2 Platform,
Standard Edition (J2SE) for mobile devices, like e.g. cell phones or PDAs with limited hardware
resources. CLDC focuses on devices with limited resources. As a result, several features of the J2SE
are not supported with CLDC, likegethe J2SE security model. It is replaced by several simpler and
more resource friendly security concepts. One of these concepts is responsible for the prevention of
dynamic class loading, the Sandbox model. This model states that an application camranyus
resources or libraries that are not part of its scope. This means that an application running on a J2ME
with CLDC cannot load any new class, which is not part of the application jar file. Its predefined
functionality can therefore not be extendedl8] In the context of software agents in WSN this
results in the fact that every class, which an agent might need, must already be present on the
device. Even if the agent is not running on this device, all needed classes must be available on the

device to spport the potential migration of such an agent. So it is not possible to simply add a new
14

agent with new features, which need a new code, to the network without updating every node the

agent is supposed to run on.

Additional to the limitation of the secity model used in CLDC there is another characteribtic.
difference to the J2SE verification method, which would need too many resources (Memory and
processing time)application and libraries must bpre-verified to be able to execute on a CLDC
device.The verificationprocessis depicted inFigure5. The verification is done to ensure that only
valid applicatios are executed on the devic&his waghe reason for some initial problems with the
Agent Factory Micro Edition (AFMER]

Development workstation

Target device
(KVM runtime)

MyApp.java

|

I
I
|
I
I
i
I N
MyApp.class ! runtime
l« ! verifier
I
I
I
I
I
I
I
I

Download...

preverifier

MyApp.class —---------—- |

interpreter

Figure5 CLDCwo stage verification process.dapted from[18]
3.3 AFME

Pervasive systems are the intendaka of applicatiorof AFME, a MAP which is based on the Agent
Factory Frameworkl9]. The MAP has a minimized need of resources and is designed for devices,
which are compliant to the MIDP of J2ME and therefore support Sun Spots. AFME operates according
to the BelieveDesirelntention (BDI) paradigrf20]. Thisstates that an agent is carried out in a sense
deliberateact cycle, which is implemented in AME as a periodically scheduled sequence of four
steps. In the first step the agent perceives information about its environment and updates the

I ISy i Qated Bhesk efef statéd represent the set of information available to the agent about
its current status and its environment. In the second step the agent uses resolution based reasoning
02 RSUSNNAYS GKS F3ISyidQa RSaMNBAd®TE KIAKES A3 SHAITQfa2
GKAOK N3 Ay Yzad Ol a

Ala RSaANBao® LT ySSRSR:Z

(s}
Qax

15

commitments, which are the set or subset of the determined desires. According to the identified

commitments, certain actios are performed by the agent through its actuators in the final §24p.

The platform provides four main component classes that the developer has to extend for the
implementation of an application. An AFME agent is composkdesceptors, actuators and
modules[21]t SNOSLIi2N&E | NS OFIffSR Ay (GKS FANRG adSLI 27
agent to perceive information from its environment, from other agents or from the agent itself.
PeOSLIi2NBR NB | faz2 NBalLlRyaiofS F2N GKS dzZJRIGS 2
perceived information. Actuators are called in the last step of the execution sequence. Each of them
represents a certain action, which an agent could take {éllifits desires. Modules are used for

agent internal information exchange between perceptors and actuators. The usage of modules is
necessary due to the loose coupling of agent components. There are no references and
dependencies between one object andhadher object. This results in the advantage that
components can easily be replaced or updated without touching additional components. Modules

can only be employed by their agents. To enable data exchange between agents, AFME uses objects
which extend theservice component. The platform also offers predefined services, e.g. the Message
Transport Service (MTS) which is used for message based communication between agents or the
Radio Migration Manager which handles agent migration. Services are directlgdstartthe agent

platform itself.

For implementing an application with AFME, it is suggested that both the declarative model and the
imperative programming model are employed. The implementation of modules, services, perceptors
and actuators is done impeliaA St & Ay WIF @I d ¢KS RSTFAYyAGAZY 27
behavior should be done in a declarative AFME language, which is a minimized version of the Agent
Factory Agent Programming Language 2 (AFAPL2). This AFME language is used to dé&fia¢gvaedec
a80 2F NMzZ Sa NBLNBaSyilAy3d GKS F3ISyidiQa o6SKIFGA2NI |
generating java code out of the definitions and hardware specific templates. Through these
templates a definition of an agent can be reused dfedent hardware platforms by simply switching
these templates. For example, there is a template for Sun Spots which generates a code without a
graphical user interface (GUI). A complete imperative implementation with Java is possible, but has
disadvantags like e.g. there is no syntax checking for rules and the support of rules which include
mathematical expressions is missing. Three exemplary rules can be seen below. Each rule consists out
of beliefs and actions separated trough a gredtsn sign. If a AFME agent belief set includes the
beliefs on the left side of a rule, it will be committed to do one or more actions which are
represented on the right side of a rule. That the evaluation of the conditions for an action can be

16

considered to be true, aesolutionbased reasoning is done. Furthermore, negation (3), variables (2)

and mathematical expressions can be applied in AFME [2de¢€l]
bl , b2>doSomething; (1)
¢, d(?var) >doSomethingWith(?v4p);
la, e >®SomethingElse; 3)

Due to the fact that it is possible to use a different template for different hardware platforms AFME
can be executed on a PC which is connected to a Sun Spot base station. This combination can act as a

gateway to the WSN and/or as kinode.

3.4 MAPS

The Mobile Agent Platform for Sun Spots (MAPS) is a middleware for software agents designed for
WSN. The MAPS was developed for the SPOT and therefore utilizes some specific features of the
Squawk VM. This makes the Squawk VM a requirement for this MAP. The main characteristics of
MAPS are that they have lightweight agents, an agent server architecture, a provision of minimal
core services and a plag-based extensions architecture. The tighight agent architecture ensures

agent migration and execution with high efficiency. The core services offer support for migration, for
agent naming and for communication and they provide scheduling and access to sensor readings. The
platform can be eabi extended with other services due to the pligbased extension architecture.

MAPS itself is composed of several components. These components interact with each other via
using an event based approach. MAPS agents are implemented according to the tivepera
LINEANF YYAY3I Y2RSE X 4KAOK RS-plangstaie mactinel Afiglan®d o0 SK I
state machine was chosen to enable role specific behavior. Every plane corresponds to a certain role
of an agent and the state machine represents thédogor of the agent in this role. The result of this
architecture is that three popular programming paradigms for WSN are utilized in MAPS. These

paradigms are eventstate and agentbased programmind4]

As previously memined MAPS requires specific features of 8guawk VM. The most important one

is Isolates which is not exclusive in the Squawk VM, but is defined in Java Specification Rég§Rgst

121 @pplication Isolation APIR2]. Extenihg JSR 121, Isolates in the Squawk VM possess one
additional feature, isolate migration. This feature allows that the execution of such an Isolate can be
paused, serialized and then it can be transferred over a network or stored on a storage device. After
GKS Laz2tFrGS8S A& NBEt2FRSR Ay | K2aiQa YSY2NER 0S0@S

17

order), the execution of the Isolate is continued from an instance of the Squawjz3{Mhe main
concept of Isolates is that arpglication is isolated from other applications via threadeiects
managed by the VM. Isolates can be seen as a possible implementation of the sandbox model, which
is discussed in section 3.2. Using MAPS, the Isolate represents a very important coscapselithe

agent platform itself and all agents are realized as Isol@eMAPS utilizes the Squawk VM Isolate

migration for agent migration processes.

Although MAPS was developed for SPOT, some problems with the suppiéeg tbcurred during

the implementation of theCentralized Mobile Object Trackimnd the Decentralized Searchirhe

MAPS library used in this work is the version 1.1. With this version, it was not possible to run the
tutorial application taken from the MAF documentation, because of several runtime exceptions
which led to a restart of the hardware. Therefore a java decompiler was needed to obtain the source
code of MAPS, which is published under the GNU General Public Li2éhsEne original source of
MAPS was not available. The MAPS team provides a Subversion repository, but that was empty at the
creation time of this work (24.10.201125]. After some minor modifications to the obtained source
code were performed, all errors highlighted from the IDE are corrected and the modified version of
MAPS is now able to start on a Sun Spot. Later in the implementation process, a new problem
concernirg the outgoing communication occurred: the platform stopped transmitting. After a second
source code review, an internal class was extended, which is responsible for all outgoing
communication of a node. This modification gives MAPS agents the abiliyrbmunicate over the

entire runtime. These changes can be seen in the code presented in Listing 1. In the modified version
an additional while loop, which runs as long as the node, executes the agent platform and ensures
ongoing communication and node disavy. The review of the code also revealed that MAPS does
not support agent cloning, because the responsible method in the source code is empty. This

contradicts the statement of Aiello et. al. [[26] that MAPS suppostagent cloning.

18

original:
public void run()

{
waitForCommunications();
while (this.communicationEvents.size() > 0)
{
th going message handling
}
modification:

public void run()

while(true){
waitForCommunications();
while (this.communicationEvents.size()
>0){

Mmt going message handling

}

Code Listind. necessary source modification of MAPS internal class
MobileAgentCommunicationChannelSender

As mentioned above MAPS provides a basiwice for accessing system resourcelis service is
initiated when the platform starts, regardless if needed. Therefore it is not possitithout

modifications,to use MAPS on SPOT base station because of the missing sensor board.

3.5 JADE LEAP

JADE stands for Java Agent DEvelopment framework. JADE is a middleware for distributed MAS and
in contrast to AFME and MAPS it was not initially designed for hardware platforms with limited
resources. JADE itself cannot be executed on J2ME platforms, deedawequires a Java VM
supporting Java 5. Furthermore, the memory needs of JADE exceed the capacity of most CLDC
devices. However, the execution of the MAP on devices with J2ME (CDC or CLDC) is possible through
the Lightweight Extensible Agent PlatforicE@AP), which is an ada for JADEFigure6 shows the
different Java platforms that are available at the time of writing. With JADE andLIB&HE MAS
applications can be developed that can be distributed over all Java platforms except over Java Card.
In addition to that JADEEAP also supports .Net, Android 2.1 and higher versions of Android. Both
JADE and JAREAP provide almost the same ApplicatiBrogramming Interface (API) on all
supported platforms. An exception is the MIDP, because the VM provides it with a reduced set of

functionality.

19

Servers & Servers & High-end PDAs Mobile Smart

enterprise personal TV set-top boxes phones & cards
computers computers Embedded devices entry-level
PDAs
Optional
Packages

Optional

Java 2 Java 2
Platform, Platform,
Enterprise Standard
Edition Edition
(J2EE) (J2SE)

o | [avm

Java Phtform_Micmo Edition (Java MB

Figure6 Overviewof the available JAVAersions and runconfigurations. Adopted from[27]

With AFME and MAPS every device runs a MAP and agents are hosted on the platform itself. A
difference in regard to AFME and MAPS is that JADE has an additional abstraction level called
container With JADE agents are executed in a container, which is part of the platform. A platform
requires one main container and can be distributed over several devices. Every device is represented
through a container. In addition, it has to be mentioned thasialso possible to execute more than

one container or even more than one platform on a single device (only J2SE and J2EEEAIADE
provides two modes of operation: 1) the staatbne execution mode and 2) the split execution
mode. In the standéhlone moe a complete agent container is started on the device. This mode can
be used on all supported platforms excluding MIDP. For MIDP devices the usage of the split execution
mode is mandatory. When operating in this mode, JABEP separates the agent contaire a
frontend and a backend. The frontend, which is hosted on the mobile device, requires fewer
resources than the execution of a complete agent container. The backend running on a J2SE or J2EE
VM connects the split container to a main contain€igure? depicts the differences between the

standalone and split execution modes; 29; 30]

Additional to he reduced resources requirement, the split execution mode has other advantages on
resource constrained wireless devices. While initializing the connection between the container and
the JADE runtime, which hosts the main container, the necessary commnianidat completely

handled through the backend. This results in a faster initialization and less wireless traffic.

20

Furthermore, the binary coding of split container internal communication, which uses the wireless
interface of the mobile device, is more eféint and also reduces the wireless traffiigure? b)
shows a possible topology, in which the execution of the main container and the backend is

performed on different devicef30; 29]

a) “Stand-alone™ execution mode
JADE APIs

b) “Split” execution mode

. .

Figure7 JADE LEAP execution modes:
(a) Standalone execution modeand (b) Split execution mode (figure taken frof80])

JADE offers a lot of features and is much more powerful than AFME and MAPS, but a more detailed
description would exceed the scope of this thesis. More information about JADE can be found on the

official website[31].

Some important facts for the JARIEEAP for MIDP conform devices are highlighted below, because
Sun Spots are chosen as hardware platform in this work.-I&&BP depends on a device in a system,
which is able to provide the main container for the applicati@herefore it is not possible to
implement the Decentralized Searchpplication from section 2.4. For the implementation of the
Centralized Mobile Object Trackitigat has been introduced in section 2.3 with JABFAP, some
properties of the MAP have tbe kept in mind. Due to the fact that a backend hides the address of
the device, which hosts the frontend from the other containers on the platf¢2®], no direct
communication over JADEs MTS is possible between the devatesast the frontends. This could

be a disadvantage in WSN, because there is a higher utilization of the wireless interfaces in the
network. The need for a meshed routing protocol, which ensures that every node can communicate

with its backend, is anothatisadvantage in WSN.
21

JADE also offers a GUI for managing and debugging a whole agent platform and several service
agents like the spgpgent, which allow the visualization of the communication between all agents on

a platform.

It is not possible to use thdistributed binary libraries on Sun Spots. The reason for that is related to

the dependencies that the J2ME GUI package has, which are not supported by the Squawk VM. So it
is necessary to generate the JADEAP source for MIDP accordind30], followed by the removal

of any dependencies to the GUI package from the source code. It should also be noted that for the
successful generation of the JADEAP source an install&lin Java Micro Edition SDK is necessary.

This step idollowed by apre-verification of the compiled library via the pxerifier provided by the

Sun SPOT SDKlternatively it is possible to directly include td&DH_EAP source in development
projects. For a successful connection between frontendslaukends a tool called socked proxy has

to be executed on a PC connected to an SPOT base station. The socket proxy allows TCP based

connection from a Sun Spot to an end point in an IP based network and is part of the Sun SPOT SDK.

22

4 System Architecture an@esign

This section focuses on the architecture of the tamplications in which the agembiddlewareare
compared. First the centralized prototype will be discussed, followethbyDecentralized Search
one. Due to the collaborative characteristics of thest applicatiors, where different pars on
different nodes are working togethen the same systemit is necessary tshow every part of &

own andhow the different pars cooperate between each other.

To achieve comparable results, the prototypes are implemented as similar as possible on the MAPs.
Besides the different applications, the implementation that transmits and receives the beacons is

used in both applications on all MAPs. The beacons areeeadis Radiogram broadcasts and employ

GKS wlkRA2IANIY Oflaa 2F (GKS {the¢Qa {ljdz ¢1 zad ¢F
received signal strength indicator (RSSI) of Radiogram connection, which is named getRssi(). The
result of this method is $ed to calculate the distance in the tracking application and to set the initial

value of the virtual pheromone mark utilized in th&ecentralized Searchpplication. The only

difference between both applications is the frequency, in which the beacon®mited. In the

mobile object tracking application this frequency is 2 Hz, inDkeentralized Seardpplication it is

0,66 Hz. The reason for the lower frequency of the beacon broadcasts iDébentralized Search

application is that the disturbances$ ninning agent migrations decrease.

23

4.1 CentralizedMobile Object Tacking

a) AFME

g°

U N

PC

J2SE

JDBC

b) MAPS

g°

e @ gl=)

PC

J2SE

JDBC

G0 [

c)JADE

AgentPlatform

N

e & ol

D@QQ..

]

Spot

Base Station
RAS

COR

CA

Jade Main
Container

Jade Split
Container
Backend

ConnectionJade
Split Container
Front end
Backend

Figure8 Architecture of the GntralizedMobile ObjectTracking application

TheCentralized Mobile Object Trackipgptotypes consist of three components. The first component

is the WSN itself, which executes the application implemented on the three MAPs. The target
positions obtained from thaVSN are stored in a MySql database. From there the positions are
gueried and presented in the agent based GUI, which is implemented in JADE and is executes on an

Android device. The various properties and characteristics of the used MAPs result in necessar

differences in the implementations.

24

Several components which are used in the different implementations share a common code base in
the Centralized Mobile Object Trackiagplication. This common code base was only modified to fit

the different ways of message handling of the MAPs.

AFME

In Figure8 a) the structure othe tracking applicationased on AFME shown. As it can be seen the
RAGCagent is executed on a J2SE platform running conamonPC It would be possible to execute
the RAdirectly on the base station, but with the disadvantage that an additionalnaragvould be
needed, running on the PC which receives the results over the universal serial bus (USB\eand fo
them to the database. Andwantage of the execution on the PC is that thiéfunctionality of the

J2SE can be accessed in difference to the reduced one provided by J2ME

1 platform Basestation Platform{

2 scheduler 2;

3 service com.agentfactory.radio.RadiogramMTS BaseStation 66;
4 create RAC RACoordinator 1000;

5 add RACoordinator always(alive);

6 start RACoordinator;

7 template Deploylet.template Baseplatlet

8 EmuMigPlatform.template RASensorAgentPlatform;
9}

Code Listin@ AFME platform definition for a sensor node

Due to the fact that AFME uses an imperative part and a declarative part for the definition of an
agent, both definitions and the way they are linked together are explained. For the execution of an
AFME based agent a defined platform is required. Suclatfoph definition is presented ilCode
Listing2. It specifies the platform for the coordinator nodes. The definition states that the platform
uses tw schedulers, which results in a platform executed in two threads. This is followed by the
definition of the services that the platform should provide. In the illustrated example the
RadigramMTS service is providing a radiogram base message transportceeovi port 66 (line 3 in
Code Listing?). This service allows message based communication between agents. After the
provided services are defined, & $pecified which agents should be created and started. The value of
the agent control cycle is also defined in line 4 in Code Listing 2. In the example an agent from the
type RACoordinator , named RAC is defined with a scheduled selediberateact cycleevery

1000 ms (line 4 ilCode Listind). The initial belief states can also be set at this point for the RAC

F3Syidd ¢KS 0St AS Tageats Hellefd& €ine 5 @ode IRSENG)RThél Bed kepviord
25

artglreaégd RSOfIFINBa GKFIG GKS |3Syld RadastagshiatisRNE LI
added with this keyword can be regarded as persistent, because that state is true until it is explicitly
NBY2OPSR FTNRY (GKS F3SyidQa aSi 2F o0StAST adlrisSa 2
platform definition indicateswhich templates should be used for the code generation. The AFME
compiler uses this information to generate a Java source code for the agent platform and its agents.
Figure9 depicts the class diagram of an AFME platform used in the tracking application. The class
RABasePlatform represents the defined agent platform and implements the Platform interface

which is provided by the AFME API. This interface defines the functionality for a minimal AFME agent
platform. The usage of a service, tliRadigramMTS service, is also illustrateth this diagram.

Agents are presented aBasicRunnable objects to the platform. This class provides the basic
functionality for the execution of an agent. The exemplified platform definition is used for all nodes

in the AFME implementation of the trackimgplication, except for the target node. On the target

node no message transport service is needed, because the RAT does not communicate with any

other agent

sinterface» (2 BasicRunnable G AgentRunnable
Platform
o awvake n agETH
@ displayt
storer: c? BasicRunnahlel) & AgerRunnable()
o rwsre @ waksl A torpor()
addDataf) [P
@ @ torpar() & wake(:
@ storeMamer) N
—— @ ster) o =0dFOSBelst()
o @ stop() prgp—
addiDs| ” -
@ 0 @ display(& displayC
& rn0 o stop0)
I, @ writeToStream()
«Call, Impart
{7 RABaseAgentPlatiorm sintertace»
g W
& Runnable
2y SCheduler
2pn ITtET @ run()
o Service:
(& Bgents
& RABaseAgerFlariorm) 9 RadiogramMT5
@ createMamer) & messages
o & o agentiDs
o pausel) 5F iz
{® destroy(] oCall 3 & localAddres:
@ display(;
@ display A i RadiogramhTS()
@ newStars() @ modifyBinding(y
@ addDatal) @ runi)
@ sawelD() ® processPer(;
@ =ddD=() o nextRes)
@ =toretlamel) @ processActont
@ messageAddl
@ destroy(
& Service &5 =end)
& Service(] © RadioThread
{ register() ——
cf." maodifyBindingl)
@ processPert
d processAction

@ destroy(,

Figure9 Class diagram AFME platform used in t@entralized Mobile ®ject Tracking application.
26

The declarative definition of an agent includes the used actuators, perceptors and the rules for the
resolutionbased reasoning, which define the behavior of the agent. The simplest agent in the
application is the RAT, whose dte@tive definition can be seen i@ode Listin@ a). The agent has

one actuator namedeaconAct I YR 2y S Nz S® ¢KS NHzZ S RSGSN¥YAYySaE
Ad o0StASOGSR G2 06S GNMz2S GKS | OGAz2y cCoddlligtiag A GaG. St
a)).The actuator responsible for this action is implemented in the d&a&ssonAct . The source

code of the actuator can be seen in appendix c.Ite mapping between declarative and imperative

parts is defined through a string parameter iretbhonstructor of the actuator class. According to this

Nbz S GKS F3Syid Kra G2 o0StAS@®S GKFG GKS &adlds
LISNEAAGSYd AyAlGAlLE o0StEAST FT2NJ adaSyR. SIHO2yé¢ Ay (il
this rule the agent shows the desired behavior and emits a beacon in every scheduled sense

deliberateact cycle.

¢CKS w!{ Aa NBaLRyaAirotS FT2N aSyaray3da GKS SYAGGSR
be taken fromCode Listing3 b), includes a perceptor for this task. This perceptor is named
BeaconPer (line 1 inCode Listin@ b)) and is executed at the beginning of the sedséberateact

OeO0ftSe® LT I 0SIHO2y ONRIROlFIad Aa NBOSAQOSR 08 (KA:
to the belief set(see appendix c.1.2 for moieformation). The belief state includes two parameters:

the first parameter determines the ID of the destined agent, which should process the measured

signal strength and the second parameter is the signal strength itself. The agent rule defines that if

thhia oO0StASF aidldS Aa O2yaARSNBR (2 0SS GNMHzS:E GKS
parameters (line 3 iCode Listin@ b)). This action is provided by ttheformActuator (line 2 in

Code Listin@ b)), whid is part of the middleware and which is used to send messages over the MTS

of AFME. These messages are received from the RAC and the SCA

27

1)act BeaconAct;

2)sendBeacon>transmittBecaon;
a)

1)per BeaconPer;
2)act InformActuator;
3)beaconReceived(?agent,?txpwr) > inform(?agent, ?txpwr);

b)

1)per MTSPerceptor,PositionModPer;

2)act InfoReceiveSCAAct, InformActuator;

3)mod posMod=PositionModule;

4)message(inform,sender(?agt,?addr),?msg)>receivelncominglInfo(?agt,?addr,?msg);
5)coordinator(?agent),newTargetPos(?pos) >inform(?agent,?pos);

<)

1)per MTSPerceptor, CoordinatorModPer;

2)act InfoReceiveRACAct, InformActuator;

3)mod corMod = CoordinatorModule;
4)message(inform,sender(?agt,?addr),?contergfeivelncominglnfo(?agt, ?addr,?content);
5)info (?agent,?msg) > inform(?agent,?msg);

d)

Code Listingd AFME definitions of all AFME based agents for the tracking application
a) RAT, b) RAS, c) SCA and d) RAC
Both agent definitions are shown @ode Listin@: c) for the SCA and d) for the RAC. In order to

receive the messages from the MTS, both agentstheeiTSPerceptor , which is also provided
from AFME (line 1 i@ode ListingO0 | YR ROO® ¢ KA A& LISNOSLIWI2N) I RRa

[N

belief set. This belief state includes three parameters: the message type, the ID of the sending agent

and the message itdelAs mentioned in section 3.3 of this thesis, it is not possible to share data
between actuators and perceptors directly. Hence the functionalities of RAC and of SCA are
implemented as modules, which act on the data provided by the actuators that hahdle t
GNBOSAGSLYO2YAYIALYTF2E I QGAZ2Yy ® tKSas I OG dzl G 2 N
InfoReceiveSCAAct of the SCA andinfoReceiveRACAct of the RAC. Furthermore, both

agents use perceptors to perceive data from their modules and to update their sets of bafesf. st

For thePositionModule , which performs the tracking algorithm and which is executed by a SCA
in the role of the master, the perceptor is implemented in the cl®ssitionModPer . This
28

perceptor receives new target positions that are calculated frbm ihodule and extends the belief

asSi eAlGK | ySg aidlidsS aySec¢lI NBS(HIt2aé¢d ¢KAa adl bS8
StAST adGlridS aySgc¢hkNBSGt2a¢ Aa O2yaARSNBR (2 0S5
sensedeliberateact cyOf S G KFG GKS | OGA2Yy daAWGraANMaoE | 31 Ay L
should beperformed According to the second rule (line 5@ode Listin@c)) ini KS { /! Q&4 RSTA\
GKSNE A& | aSO2yR aidladSz GKS adlrdS aO22NRAYI G2

GAYF2NYE FFOGA2Y YR KAOK LINPPARSE GKS | RRNBaa A

(@]}

The RAC receives messages that contain the signalgstreéeadings and supplementary messages
that include the target positions. These messages are handled by its actuator,
InfoReceiveRACAct , in order to process incoming MTS traffic. Signal strength readings are
forwarded to the coordinator module to managke roles of the SCA in the WSN. Due to movement

or the activation of the target, the role of a SCA might need to be changed. If this is the case, the RAC
perceives all necessary information via the module. The RAC then informs the affected agents to
switch their roles and to change their parameters. For example, if the master is located on a different
node due to target movement, the address of the agent that acts as new master is a parameter for
SCA agents in the role of a slave. This functionality isged byCoordinatorModPer perceptor

'y R a lInfofm@ciuator . Incoming target positions are stored in the database through a

common interface which is used in all prototypes of this application.

Figurel0 shows a class diagram, which contains all used actuators and perceptors of the RAC. The
figure illustrates the relation of inheritance between the implemented classes and the classes
provided by AFMEPI. In the class diagram can be seen that both actuators are subclasses of the
Actuator class that the perceptors are subclasses of the Perceptor class and that the
CoordinatorModule is also a subclass of thdodule class. This is true for every actuator
perceptor and module in all AFME based implementation. The class diagram also illustrates the

methods, which had to be implemented to substitute the abstract definitions of the superclasses.

To fulfill the requirement of an almost similar implementation all agent platforms, the internal
structure of the implemented AFME modules is designed to function as a state machine. This
programming model was chosen because it allows an almost similar implementation on the other
platforms. This is due to the fathhat MAPS agents are implemented according to evant state
programming paradigms, as described in chapter 3.4. It is also possibigplement JADE based

agents following this paradigm

29

& Module ' Perceivable G Action
& id: Object
c,."" perceivel d" =ct(in action: FOS): boolean

o Modulein idertifier: Object)
@ register(intable: Hashtable)
cf‘ processPer(in perceptionlD: int): FOS

5 N N -
@' processAction(in actionlD: int, in data; FOS): FOS @ Perceptor @ Actuator
d: Ferceptor(in manager: PerceptionManager) d: Actuzgtor(in manager : Affecthanager, inid: String
i@ adoptBelief(in fos: FOS; i@ register(in table: Hashtable)

@ adoptBelief(in string: String; @ adoptBelief(in bel: FOS)
@ adoptBelief(in string: String;
@

retractBelisf(in bel: FOS)

® coordinatorModule

d‘" Coordinatortodule(in name: Agenthame)

@ processPer(inid: int): FOS @ MTSPerceptor
i@ processAction(inid: int, in data; FOS): FOS

® . & MTSPerceptor(in manager: Perceptiontanager) @ pataReceiveAct
SensorNodesListComparator o perceival’
m perceive(in fos: FOS, d: DataReceiveAct(in affManager: AffectManager

@ =etfin fos: FOS): boolear

(C] CoordinatorModPerceptor

) (& InformActuator
£ T PerceptionManager

& deploy_CAM: boolesn = false
& deploy_CAS1: boolean = false

d: InformActuztor(in manzger: AffectManzger
d: InfarmActuator(in manager: AffectManager, in s: String

& deploy_CASZ: boolean = false @ =ci(in action: FOS): bookean

& CoordinatorvodFerceptor(in manager: Ferceptionhanager)
i@ perceivel

Figurel0 Clasdiagram of the usednodule, perceptors and actuators by RAC implementation in AFME

MAPS

In contrast to AFME, MAPS cannot be executed on a base station (see chapter 3.4) and it cannot run
on other VMs, because of its dependency on the Squawk VM isolates. Therefore, a nammsgoBu

has to host the RAC agent and has to act as sink node of the WSN

The class diagram iRigure11 shows the most important classes involved when implementing a
MAPS based application. The MAP is represented througlass calledMobileAgentServer

with its interfacelMobileAgentServer that utilizes the MobileAgentExecutionEngine

through its interface. TheMobileAgentExecutionEngine is the core component of the
middleware. MAPS agents, which extend the Agent class provided by MAPS and which provides the
agents with the requirements for thexecutions as Squawk VM Isolates, are created and started
from the MobileAgentExecutionEngine . These Isolates are managed by the
InterlsolateServer , both provided by the SPOT SDK. For the implementation of a MAPS agent
at least two classes have to be credt One class represents the agent itself and the other class
AYLX SYSyda | LX FyS GKFIG O2ydGlrAya GKS adlrasS Y
presented in chapter 3.4, MAPS supports role based programming that is achieved wiailthe

plane stae machine implementation. Therefore, it would be possible to implement the three roles of

30

SCA within a threplane state machine, but for a higher consistency in the different

implementations, every MAPS based agent in this work utilizes a gitegle sate machine

“interface »
(13 IMobileAgentServe

© RATAgent
q amport » O RATAgentPlane

& txConn

& RATAgeMt)

Gl 1solate @ main() & RaTAgertPlanen)

@ eventHandler()

© MobileAgentServel

«Call, Import =

winterface »
(13 IMobileAgentExecutionEngine

«Creste »
& Agent
«Call » & Plane
<Call, Import =

(C] MobileAgentExecutionEngine | © InterisolateServe |
«Call =

Figurell Class diagram of the MAPS agent platform and the implemented class of the RAT

The class diagram Figurell also contais the agent and the agent plangdasses implementing the
RAT agentThe implementation of these two classes can be seen in appendix c.2.1 andAs. & 2an

be seen the clasRATAgent , representing the agent, includes a static main function which is called
whenthe isolateresponsible for the execution of the agent starts. The implemented state maohine
the RAThas two statesin which one of them is responsible by tletup state in which the
initialization ofthe state machine andlependencies igealized. In this case a timer is created,
responsible for the scheduleahd repeatedly creation of @imed event. After the initializationa state
changemovesthe agentin the work state in which on every timer event a beacon is creatadJML

state diagram of this state machine is shownrrigurel?2.

31

MAPS Init

Tirner
@

@ =end beacor
imit

el Setup S ifork

Start

Figure12 Sate diagram of the state machine implementing tHdAPS basedv! ¢ Q& 06 SKI @A 2 NJ

The state machine that realizes the desired behavior for the RAS agents is illustrigigaléri3. The

AYLX SYSy(GlFGA2y A& aAYAfEFN 2 GKS w!¢Qa adarasS Yl
timed events while staying in one Work state. The timed event triggers an attempcgive a

beacon broadcast on the wireless interface. If no beacon is obtained, the attempt runs into a defined
timeout. If a beacon is received, its signal strength is measured and message events are transmitted

to a local active SCA and the RAC.

MAPS Init
Imit
e Setup Start S ork INN
Tirner
Yes

@@ inform CA [RAC

Beacon received

Figue 13 Sate diagram of the state machine implementing tHdAPS base®RARR A 06 SKI @A 2 NJ

32

The coordinator agent also operates on a similar state machine that consists out of a setup and a
work state. If a message containing sigs@idength information is received via MTS, the agent
updates its list of active nodes and sorts it according to the received signal strength. If state changes
of SCA are necessary, the agent requests the changes from the SCA via the event based messaging
system of MAPS. Furthermore, the agent reacts on message events, which contain the target

positions and uses the USB interface to transmit the target positions to a connect PC.

¢KS {/1Qa aidldS YIOKAYS O2yaraita Fozvenzpbssifle2 dzZNJ &
NEfS 2F GKS 3Sydaod ¢KS 'a[adlradS RAFINIY O2NNBa
Figureld. The initialization thats done in the Setup state is followed by a transition into the Sleep

state, in which the agent reacts only to requests of the RAC to change its role. In case of such a
request, the agent switches its states either from Sleep state to one of the two wpostates,

Master or Slave or the other way around. A direct transition from one of the two working states to

the other one is not implemented. In both working states the agent can receive parameters from the

RAC, which are necessary to fulfill its task. & SCA acting in the role of a slave, the parameter
includes the ID and address of the SCA that acts as master. Otherwise the parameter consists out of

the addresses and positions of the nodes, which host the SCA acting as slave and the position of the
mad i SND& y2RS®

O SETUR Start LD Sleep
Request Sleep - Request Sleep
. Set Parameter
MAPS init i3 Store
Jrequest Master Request Slave
e Master
EdSlave
Distance Feading
et Farameter &8 infarm master
&5 =tore Local Dizt. Info
Remote Dist. Info Yes 3 calculste Target pos and inform COR

Mol Distance Information from all positions

Figurel4 Sate diagram of the state machine implementing tHdAPS based / ! Q& 0 SKI @A 2 NJ

33

JADE

JADE based agents are implemented with a behavior based approach. Therefore the JADE API
provides an abstract object form tyf@ehaviour , which has to be extended when implementing
new types of behaviorsBut the implementation of a custom subclass Béhaviour is not
mandatory becausdADE also provides predefined behavior classes for usage or extension. In this
work only two types of predefined behaviors are utilized. A cyclic behavior implemented in the class
CyclicBehaviour . Thissubclass oBehaviour , repeatedly executes an implemented method
similar to a method call in a loopThe second behaviois implemented in theJADEclass
TickerBehaviour , Wwhere an implemented method is repeatedly scheduleddxecution after a

give time span.Due to the requirenent of comparable implementations, the agent behaviors
developed for this prototype areinternally implemented as state machingglriven from a
CyclicBehaviour or TickerBehaviour . Their internal structure is almost identical to
behavior defining planes othe MAPS implementations¢t KS w! ¢ Q &for @&dledA 2 NJ
implemented asTickerBehaviour . The implementation of the JADE RAT agent can be taken

from appendix c.3.1.

34

Agent Based &krinterface

GDDD="" - €

Tracking GUI
arget at 0,4:0,036

Figurel5 Screenshot of implemented Android user interface.

The GUI of the tracking application is implemented with the JADE middleware. The main task of the
D!'L A& (2 @radatialsS GKS GFNBSG 202S00Qa LRAAGA?Z
growing p@ularity of mobile applications ansmartphones has led to the decision to implement the

GUI for the mobile object tracking application on the Android platform. This choice induced the
implementation of a mobile application prototype, which features molvéal time tracking and

monitoring. A screenshot of the implemented Android user interface can be sdéigurel5. In the

visualization of the WSN in the GUI, sensor nodes and their positions are represented through green

dots. The actual position of the target is indicated with a small red dot. Forangett positions are

illustrated with blue dots. The track, on which the target has moved, is visualized with yellow lines

between the target positions.

The implementation of the GUI requires independence from the MAP, on which the running WSN
tracking apgktation is implemented, because the GUI can then be used with AFME and MAPS
implementations ofCentralized Mobile Object Trackirapplication. Hence, the agents that are
relevant for the GUI are executed on a JADE platform, which is independent from thNe WS
component of the application, although JADE could host the GUI relevant agent on the same JADE
platform as the other JADE agents. If the GUI relevant agents were executed on the same JADE
platform, a direct communication between the GUI agents and tl2EJ#nplementation of the RAC

agent would be possible, but the GUI could not be operated with AFME and MAPS.

35

The GUI utilizes the split container execution mode for the agents that are hosted on an ANDROID
device, just as in the tracking application impkmed with JADE. Two cooperating agents are
developed to realize an agent based GUI, because agent mobility is not supported by split

container$30]. The architecture of agent based GUI implementation is depictédirel6.

A GUI Host Agent (GHA) is performed on a main container that runs on the PC connected to the WSN.
The PC provides the data base management system (DBMS) which hosts a database for the
Centralized Mobile Object Trackirapplication. The GHA is responsibler the query of this
database. It uses the same database interface as the RAC agents and the MAPS host tool to store the
tracking results. More information about the realization of the database and its interface is presented

in the next subchapter. Aftethe database query the GHA informs the second type of GUI agents,
which is called GUI Android Agent (GAA) and which is executed on ANDROID devices, via JADE MTS

on request.

The GAA has to request the information about the track of the target positions thenGHA. After

the first request the GHA also informs the GAA continually about updates in the target positions. The
GAA receives the information via MTS and forward it to an ANDROID Activity for visualization. An
Activity represents a view or page of &NDROID application. The development of ANDROID
applications is not the focus of this thesis. Therefore, interested readers are referfad]tor more
information. In case a GAA is terminated, the agent informs the GHA tolower send target

location updates

AgentPlatform
PC

g GUI Host Agent

GUI Android Agent
Jade Main Container
Jade Split Container
Backend

_ z —» ConnectionJadeSplit
P based network Container Frontendo
Backend

Figurel6 Architecture of the implement agent based Android user interface

36

Database and Interface

The main task of the MySqgl database is to store the positionsheftarget object. This is
accomplished over Java Database Connectivity (JDBC), which provides an API to access database with
Java. Additionally to the main task, the database also contains positions of all sensor nodes forming
the WSN.

The interface to tk database is implemented through a single class, which is designed according to
the well knownsingleton design patter{83] and which allows an object based access and storage of
information. Therefore, the interface can be used without any local references of the object. To store

a new target position in the database only one line of code is necessary:

Common.getinstance(etDB().add(new Position(x,y));

As a result of the object orientated interface, the creation of data classes that simply include data is
necessary. In the code line exemplified above a class, which only contains variables for a value of x
and y and whichapresents a target position, is implemented. The free DBMS MySql hosts the
database of theCentralized Mobile Object Trackiagplication. The database also includes tables to
store results of measurements. This allows the realization of an automated ggdbat stores the

results for the comparisons of the tested MAPs

37

4.2 Decentralized 8arch

TheDecentralized Seardpplication is developed on the existing implementations of the centralized
tracking application. Some components are modified inBezentralized Searcfhe target object,
its platform and its agent can be reused with one modification: the frequency, in which the beacons

are emitted, is 0,66 Hz.

The RAS of the&Centralized Mobile Object Trackirapplication can also be employed in the
Decentralized Searchts behavior differs only in the recipients that receive the information of the
beacon frames and in the handling of the virtual pheromone mark. The difference is that a RAS only
informs the CSA of current value of the virtual pheraraanark via local message broadcast, if the
CSA is present on the sensor node of the RAS. Furthermore, the RAS stores the value of the
pheromone reading and decreases it over time to simulate the fading of the mark, similar to a

pheromone trail in the realvorld.

AFME

ainterface» ainterface»
R A
O migrationPlatform € Runnable

A
createAgent(. (" AgentRunnable ® rn0

emigrate()

«interface »
O Platform

write Agent(

e 0@

writeRes(:

(& BasicRunnable

«Call, Import » (¥ Service

{9 RASensorAgentPlatform_UCS
«Call »

® emigrate() L MessageTransportService ‘
@ writeAgent(
© writeRes(
M createAgent(;
& createRules() {9 RadioMigManage| |

«Call »

Figurel7 UML class diagram of an AFME platform supporting agent mobility.

Due to the fact that theDecentralized Searchtilizes agent mobility in its search algorithm, the
definition of the AFME platform for sensemodes has been modified to support agent mobility.
Figurel7 depicts a UML class diagram that represents the generated JAVA classes, which result from
the changes in the definition of the platform. As it can be seen the JAVA classes that represent such
platform implement theMigrationPlatform interface additionally to thé”latform interface.
ThisMigrationPlatform interface provides the necessary functionality for the agent mobility to
the platform. Furthermore, a platform supporting agent mobilitystta provide a service to manage
agent migration. In this case, corresponding service implemented in the RéisMigManager

38

has to be used for migration on Sun Spots over the wireless interface. This required additional service
is illustrated in the cles diagram irFigurel?. In contrast to the previous used MTS of AFME, which
offers system wide message transportation, the MTS in Dleeentralized Sechis only used for

node internal communication. Therefore, the MTS in this application does not listen to any incoming
messages on the wireless interface. The sensor node, on which the migration platform is executed,
hosts the modified version of the BAThis informs the mobile CSA about the current value of the
pheromone mark. To be able to fulfill its task the CSA receives the pheromone readings only from a
local RAS. AFME does not support broadcast messages and therefore the RAS has to regafer the C

so that the CSA can receive information about the pheromone trail from the RAS.

1) per MTSPerceptorSWO1Per;
2) act InformActuator,MigrateActuator,SearchBestNodeAdDeregisterAct;

3) searchState(?state),parameter(?p),message(inform,sender(?agt,?addr),?Iread),visittdNodes(?oldNodes),highestSearchReading(?h
> search4bestNode(?statep, ?Iread,?oldNodes ?hr49;

4) deploy,destAddr(?destadd®) par(deregsterAtRAS migrate(?destaddr,null));

Code Listingt Agent definition of the AFMBecentralized Searchgent.

The definition of the CSA can be taken frQmde Listing. After the CSA is resumed or started on a

node, the registration of the CSA to the RAS is initiated via the already KnéavmActuator

¢2 YAANIGS G2 Iy230KSNJ y2REXING{{I!SE (NINRPTENBS R (0 K
MigrateActuator that is part of the AFME API (line 2 @ode Listingd). The rule for the

migration (line 4Code Listing) declares that if both a statédeploy and a statedestAddr , which

contains the address of the destination node, are believed to be true, two actionldsHue
LISNF2NYSR® CANBRGTZ GKS /{! dzyadzoaONARoSa AdaStF TN
to stop the transmission of messages. This action is provided by an actuator named
DeregisterAct . Second, the migration of the CSA is executed. Duthe fact that CSA is a

mobile agent, all inner states have to be available on the agents destination node and they have to

0S Ay GUKS |3SyiQa oStAST asSité Ay 2NRSN G42 o06S OGN
responsible for driving the seeh algorithm implemented as state machine contains all necessary
parameters. This rule is illustrated in line 3Q@dde Listingt. For more details on the state maok

see the next sudsection. The statessearchState , parameter, visitedNodes and
highestSearchReading are contain data needed for the search algorithm, e.g.
visitedNodes contains a list with already visited nodes which is required to avoid that a node is

again chosen as migration destination(line 3 Qode Listingd Agent definition of the AFME

39

DecentralizedSearchagent). If the perceptorSWO1Per perceives a push on the first button on a

Sun Spot, it starts thBecentralized Seardby adding the required state to the belief set.

MAPS

Similar to the AFME based application, the MAPS application reuses the same modified components
and agents as in th€entralized Mobile Object Trackiagplication. Therefore, for the discussion of
the RAT and RAS implementations see subchapter 4.1 MARS8ntrast to AFME, MAPS supports
broadcast message events (local and remote). Hence, the implementation of the registration process

as described in the previous ssgbction is not necessary.

After the initialization is done in a Setup state, the CSA & @tate in which the agent handles
incoming message events, as illustrated-igurel8. If the agent receives a pheromone reading, the
reading is compared to the gihest reading that has been achieved so far. If the reading is of a higher
value than the previous one, the agent stores the value and the node address in its internal states.
The CSA checks an internal list of nodes, which should be visited by thetG&A.dfe nodes in the

list, the agent migrates to the next node in the list. If the list is empty, the agent checks whether the
current hosting node is the node with the highest pheromone mark so far. In this case the list of
nodes that has to be visitei$ extended with unvisited neighboring nodes of the current hosting
node. If the pheromone mark is not the highest one, the agent migrates to the node with has the
highest pheromone mark so far. After a migration process the agent isNevanode state, in

which the new hosting node is added to the list of already visited nodes. Afterwards the agent
transits into the Read state in order to continue the execution of the search. Under the circumstance
that the CSA cannot obtain any new neighboring nodedenging executed on the node with the
strongest pheromone mark, the agent transits into a fikalished state and ends the search

algorithm

40

&0 Search
Finizched

MAFS init

new neighborst Mo
Ves

COSETUR COMevwy Node
Do Activvity | store

node a3 wisited

A
avd

Switch Pressec

g

@@ migrate to new neighbor b4

[ia]
@ migrate 1o best node

Fheromon Feading

J new neighbors:)?mlgraae no next node

[yl es
s 5

Higher P Level 7

> >
- Mo e @@ refresh list of new neighbor
current node is best node

@ store p level and node

Figurel8 UML state diagram modeling the behavior of a MAPS baBextentralizedSearchagent.

41

42

5 Experiments and Results

For the evaluation of the MAP performances in the execution of test prototypes, four criteria are
identified. The utilization of a nodes CPU and its memory are chosen to be the first criteria, because

they represent ay 2 RS Q&8 RSINBS 2F OF LI OAGed 9y SNHE O2yad:
embedded wireless devices due to their limited power supply. Thus, the energy consumption is also
identified to be one of the evaluation criteria. Directly responsible for alcarty’ LJ- NI 2 F |
energy consumption is the degree of usage of the wireless interface. Therefore, the network traffic
created by the different MAP is also used as criteria. In regard to agent mobility, the migration time is

the last of the chosen critea. To be able to evaluate several MAPs according to their performances,

a test scenario that realizes agent mobility is defined to measure the chosen criteria in a migration

context.

The distributed characteristics of the developed test system and tfferéit states, in which its
components can operate, require a definition of the test configurations for both applications, the
Centralized Mobile Object Trackiramd the Decentralized SearchConfiguration 1 represents an
empty node as reference, on whicto agent or agent platform is executed. A RAT and its platform
are hosted according to Configuration 2. Due to the two different applications, which lead to
different test scenarios, a distinction between the configurations has to be made. This distinctio
refers to all configurations that include a higher number than 2. In Configuration 2 the only
difference in the implementation of the two applications is the frequency of the emitted beacons.
For theCentralized Mobile Object Trackiagplication in theConfiguration 3T a sensor node hosts

one RAS and one inactive SCA. This leads to the conclusion that no target node is present in the range
of the sensor node. Hosted active SCAs in the role of master or slave with an active target object in

range are foud in Configuration 4T and Configuration 5T.

Four different possible configurations are used for tBecentralized Searclapplication. In
Configuration 3S a sensor node executes RAS including its platform. In Configuration 3S no target
node is in range icontrast to Configuration 4S, in which a target node is in the range. These two
possibilities also exist, if the sensor node is additionally hosting a registered but inactive CSA. This
leads to Configuration 5S, which has a registered but inactive CSiéy ardch the target is not in

range. In Configuration 6S the CSA is also registered and inactive, but the target is in range. A
migrating CSA has the focus on the Migration Test Configuration, because in this configuration three
sensor nodes are arranged & row and the CSA migrates from the first one over the second one to

the third one.
43

All of these configurations are illustrated fiigurel9. They represent fixed setups of nodes for the
conducted experiments. Due to these configurations an extraction of metrics is achieved that
represents information about the execution of the two test applications. The metrics are extracted
during system runtime by an instrumented code. This instrumented code is realized as a separate
thread. It is executed pseudo parallel to the relative implementations and it measures the criteria

over a defined time span

Configuration 1: Configuration 2:
Tracking Application: Search Application:
Configuration 3T @ Configuration $: @
ConfiguratiodTand 5T: ConfigurationS: .
ConfiguratiorbS:
o O spo
Configurationes: = ® RAS
N . . © A
Migration Test Configuration: . .
inactive
Stepl | Step 2 Step 3
@® SCAas
weiee) | @) | @
i) | @9 | @ ive
Slave
w36 | @) | e o con

Figurel9 Testconfigurations for experiments

44

The instrumented code is implemermtan several classes designed to interfere as less as possible
gAGK SIFOK 20KSNIRDa YSIFadaNBYSyidad 'y FRRAGAZ2YFE Of
measurements is started, is responsible for managing the execution and the timing of #rertiff

measurements. To minimize side effects between different measurements, several precautions were
GFr1Syxz So3ao Ylydzrf OFffa G2 GKS +*aQa 3AFNDBIF IS

O
N

pauses were performed. These pauses allow the system ttesmatthe garbage collector to finish.

In addition to that the measurement managing class is also responsible for transmitting the results of
measurements to a nearby sink node via radiogram broadcast. It should be noted that the radiogram
functionality isprovided by the libraries of the SPOT SDK and therefore has no dependencies to any
MAPs. Through an independent implement process on PC the measurement result is received and

forwarded to the database for storage and data preparation

The deployment of the nodes in the WSN can be seeffrigure 20 as well as the minimu
communication range for on8unSpd. The figure shows in a) thedeployment of the sensor nodes

for the Centralized Mobile Object Trackiagplication. The nodes are arranged in a way that they
form equilateral triangles with a side length of two meters. The deployment of the sensor nodes for
the Decentralized Searcis illustrated in figure 20 b). In this application four nodes form a two by

four meter rectangle.

45

a) Centralized Mobile Object Tracking @ Spot

~ Communication

4 R Range

m

v

v

Figure20 Node deploymentin the WSN fora) Centralized Mobile Object Tracking) Decentralized Search

46

5.1 (CPUUtilization

The first criterion for the evaluation is the CPU utilization of the hosting node in a certain state. The
SPOT API does not provide a method for monitoring the CPU. Therefore, an energy saving feature of
SPOT is utilized to determine the CPU load. The cZRUSun Spot is automatically set to a sleep

Y2RS (G2 LINBaSNWS SySNHeés Ay OlFlasS GKS /t! ARfSao
through the proportion of the runtime to the time span, in which the CPU is in sleep mode. A Sun

Spot has alsa third operation mode, the so called Deep Sleep mode, but this mode was deactivated

for these CPU measurements.

The results of the CPU measurements can be sedraliel. The cyclic emission of the beacon
frames require more processing time in tkkentralized Mobile Object Trackiagplication than in

the Decentralized Searcapplication. The reason for this difference is the higher frequency of the
beacons. As it can be seen in Table 1 JADE has the lowest load for configuration 1 to 3T in the
Centralized Mobile Object Trackiagplication, but in configuration 4T and 5T JADE utilizes the CPU
more than the others MAPs. This can be explained by thi¢é spécution mode of JADE. Local
execution is therefore very efficient, but if it comes to an interaction with other agents, JADE has a
higher demand for processing time in comparison to the AFME and MAPS. This is also displayed in
the results of Configuteon 5T, in which JADE needs almost twice as much processing time than the
other MAPs. The comparison between AFME and MAPS in both applications show that MAPS has a

lower CPU utilization than AFME. This is the result of the more complex architectur®!Bf AF

Tablel Measured CPU utilizations in % of tli&entralized Mobile Object Trackirgpplication and the
Decentralized Searchpplication in comparison

Centralized Mobile Object Decentralized
CPU Load in 9 Tracking Search
AFME MAPS JADE AFME MAPS
Configuration 1 Configuration 1
(Empty node) 0,26 0,26 0,26 0,26 0,26 (Empty node)
Configuration 2 Configuration 2
(Target Sunspot) 16,56 12,56 10,39 9,05 8,64| (Target Sunspot)
Configuration 3T Configuration 3S
(Inactive SCA) 3,42 3,63 3,14 5,68 1,75] (RAS no Target)
Configuration 4T Configuration 4S
(SCA as Slave) 22,43 20,89 27,35 7,30 4,52] (RAS with Target
Configuration 5S
Configuration 5T (RAS and CSAn
(SCA as Master) 31,87 26,95 59,28 9,26 2,53 Target)
Configuration 6S
(RAS and CSA wi
10,77 5,28 Target)

47

5.2 Memory

Java Applications executed in a Java VM have to use the VM memory management that utilizes a

garbage collector to free objects, which are no longer referenced. To save energy, the garbage

02t f SO02NRDa

resources are reserved. Although it is a great feature to preserve energy, it iS most obstructive for

memory monitoring. To overcome this effect, manualsab the garbage collector are used to free

Ozttt SO0GA2Y LINROSASA

unused memory before a measurement is taken

AYLX SYSYGSR Ay

Table2 Memory utilization during execution (in kilo bytes) of th€entralized Mobile Object Tracking
application and theDecentralizedSearchapplication in comparison

Used Memory in Tracking
kilo bytes Application Decentralized Search
AFME MAPS JADE AFME MAPS
Configuration 1 86 86 86 86 86| Configuration 1
(Empty node) (Empty node)
Configuration 2 91 109 103 91 109| Configuration 2
(Target Sunspot) (Target Sunspot
Configuration 3 110 130 105 98 116| Configuration 3
(Inactive SCA) (RAS no Target
Configuration 4 124 132 109 97 113| Configuration 4
(SCA as Slave) (RAS with Target
Configuration 5
Configuration 5 138 159 115 108 131| (RAS and DSA n
(SCA as Master) Target)
Configuration 6
108 131| (RAS and DSA
with Target)

The results of the memory related measurements are showable2. As it can be seen, MAPS is

the one MAP that uses the most memory and hence shows the worst results. In comparison with
AFME, which has a modular architecture, MAPS has a monolithic strumturenstantiates all
platform components in the beginning, even if they are not needed. JADE shows an almost constant
low memory need regardless of the test configuration. The reason for this is the split execution
mode, in which the backend of the agesuntainer is not executed on the mobile device. Thus, JADE

is the best memory preserving MAP in the centralized object tracking application. In the

Decentralized Searclapplication AFME presents the best results, because of its modular

architecture

48

0 K

5.3 Energy

The SPOT ARrovidesaccess to the information about the remainimgpacityof the batteryin
milliamp hours Therefore this information isusedto determine the energy consumption of the
Spot.Three measurements witadifferent run time were peformed: 10 sec, 30 sec and 300 s&be

results of these measurements are then used to calculate the energy consumption.

Table3 Energy consumption of the implementations.

Consumed Energ Tracking
(mA) Application DecentralizedSearch
AFME MAPS JADE AFME MAPS
Configuration 1 54,00 54,00 54,00 54,00 54,00 Configuration 1
(Empty node) (Empty node)
Configuration 2 60,30 68,57 61,56 56,63 66,94| Configuration 2
(Target Sunspot) (Target Sunspot
Configuration 3 69,25 79,66 63,18 59,75 78,90/ Configuration 3
(Inactive SCA) (RAS no Target
Configuration 4 84,49 98,26 73,89 60,33 70,74 Configuration 4
(SCA as Slave) (RAS with Target
Configuration 5
Configuration 5 86,34 81,60 77,17 67,12 78,33| (RAS and DSA n
(SCA as Master), Target)
Configuration 6
67,71 70,06 (RAS and DSA
with Target)

Theresults of the nodes energy consumption gm&sented inTable3. Differentlyto the presented
resultsfor the CPU utilizationn whichJADE has high values for test figarations that involveagent
communication, the energy consumption of JADE isequibderatein comparisorto the processor

load. Together with the CPU load results that, due to the more efficient coding in the backend
frontend connection as mentioned in Section 3.5, a compression algorithm is reducing the usage of

the wireless interfacéy shrinking the amount of data which has to be transferred.

The influence of the CPU utilization on energy consumptionbeaseen irFigure21 which shows a
combined diagram depicting the CPU load together with the consumed energy for both applications.
Furthermore the figure visualizethat MAPS needs thmost energyof all MAPs iralmost everytest

configuration. Fis canalsobe explainedvili K a !miorfolfthic structure

49

