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Abstract 

The technology for the realization of wireless sensors has been available for a long time, but due to 

progress and development in electrical engineering such sensors can be manufactured cost 

effectively and in large numbers nowadays. This availability and the possibility of creating 

cooperating wireless networks which consist of such sensors nodes, has led to a rapidly growing 

popularity of a technology named Wireless Sensor Networks (WSN). Its disadvantage is a high 

complexity in the task of programming applications based on WSN, which is a result of its distributed 

and embedded characteristic. To overcome this shortcoming, software agents have been identified 

as a suitable programming paradigm. The agent based approach commonly uses a middleware for 

the execution of the software agent. This thesis is meant to compare such agent middleware in their 

performance in the WSN domain. Therefore two prototypes of applications based on different agent 

models are implemented for a given set of middleware. After the implementation measurements are 

extracted in various experiments, which give information about the runtime performance of every 

middleware in the test set. In the following analysis it is examined whether each middleware under 

test is suited for the implemented applications in WSN. Thereupon, the results are discussed and 

ŎƻƳǇŀǊŜŘ ǿƛǘƘ ǘƘŜ ŀǳǘƘƻǊΩǎ ŜȄǇŜŎǘŀǘƛƻƴǎΦ Cƛƴŀƭƭȅ ŀ ǎƘƻǊǘ ƻǳǘƭƻƻƪ ƻŦ ŦǳǊǘƘŜǊ ǇƻǎǎƛōƭŜ ŘŜǾŜƭƻǇƳŜƴǘ 

and improvements is presented.  
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1. Introduction 

1.1 Application and Technology Area 

Progress in the fields of electronics and miniaturization has led to the development of small 

embedded wireless sensors, which are used in large numbers in different applications. The wireless 

communication capability of such sensors is the main reason for the emergence of new applications, 

in which their wired counterparts are not suitable [1]. The potential of these wireless sensors can 

increase even further, when they form a network of cooperative sensor nodes. These wireless sensor 

networks (WSN) are an emerging and promising technology for a wide field of applications in the 

civilian and military sector, such as in border line surveillance or in the monitoring of patients in 

health care. 

Besides their potential, the development of a wireless sensor network application is a challenging 

task due to the distributed and embedded characteristics of such a network. Out of several proposed 

programming paradigms to overcome this challenge, the software agent based approach is very 

promising [2; 3] and is therefore addressed in this thesis. In general, the execution of software agents 

requires a middleware. A great variety of middleware that supports software agents on different 

hardware-platforms is available for different programming languages. Yet the choice for a suitable 

middleware can be difficult, because it is hard to compare their performances directly. 

1.2 Motivation and Problem Studied 

The problem that is focused in this thesis is to compare the suitability of selected middleware 

approaches for a specific application in the WSN domain. Several functional prototypes of two 

applications, the Centralized Mobile Object Tracking and the Decentralized Search, are developed. 

These prototypes make it possible to analyze their performances and needed resources. The results 

provided by this analysis can be used as evaluation criteria to choose the most appropriate 

middleware among those that are tested.  
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1.3 Approach Chosen to Solve the Problem 

In order to solve the problem addressed in this thesis, the following approach is used to support the 

process of choosing a middleware for a specific application. For the comparison of three middleware 

in their performance of execution, two predefined and then implemented applications are realized 

on a chosen hardware platform. The applications are a tracking application, which is a well known 

application for WSN and a Decentralized Search application, which is based on a pheromone-

coordination strategy (for more detailed information about the implemented applications see 

chapter 2.3 and 2.4). To be able to compare the middleware in the context of a chosen application, 

prototypes of the applications are then implemented on the evaluated middleware. After these 

implementations experiments are conducted, which are executed according to defined test 

configurations in order to extract metrics representing the run time execution performance to 

certain criteria of the middleware executing the test application. 

1.4 Thesis Goals and Expected Results 

¶ Implementation of functional and comparable prototypes for a given set of middleware for  

the tracking and search application. 

¶ Extraction of measurements about the performance and resource needs of every middleware  

in the test set.  

¶ Analysis of the measurements to determine the suitability of every member of the set of  

middleware for the specific applications. 

1.5 Thesis Outline 

This thesis consists of seven main chapters in addition to this introduction. Chapter 2 provides an 

overview about software agents and middleware as well as the necessary background information 

for the implemented applications. In Chapter 3 the used hardware platform, its main properties and 

the set of the chosen agent middleware used in this thesis are introduced. Furthermore, the 

methodology of the work is presented in this chapter. Chapter 4 focuses on the overall architecture 

of both applications as well as on the architecture of their components. The necessary distinctions in 

the overall architectural design, which are the result of different properties and characteristics of the 

different middleware, are also shown. In Chapter 5 the results are presented and the method of 

extraction is shown. These results and measurements are discussed in Chapter 6. Several related 

works are outlined in Chapter 7 followed by a conclusion of the work and suggestions for further 

improvements and future work in Chapter 8. 
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2 Background 

Programming a WSN application is not trivial due to the limitations of the used hardware platforms, 

like processing power as well as memory and energy resources and the complexity of a highly 

distributed wireless system. Most implementations for WSN are application- or domain-specific and 

necessitate trade off in the fields of task complexity, communication patterns and resource usage. 

Hence these specific implementations include most likely modules for routing mechanisms, time 

synchronization, node localization and data aggregation. These modules have dependencies to their 

applications and therefore these parts can hardly be reused. A WSN-aware programming paradigm is 

needed to support a rapid development and a highly flexible deployment of WSN software. This 

paradigm will be explained in the following subchapter. The agent-based approach has a high 

potential for the use in WSN applications, as it meets the demands mentioned above.[2; 4]  

2.1 Agents in action 

There has been a lively discussion in the literature about the precise definition of the term software 

agent and about how software agents differ from ordinary computer programs. In [5] the authors 

Franklin and Graesser show the similarities and differences of several definitions for software agents 

and provide a taxonomy that attempts to contain all of them. The authors also extract some mutual 

concepts from the definitions discussed in their work. According to these concepts, a software agent 

can be defined as a software entity or as an additional abstraction layer. Franklin and Graesser state 

that a software agent has to support the following properties: 

¶ Autonomy: software agents can make decision about how to reach a certain goal and which 

actions to take without any interaction with the user or other programs. 

¶ Reactivity: software agents are capable of receiving events and environmental changes and 

trigger a responding action. 

¶ Social ability: Interaction between a software agent and other entities (e.g. user, other agents 

etc...) is possible and can lead to coordination, cooperation or even competition.  

¶ Persistence: The execution of a software agent is continuously, in contrast to the sequential 

execution of operation in normal software.  

In [6] a popular definition for software agents can be found, in which behavior is a fundamental 

concept. There are other works that provide various taxonomies for the classification of software 

agents. Different taxonomies are presented for example in the works of Hector [7] or Sakarkar and 

Shelke [8].  
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 According to [9] another essential property for a software agent in the WSN domain is agent 

mobility. A mobile software agent can transfer its execution from one system to another system in 

the network and can subsequently continue its operation on the target system. The process of 

transferring an agent from a source system to a destination system is often called migration. While 

migrating the code of the software agent, which implements its behavior, it is possible for the agent 

to carry its data, also named state, during the transfer. The migration is called stateful, if the state is 

included in the transmission. If the state is excluded, the migration is referred to as stateless.[10] 

After the agent is transferred, the migrated agent is only executed on the destination system. 

There is an additional concept called cloning in the context of agent mobility, which extends agent 

migration [11]. When using agent cloning, a copy of the original agent runs on the destination system 

and the original agent itself is still present on the source system. Hence, the difference to agent 

migration is that with agent cloning the copy and the original are executed on both systems 

ǎƛƳǳƭǘŀƴŜƻǳǎƭȅΦ ¢ƻ ŀŎŎƻƳǇƭƛǎƘ ǘƘŀǘ ǘƘŜ ŀƎŜƴǘΩǎ ŜȄŜŎǳǘion is paused, a copy is made which is 

ǘǊŀƴǎŦŜǊǊŜŘ ƻƴǘƻ ǘƘŜ ǘŀǊƎŜǘ ǎȅǎǘŜƳ ŀƴŘ ǘƘŜ ŀƎŜƴǘΩǎ ŜȄŜŎǳǘƛƻƴ ƛǎ ǊŜǎǳƳŜŘΦ 

The previous mentioned social property of software agents leads to multi-agent systems (MAS), in 

which agents can interact with each other. It should be noticed that the interaction is not necessarily 

between two or more agents, but it is also possible that an agent interacts with humans or other 

entities. MAS are suited for complex tasks, which are difficult or even impossible to be performed by 

one single agent or a conventional software system. [12] 

2.2 Middleware for an Easier Development 

The development of a MAS from the scratch is a challenging task and would exceed the time budgets 

of most WSN application development projects. Therefore, many multi-agent platforms (MAP) are 

provided by several companies, academic institutions or open source projects to develop, run and 

manage MAS.  

MAPs are implemented as an additional abstraction layer between the operating system and the 

agents executed by the platform and thus they function as middleware. The software developer is 

supported with a flexible framework for a rapid implementation of MAS applications by MAPs. This is 

made possible through the supply of an environment, in which an agent can be executed and 

through essential services e.g. agent communication, migration, scheduling and accessing system 

resources. [13] 
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In this thesis the focus is on lightweight MAPs which are able to run on target systems with limited 

hardware resources, because these systems are most common in a WSN. Virtual machines are also 

available for such embedded systems. Due to their availability, Java as object orientated high-level 

programming language can be used to develop applications for the target systems mentioned above.  

Two reference mobile object tracking applications are implemented on the following Java based 

MAPs: JADE, MAPS and AFME on Oracle Sunspots [14] as the chosen hardware platform capable of 

the execution of Java byte code. 

2.3 Centralized Mobile Object Tracking 

One of the mobile object tracking applications, the Centralized Mobile Object Tracking, is based on 

the work of Freitas et.al. [1] and Allgayer et.al. [15]. Contrary to their work, in which mobile agents 

are used, the centralized version of the mobile object tracking presented in this thesis is 

implemented with cooperating static agents. The reason for that is that one of the used MAPs cannot 

support agent migration. In this section the approach proposed by Allgayer et.al. is discussed and 

afterwards the modifications for the implemented tracking application without agent mobility are 

demonstrated. 

The WSN consists of distributed sensor nodes on predefined positions. These nodes are able to 

perform processing and communication with their neighboring nodes and to sense the distance to 

the target node. Depending on the characteristics of the mobile target, different types of active and 

passive sensors can be used for this purpose. In the implementations that are developed in this thesis 

the wireless interface is employed as sensor. The target node continuously sends radio signals, which 

are called beacons. These beacons are received by the sensor nodes with their local wireless 

interface. During the reception the sensor nodes measure the signal strength. Hence the software 

calculates the distance between the target node and the receiving sensor node via the 

omnidirectional model of electromagnetic wave propagation. This model states that the power of the 

beacon signal declines quadratically over the distance. 

The suggested sensor network consists of three types of nodes. The first type is the already 

mentioned target node, which can be tracked by the network. The second type, the sensor node, has 

the function of sensing the beacon frames broadcasted by the target. The WSN consists of several 

sensor nodes, but to accomplish a successful localization of the target object at least three nodes of 

this second type have to be in range of the target. The third type is a coordination node, which is 

responsible for the start of the mobile agents. It also functions as sink node, in other words the 
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calculated result - in this case the location of the target ςexits the WSN over the coordination node. 

Figure 1 shows the structure of the WSN with all three types of nodes for the Centralized Mobile 

Object Tracking. 

The authors in [1] propose an implementation with two types of software agents: Collaborative 

Agents (CAs) and Resident Agents (RAs). RAs are not mobile and therefore they stay on a fix node. 

These agents can either be a RA_Target (RAT), a RA_Coordinator (RAC) or a RA_Sensor (RAS) 

depending on which type of node the agents are created. RAS are executed on sensor nodes. They 

perform the measurements of the signal strengths of the received beacons broadcasted by the target 

object. In addition to that the RAC runs on the coordinator node, which is also the starting point of 

the execution of the CAs. 

CAs are able to migrate between nodes. Their function is to perform the localization of the target. 

Therefore, these agents communicate with their local RAS that provide the distance to the target. A 

CA can either be a CA_Master (CAM) or a CA_Slave (CAS). CAS are simply forwarding the distance 

information received via the local RAS to the CAM. The CAM uses this information together with its 

ƭƻŎŀƭ ǊŜŀŘƛƴƎ ǘƻ ŎŀƭŎǳƭŀǘŜ ǘƘŜ ǘŀǊƎŜǘΩǎ ǇƻǎƛǘƛƻƴΦ !ƴ additional task handled by the CAM is the 

coordination of CA migrations. These migrations are essential in case the target leaves the range of a 

sensor node that hosts a CA. 

 

 

Figure 1 Agent migrations in the original WSN tracking application. 
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Figure 1 depicts all necessary agent migrations and the tracking process in the original WSN tracking 

application. The initialization of the WSN is shown from a) to c). Three RAS detect the broadcasted 

beacon frames emitted by a RAT, which is also the start condition of the following step. Via 

messaging service provided by the MAP, three RAS inform the RAC that a RAT is in range (Figure 

1(a)). The RAC subsequently requests the CAM to migrate to the sensor node closest to the target 

object (Figure 1(b)). When the CAM resumes its execution on the closest node, two agents cloned 

from the CAM are sent to the other two sensor nodes, which previously have informed the 

coordinator about the received beacons (Figure 1(c)). In contrast to the master agent the clones act 

as slaves. Figure 1(d) shows the migration of one of the CAS when the target object has left the range 

of its current host.  

Due to the fact that not all available MAPs for the chosen hardware platform support agent cloning 

(one even cannot perform agent migration), some modifications of the presented solution are 

necessary in order to implement this application on the chosen MAPs. The mobile CAs are replaced 

by static agents, the static cooperative agents (SCAs) and hosted on every sensor node. SCAs have 

three possible roles: they can be inactive, master or slave. The task of managing the CA has moved 

from the CAM to the RAC so that the implementation is simplified. To be able to fulfill this task the 

RAC needs information about which nodes are in range of the target. Therefore, the RASs also send 

their distance readings to the RAC, but in a lower frequency than to the local active CA. In case the 

target object comes in range, the distance readings are sent immediately. 

To minimize of complexity of the application the following limitation have to keep in mind. Only one 

target node is supported, i.e. the network is able to track just one target at a time. The target node 

and sensor node are on a two dimensional plane. It is assumed that the distance between neighbor 

nodes assures the three nodes in the triangle are in range of each other and that the communication 

is not error-prone. A routing protocol can be used for direct communication between all agent 

platforms on the sensor nodes and the platform hosting the RAC. 

The three sensor nodes closest to the target object calculate the position of the target object via 

triangulation. Hence, the nodes have to be arranged so that three of them form an equilateral 

triangle, as it can be seen in Figure 1. The position of the target object (x0, y0) can be determined by 

the formula represented by (1). The formula uses the positions of the sensor nodes (xi,yi). These 

positions have to be known by the calculating node as well as the distance for the participating 

sensor nodes to the target object (ri) for i = 1 to 3. The cooperative agent, which acts as master and 
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which is supplied by the slaves with their distance readings, is responsible for executing this 

triangulation algorithm. 

ὖ0 =
ὼ0

ώ0
= ὃ 1 × ὦ (1) 

 For A and b: 

ὃ= 2 ×
ὼ3 ὼ1 ώ3 ώ1
ὼ3 ὼ1 ώ3 ώ2

 (2) 
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(ὶ1

2 ὶ3
2)

(ὶ2
2 ὶ3

2)

ὼ1
2 ὼ3

2 + (ώ1
2 ώ3

2)

ὶ1
2 ὶ3

2 + (ώ2
2 ώ3

2)
 (3) 

 

The role in which a SCA acts is managed by the RAC. Therefore, the RAC uses the provided distance 

information to determine the three closest sensor nodes to the target object. This information is 

provided by the RAS as mentioned before. The starting condition for the triangulation is that the 

target object is in range of three sensor nodes. After the RAC received distance information from at 

least three RAS, it organizes this information in a list sorted by the distances. The RAC then activates 

the SCAs on the closest sensor nodes according to this list and assigns their roles. This is 

accomplished via messages, which contain the role and all necessary information. A SCA, destined to 

act as a slave, is informed about the address of the master. The master is provided with its position 

and the coordinates of the slaves to be able executed the triangulation algorithm. The RAS informs 

the RAC supplementary to the repeated transmissions, if the target gets in range, if the first beacon is 

received and if the target gets out of range. As a result, the response to the movement of the target 

object is enhanced. 

2.4 Decentralized Search 

The second application used in this thesis, the Decentralized Search, is based on the pheromone-

coordination strategy presented by Freitas et al. in [16]. It can be seen as a completely decentralized 

version of tracking. The authors show a pheromone-based approach to coordinate a network of 

unmanned aerial vehicles (UAVs) and ground sensor nodes. It is used to forward alarms from a 

ground sensor network to UAV drones. In this work virtual pheromones are used to find the sensor 

node closest to the mobile node. The moving nodes (UAVs) emit radio beacon equally as in the 

application described above. These beacons are stored as virtual pheromone marks on the static 

sensor nodes in its range. Thereby the initial value of the pheromone mark is determined by the 
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strength of the beacon signal. As with real pheromone trails in nature, for example trails used by ants 

to track food, virtual pheromone tracks fade over time. The formed pheromone trails show a 

gradient concentration of pheromones, which indicates the movement of the mobile nodes. While a 

static sensor wants to deliver a message to a mobile one, the message just follows this concentration 

towards the increasing direction of gradient. In Figure 2 a WSN for the pheromone based search is 

demonstrated. Figure 2(a) shows a small WSN with the virtual pheromone marks left by the target 

objects after the mobile node moved through. The illustration also depicts a possible starting position 

of the agent searching the mobile node. This WSN consists of one type of sensor node, which 

executes two kinds of agents, CA and RA as described in section 2.3. Sensing the beacons and the 

handling of the pheromone mark is the responsibility of a resident agent, the RA_Sensor (RAS). The 

second agent type is a collaborative search agent (CSA). The mobile CSAs are responsible for finding 

the closest sensor node to the mobile node by following the pheromone marks. 

The first approach to implement the Decentralized Search can be seen in Figure 2(b). A CSA follows 

the trail by cloning itself to the neighboring nodes of its hosting node. When a clone starts its 

execution on a node, it interacts with the local RAS, which provides the current level of the 

pheromone trail. By comparison between the pheromone levels of the previous and the hosting 

node, the CAS decides its next step. In case the pheromone level on the current node increases, the 

CAS clones itself to the new neighboring nodes and informs the CAS from which it was cloned, about 

the higher level on the current node. Otherwise the CAS terminates its execution. If a CAS is informed 

by one of its clones about a higher pheromone level, it also ends its lifecycle. If there is no message, 

the current node is the closest one and therefore the desired destination node. 
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Due to the fact that agent cloning is not supported by all the MAPs used in this thesis, some 

modification to this approach are necessary. Therefore agent migration was used, which is supported 

by all the MAPs, instead of agent cloning. The algorithm implemented as agent behavior to fulfill the 

search follows these steps: 

  

Figure 2 The WSN for the pheromone based search with agent cloning approach. 
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a) The searching agent obtains a list of neighbor nodes and its current pheromone level from 

the current hosting node. If no more unvisited nodes can be obtained or the pheromone 

levels are less then on a previous node, the agent migrates to the node with the highest 

pheromone mark, its final position and ends the search. 

b) The agent executes a stateful migration to all neighbor nodes in the list, except for already 

visited ones, and stores the highest pheromone level found and addresses of visited nodes 

as state.  

c) If there are no more nodes to visit in the list, the agent migrates to the node with the 

highest pheromone level and continues with step a). 

This behavior of the searching agent is also depicted in Figure 3 that depicts the pheromone based 

search concept with agent migration approach. At the start node (node a) the agent gets the list of its 

direct neighbors (node b and c). After visiting both nodes, the agent continues on the node with the 

higher pheromone level (node c). Depending on the order of nodes (b,c or c,b), the agent might have 

already been on c. If this is not the case, the agent has to perform an additional migration from b to 

c. Having arrived on c, the agent obtains a new list of neighbors (d,e and a). The node a is dropped, 

because the agent already knows that it has been there, so the pheromone level of node a is familiar. 

In case a routing protocol is provided by either the MAP or by the hardware platform, the agent is 

able to directly migrate to a node which is not in its range (e.g. from b to c). If this is not the case, the 

agent has to take a detour over a node in its range (e.g. from b over a to c). 
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Figure 3 Pheromone base search concept with agent migration approach. 
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3 Methods and Tools 

3.1 Methodology 

To be able to compare the chosen MAPs running the two applications, which are described in 

Sections 2.3 and 2.4, prototypes for them have been implemented. To achieve comparable results, 

the applications are implemented as similar as possible despite the different architectures and the 

distinctive concepts of the selected MAPs. Therefore most parts of the code defining ŀƎŜƴǘΩǎΩ 

behaviors were reused in the implementation for the different MAPS. The experiments of all tests are 

done on identical hardware, in this case the same devices, to ensure that the results are not 

influenced by meanderings in the hardware. Furthermore, only features and services provided by all 

MAPs are used in the implementations. Different characteristics of the MAPs, which are shown in this 

chapter, lead to necessary differences in the architecture of the overall system. Hence only the 

implementations of similar subsystems are compared in this work. For further similarity the common 

programming paradigm was chosen, therefore the agent behaviors or components develop due to 

the state machine programming model. 

This chapter introduces the used hardware platform the Sun Oracle Sun Spot[14] as well as the MAPs 

on which the applications are implemented. Furthermore, the steps necessary to successfully use the 

MAPs as middleware (MW) on the selected hardware platform are shown. 

3.2 Sun Spots 

Oracle Labs, the former Sun Labs, developed the Small Programmable Object Technology (SPOT) to 

provide an experimental hardware platform as well as the development software needed to create a 

wide range of embedded wireless applications. A SPOT device, from now on called Sun Spot, is an 

embedded device, slightly bigger than a box of matches, equipped a wireless interface, battery 

supply, processor unit and several built-in sensors. As it can be seen in Figure 4 a normal Spot 

consists out of three different boards. There is a second type of Spots, the base stations, unlike 

normal Spots they only have the processor board layer (including CPU and wireless interface), but no 

sensors board and power supply. Base stations can act as interface for a personal computer (PC) to a 

network out of Spots or execute code on itself. 

Besides the hardware a main characteristic of such a Sun Spot is that it is programmable completely 

in Java. This is made possible by the usages of a Java Virtual Machine (VM), called Squawk VM, which 

designed to have a minimal footprint and therefore is suitable to run on embedded devices. The 
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Squawk VM supports the Connected Limited Device Configuration (CLDC) 1.1 and the Mobile 

Information Device Profile (MIDP) 1.0. Therefore Java is the preferred programming language to 

program such a device.  

 

Figure 4 The composition of Sun SPOTs out of different layers. Picture taken from (15) 

Due to the fact that Java is a high level object orientated language, the SPOT allows a more rapid 

development than other embedded development platforms, which are often programmed in lower 

level languages like e.g. C or nesC. Another advantage of the SPOT is the provided Software 

Development Kit (SDK) and its possible integration in popular Integrated Development Environments 

like NetBeans and Eclipse.[17] 

In regard to WSN there is a disadvantage with SPOT. Due to the fact that the Squawk VM supports 

CLDC 1.1, dynamic class loading is not possible. CLDC is per definition a Java 2 Micro Edition (J2ME) 

configuration. These can be seen as a subset of libraries and of features of the Java 2 Platform, 

Standard Edition (J2SE) for mobile devices, like e.g. cell phones or PDAs with limited hardware 

resources. CLDC focuses on devices with limited resources. As a result, several features of the J2SE 

are not supported with CLDC, like e.g. the J2SE security model. It is replaced by several simpler and 

more resource friendly security concepts. One of these concepts is responsible for the prevention of 

dynamic class loading, the Sandbox model. This model states that an application cannot use any 

resources or libraries that are not part of its scope. This means that an application running on a J2ME 

with CLDC cannot load any new class, which is not part of the application jar file. Its predefined 

functionality can therefore not be extended. [18] In the context of software agents in WSN this 

results in the fact that every class, which an agent might need, must already be present on the 

device. Even if the agent is not running on this device, all needed classes must be available on the 

device to support the potential migration of such an agent. So it is not possible to simply add a new 



15 

 

agent with new features, which need a new code, to the network without updating every node the 

agent is supposed to run on.  

Additional to the limitation of the security model used in CLDC there is another characteristic. In 

difference to the J2SE verification method, which would need too many resources (Memory and 

processing time), application and libraries must be pre-verified to be able to execute on a CLDC 

device. The verification process is depicted in Figure 5. The verification is done to ensure that only 

valid applications are executed on the device. This was the reason for some initial problems with the 

Agent Factory Micro Edition (AFME).[18] 

 

 
Figure 5 CLDC two stage verification process. Adapted from [18] 

3.3 AFME 

Pervasive systems are the intended area of application of AFME, a MAP which is based on the Agent 

Factory Framework [19]. The MAP has a minimized need of resources and is designed for devices, 

which are compliant to the MIDP of J2ME and therefore support Sun Spots. AFME operates according 

to the Believe-Desire-Intention (BDI) paradigm [20]. This states that an agent is carried out in a sense-

deliberate-act cycle, which is implemented in AME as a periodically scheduled sequence of four 

steps. In the first step the agent perceives information about its environment and updates the 

ŀƎŜƴǘΩǎ ōŜƭƛŜŦ ǎǘŀtes. These belief states represent the set of information available to the agent about 

its current status and its environment. In the second step the agent uses resolution based reasoning 

ǘƻ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ŀƎŜƴǘΩǎ ŘŜǎƛǊŜǎΦ ¢Ƙƛǎ ƛǎ ŦƻƭƭƻǿŜŘ ōȅ ǘƘŜ ŘŜǘŜǊƳƛƴŀǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ ƛƴǘŜƴǘƛƻƴǎΣ 

ǿƘƛŎƘ ŀǊŜ ƛƴ Ƴƻǎǘ ŎŀǎŜǎ ƛǘǎ ŘŜǎƛǊŜǎΦ LŦ ƴŜŜŘŜŘΣ ŀ ǎŜƭŜŎǘƛƻƴ ǇǊƻŎŜǎǎ ƛǎ ƛƴǾƻƪŜŘ ǘƻ ƛŘŜƴǘƛŦȅ ǘƘŜ ŀƎŜƴǘΩǎ 
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commitments, which are the set or subset of the determined desires. According to the identified 

commitments, certain actions are performed by the agent through its actuators in the final step.[21] 

The platform provides four main component classes that the developer has to extend for the 

implementation of an application. An AFME agent is composed of perceptors, actuators and 

modules.[21] tŜǊŎŜǇǘƻǊǎ ŀǊŜ ŎŀƭƭŜŘ ƛƴ ǘƘŜ ŦƛǊǎǘ ǎǘŜǇ ƻŦ ŀƴ ŀƎŜƴǘΩǎ ŜȄŜŎǳǘƛƻƴ ǎŜǉǳŜƴŎŜ ŀƴŘ ŜƴŀōƭŜ ŀƴ 

agent to perceive information from its environment, from other agents or from the agent itself. 

PerŎŜǇǘƻǊǎ ŀǊŜ ŀƭǎƻ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǘƘŜ ǳǇŘŀǘŜ ƻŦ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƭƛŜŦ ǎǘŀǘŜǎ ǘƘŀǘ ŀǊŜ ōŀǎŜŘ ƻƴ ǘƘŜ 

perceived information. Actuators are called in the last step of the execution sequence. Each of them 

represents a certain action, which an agent could take to fulfill its desires. Modules are used for 

agent internal information exchange between perceptors and actuators. The usage of modules is 

necessary due to the loose coupling of agent components. There are no references and 

dependencies between one object and another object. This results in the advantage that 

components can easily be replaced or updated without touching additional components. Modules 

can only be employed by their agents. To enable data exchange between agents, AFME uses objects 

which extend the service component. The platform also offers predefined services, e.g. the Message 

Transport Service (MTS) which is used for message based communication between agents or the 

Radio Migration Manager which handles agent migration. Services are directly started by the agent 

platform itself.  

For implementing an application with AFME, it is suggested that both the declarative model and the 

imperative programming model are employed. The implementation of modules, services, perceptors 

and actuators is done imperaǘƛǾŜƭȅ ƛƴ WŀǾŀΦ ¢ƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ŀƎŜƴǘ ǇƭŀǘŦƻǊƳ ŀƴŘ ǘƘŜ ŀƎŜƴǘΩǎ 

behavior should be done in a declarative AFME language, which is a minimized version of the Agent 

Factory Agent Programming Language 2 (AFAPL2). This AFME language is used to define a declarative 

ǎŜǘ ƻŦ ǊǳƭŜǎ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƘŀǾƛƻǊ ŀƴŘ ǘƘŜ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘƘŜ ŀƎŜƴǘ ǇƭŀǘŦƻǊƳΦ ! ŎƻƳǇƛƭŜǊ ƛǎ 

generating java code out of the definitions and hardware specific templates. Through these 

templates a definition of an agent can be reused on different hardware platforms by simply switching 

these templates. For example, there is a template for Sun Spots which generates a code without a 

graphical user interface (GUI). A complete imperative implementation with Java is possible, but has 

disadvantages like e.g. there is no syntax checking for rules and the support of rules which include 

mathematical expressions is missing. Three exemplary rules can be seen below. Each rule consists out 

of beliefs and actions separated trough a greater-than sign. If an AFME agent belief set includes the 

beliefs on the left side of a rule, it will be committed to do one or more actions which are 

represented on the right side of a rule. That the evaluation of the conditions for an action can be 
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considered to be true, a resolution-based reasoning is done. Furthermore, negation (3), variables (2) 

and mathematical expressions can be applied in AFME rules.[21; 4] 

b1 , b2>doSomething;   (1) 

c , d(?var) >doSomethingWith(?var); (2) 

!a , e >doSomethingElse;  (3) 

Due to the fact that it is possible to use a different template for different hardware platforms AFME 

can be executed on a PC which is connected to a Sun Spot base station. This combination can act as a 

gateway to the WSN and/or as sink node. 

3.4 MAPS 

The Mobile Agent Platform for Sun Spots (MAPS) is a middleware for software agents designed for 

WSN. The MAPS was developed for the SPOT and therefore utilizes some specific features of the 

Squawk VM. This makes the Squawk VM a requirement for this MAP. The main characteristics of 

MAPS are that they have lightweight agents, an agent server architecture, a provision of minimal 

core services and a plug-in-based extensions architecture. The lightweight agent architecture ensures 

agent migration and execution with high efficiency. The core services offer support for migration, for 

agent naming and for communication and they provide scheduling and access to sensor readings. The 

platform can be easily extended with other services due to the plug-in-based extension architecture. 

MAPS itself is composed of several components. These components interact with each other via 

using an event based approach. MAPS agents are implemented according to the imperative 

ǇǊƻƎǊŀƳƳƛƴƎ ƳƻŘŜƭΣ ǿƘƛŎƘ ŘŜŦƛƴŜǎ ŀƴ ŀƎŜƴǘΩǎ ōŜƘŀǾƛƻǊ ƛƴ ŀ Ƴǳƭǘƛ-plane state machine. A multi-plane 

state machine was chosen to enable role specific behavior. Every plane corresponds to a certain role 

of an agent and the state machine represents the behavior of the agent in this role. The result of this 

architecture is that three popular programming paradigms for WSN are utilized in MAPS. These 

paradigms are event-, state- and agent-based programming. [4] 

As previously mentioned MAPS requires specific features of the Squawk VM. The most important one 

is Isolates, which is not exclusive in the Squawk VM, but is defined in Java Specification Request (JSR) 

121 (Application Isolation API) [22]. Extending JSR 121, Isolates in the Squawk VM possess one 

additional feature, isolate migration. This feature allows that the execution of such an Isolate can be 

paused, serialized and then it can be transferred over a network or stored on a storage device. After 

ǘƘŜ LǎƻƭŀǘŜ ƛǎ ǊŜƭƻŀŘŜŘ ƛƴ ŀ ƘƻǎǘΩǎ ƳŜƳƻǊȅ όŜǾŜƴ ŦǊƻƳ Ƙƻǎǘǎ ǿƛǘƘ ŀ ŘƛŦŦŜǊŜƴǘ ƳŀŎƘƛƴŜ ǿƻǊŘ ōȅǘŜ-
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order), the execution of the Isolate is continued from an instance of the Squawk VM.[23] The main 

concept of Isolates is that an application is isolated from other applications via threaded objects 

managed by the VM. Isolates can be seen as a possible implementation of the sandbox model, which 

is discussed in section 3.2. Using MAPS, the Isolate represents a very important concept, because the 

agent platform itself and all agents are realized as Isolates.[3] MAPS utilizes the Squawk VM Isolate 

migration for agent migration processes. 

Although MAPS was developed for SPOT, some problems with the supplied library occurred during 

the implementation of the Centralized Mobile Object Tracking and the Decentralized Search. The 

MAPS library used in this work is the version 1.1. With this version, it was not possible to run the 

tutorial application taken from the MAPS documentation, because of several runtime exceptions 

which led to a restart of the hardware. Therefore a java decompiler was needed to obtain the source 

code of MAPS, which is published under the GNU General Public License [24]. The original source of 

MAPS was not available. The MAPS team provides a Subversion repository, but that was empty at the 

creation time of this work (24.10.2011.) [25]. After some minor modifications to the obtained source 

code were performed, all errors highlighted from the IDE are corrected and the modified version of 

MAPS is now able to start on a Sun Spot. Later in the implementation process, a new problem 

concerning the outgoing communication occurred: the platform stopped transmitting. After a second 

source code review, an internal class was extended, which is responsible for all outgoing 

communication of a node. This modification gives MAPS agents the ability to communicate over the 

entire runtime. These changes can be seen in the code presented in Listing 1. In the modified version 

an additional while loop, which runs as long as the node, executes the agent platform and ensures 

ongoing communication and node discovery. The review of the code also revealed that MAPS does 

not support agent cloning, because the responsible method in the source code is empty. This 

contradicts the statement of Aiello et. al. in [26] that MAPS supports agent cloning. 
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As mentioned above MAPS provides a basic service for accessing system resources. This service is 

initiated when the platform starts, regardless if needed. Therefore it is not possible, without 

modifications, to use MAPS on SPOT base station because of the missing sensor board.  

3.5 JADE - LEAP 

JADE stands for Java Agent DEvelopment framework. JADE is a middleware for distributed MAS and 

in contrast to AFME and MAPS it was not initially designed for hardware platforms with limited 

resources. JADE itself cannot be executed on J2ME platforms, because it requires a Java VM 

supporting Java 5. Furthermore, the memory needs of JADE exceed the capacity of most CLDC 

devices. However, the execution of the MAP on devices with J2ME (CDC or CLDC) is possible through 

the Lightweight Extensible Agent Platform (LEAP), which is an add-on for JADE. Figure 6 shows the 

different Java platforms that are available at the time of writing. With JADE and JADE-LEAP MAS 

applications can be developed that can be distributed over all Java platforms except over Java Card. 

In addition to that JADE-LEAP also supports .Net, Android 2.1 and higher versions of Android. Both 

JADE and JADE-LEAP provide almost the same Application Programming Interface (API) on all 

supported platforms. An exception is the MIDP, because the VM provides it with a reduced set of 

functionality. 

original:  

public void run()  

{  

waitForCommunications();  

while (this.communicationEvents.size() > 0) 

{  

...  

//out going message handling  

...  

}  

}  

modification:  

public void run()  

{  

while(true){  

waitForCommunications();  

while (this.communicationEvents.size() 

> 0) {  

...  

//out going message handling  

...  

}  

}  

}  

 
Code Listing 1 necessary source modification of MAPS internal class 

MobileAgentCommunicationChannelSender 
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Figure 6 Overview of the available JAVA versions and run configurations. Adopted from [27] 

With AFME and MAPS every device runs a MAP and agents are hosted on the platform itself. A 

difference in regard to AFME and MAPS is that JADE has an additional abstraction level called 

container. With JADE agents are executed in a container, which is part of the platform. A platform 

requires one main container and can be distributed over several devices. Every device is represented 

through a container. In addition, it has to be mentioned that it is also possible to execute more than 

one container or even more than one platform on a single device (only J2SE and J2EE). JADE-LEAP 

provides two modes of operation: 1) the stand-alone execution mode and 2) the split execution 

mode. In the stand-alone mode a complete agent container is started on the device. This mode can 

be used on all supported platforms excluding MIDP. For MIDP devices the usage of the split execution 

mode is mandatory. When operating in this mode, JADE-LEAP separates the agent container in a 

frontend and a backend. The frontend, which is hosted on the mobile device, requires fewer 

resources than the execution of a complete agent container. The backend running on a J2SE or J2EE 

VM connects the split container to a main container. Figure 7 depicts the differences between the 

stand-alone and split execution mode.[28; 29; 30] 

Additional to the reduced resources requirement, the split execution mode has other advantages on 

resource constrained wireless devices. While initializing the connection between the container and 

the JADE runtime, which hosts the main container, the necessary communication is completely 

handled through the backend. This results in a faster initialization and less wireless traffic. 
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Furthermore, the binary coding of split container internal communication, which uses the wireless 

interface of the mobile device, is more efficient and also reduces the wireless traffic. Figure 7 b) 

shows a possible topology, in which the execution of the main container and the backend is 

performed on different devices.[30; 29] 

  

Figure 7 JADE LEAP execution modes:  

(a) Stand-alone execution mode and (b) Split execution mode (figure taken from[30]) 

JADE offers a lot of features and is much more powerful than AFME and MAPS, but a more detailed 

description would exceed the scope of this thesis. More information about JADE can be found on the 

official website [31].  

Some important facts for the JADE-LEAP for MIDP conform devices are highlighted below, because 

Sun Spots are chosen as hardware platform in this work. JADE-LEAP depends on a device in a system, 

which is able to provide the main container for the application. Therefore it is not possible to 

implement the Decentralized Search application from section 2.4. For the implementation of the 

Centralized Mobile Object Tracking that has been introduced in section 2.3 with JADE-LEAP, some 

properties of the MAP have to be kept in mind. Due to the fact that a backend hides the address of 

the device, which hosts the frontend from the other containers on the platform [29], no direct 

communication over JADEs MTS is possible between the devices that host the frontends. This could 

be a disadvantage in WSN, because there is a higher utilization of the wireless interfaces in the 

network. The need for a meshed routing protocol, which ensures that every node can communicate 

with its backend, is another disadvantage in WSN.  



22 

 

JADE also offers a GUI for managing and debugging a whole agent platform and several service 

agents like the spy-agent, which allow the visualization of the communication between all agents on 

a platform. 

It is not possible to use the distributed binary libraries on Sun Spots. The reason for that is related to 

the dependencies that the J2ME GUI package has, which are not supported by the Squawk VM. So it 

is necessary to generate the JADE-LEAP source for MIDP according to [30], followed by the removal 

of any dependencies to the GUI package from the source code. It should also be noted that for the 

successful generation of the JADE-LEAP source an installed Sun Java Micro Edition SDK is necessary. 

This step is followed by a pre-verification of the compiled library via the pre-verifier provided by the 

Sun SPOT SDK. Alternatively it is possible to directly include the JADE-LEAP source in development 

projects. For a successful connection between frontends and backends a tool called socked proxy has 

to be executed on a PC connected to an SPOT base station. The socket proxy allows TCP based 

connection from a Sun Spot to an end point in an IP based network and is part of the Sun SPOT SDK. 
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4 System Architecture and Design 

This section focuses on the architecture of the two applications in which the agent middleware are 

compared. First the centralized prototype will be discussed, followed by the Decentralized Search 

one. Due to the collaborative characteristics of the test applications, where different parts on 

different nodes are working together in the same system, it is necessary to show every part of its 

own and how the different parts cooperate between each other.  

To achieve comparable results, the prototypes are implemented as similar as possible on the MAPs. 

Besides the different applications, the implementation that transmits and receives the beacons is 

used in both applications on all MAPs. The beacons are realized as Radiogram broadcasts and employ 

ǘƘŜ wŀŘƛƻƎǊŀƳ Ŏƭŀǎǎ ƻŦ ǘƘŜ {th¢Ωǎ {ǉǳŀǿƪ ±aΦ ¢Ƙƛǎ Ŏƭŀǎǎ ŀƭǎƻ ǇǊƻǾƛŘŜǎ ŀ ƳŜǘƘƻŘ ǘƻ ǇǊƻŎŜǎǎ ǘƘŜ 

received signal strength indicator (RSSI) of Radiogram connection, which is named getRssi(). The 

result of this method is used to calculate the distance in the tracking application and to set the initial 

value of the virtual pheromone mark utilized in the Decentralized Search application. The only 

difference between both applications is the frequency, in which the beacons are emitted. In the 

mobile object tracking application this frequency is 2 Hz, in the Decentralized Search application it is 

0,66 Hz. The reason for the lower frequency of the beacon broadcasts in the Decentralized Search 

application is that the disturbances of running agent migrations decrease. 
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4.1 Centralized Mobile Object Tracking  

 

 

The Centralized Mobile Object Tracking prototypes consist of three components. The first component 

is the WSN itself, which executes the application implemented on the three MAPs. The target 

positions obtained from the WSN are stored in a MySql database. From there the positions are 

queried and presented in the agent based GUI, which is implemented in JADE and is executes on an 

Android device. The various properties and characteristics of the used MAPs result in necessary 

differences in the implementations.  
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Figure 8 Architecture of the Centralized Mobile Object Tracking application 
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Several components which are used in the different implementations share a common code base in 

the Centralized Mobile Object Tracking application. This common code base was only modified to fit 

the different ways of message handling of the MAPs.  

AFME 

In Figure 8 a) the structure of the tracking application based on AFME is shown. As it can be seen the 

RAC agent is executed on a J2SE platform running on a common PC. It would be possible to execute 

the RAC directly on the base station, but with the disadvantage that an additional program would be 

needed, running on the PC which receives the results over the universal serial bus (USB) and forward 

them to the database. An advantage of the execution on the PC is that the full functionality of the 

J2SE can be accessed in difference to the reduced one provided by J2ME.  

 
1  platform Basestation Platform{ 
 
2      scheduler 2; 
3      service com.agentfactory.radio.RadiogramMTS BaseStation 66; 
 
4      create RAC RACoordinator 1000; 
5      add RACoordinator always(alive); 
6      start RACoordinator; 
7      template Deploylet.template Baseplatlet 
8      EmuMigPlatform.template RASensorAgentPlatform;  
9  } 
 

 

Due to the fact that AFME uses an imperative part and a declarative part for the definition of an 

agent, both definitions and the way they are linked together are explained. For the execution of an 

AFME based agent a defined platform is required. Such a platform definition is presented in Code 

Listing 2. It specifies the platform for the coordinator nodes. The definition states that the platform 

uses two schedulers, which results in a platform executed in two threads. This is followed by the 

definition of the services that the platform should provide. In the illustrated example the 

RadigramMTS  service is providing a radiogram base message transport service on port 66 (line 3 in 

Code Listing 2). This service allows message based communication between agents. After the 

provided services are defined, it is specified which agents should be created and started. The value of 

the agent control cycle is also defined in line 4 in Code Listing 2. In the example an agent from the 

type RACoordinator , named RAC is defined with a scheduled sense-deliberate-act cycle every 

1000 ms (line 4 in Code Listing 2). The initial belief states can also be set at this point for the RAC 

ŀƎŜƴǘΦ ¢ƘŜ ōŜƭƛŜŦ άŀƭƛǾŜέ ƛǎ ŀŘŘŜŘ ǘƻ ǘƘŜ agents belief set (line 5 in Code Listing 2). The used keyword 

Code Listing 2 AFME platform definition for a sensor node 
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άŀƭǿŀȅǎέ ŘŜŎƭŀǊŜǎ ǘƘŀǘ ǘƘŜ ŀƎŜƴǘ ŘƻŜǎ ƴƻǘ ŘǊƻǇ ǘƘŜ ōŜƭƛŜŦ ǎǘŀǘŜ ŀŦǘŜǊ ŀ ŎȅŎƭŜΦ ¢ƘŜǊŜŦƻre, a state that is 

added with this keyword can be regarded as persistent, because that state is true until it is explicitly 

ǊŜƳƻǾŜŘ ŦǊƻƳ ǘƘŜ ŀƎŜƴǘΩǎ ǎŜǘ ƻŦ ōŜƭƛŜŦ ǎǘŀǘŜǎ ƻǊ ǳƴǘƛƭ ǘƘŜ ŀƎŜƴǘ ƛǎ ǘŜǊƳƛƴŀǘŜŘΦ ¢ƘŜ ƭŀǎǘ ǇŀǊǘ ƻŦ ǘƘŜ 

platform definition indicates which templates should be used for the code generation. The AFME 

compiler uses this information to generate a Java source code for the agent platform and its agents. 

Figure 9 depicts the class diagram of an AFME platform used in the tracking application. The class 

RABasePlatform  represents the defined agent platform and implements the Platform interface 

which is provided by the AFME API. This interface defines the functionality for a minimal AFME agent 

platform. The usage of a service, the RadigramMTS  service, is also illustrated in this diagram. 

Agents are presented as BasicRunnable  objects to the platform. This class provides the basic 

functionality for the execution of an agent. The exemplified platform definition is used for all nodes 

in the AFME implementation of the tracking application, except for the target node. On the target 

node no message transport service is needed, because the RAT does not communicate with any 

other agent. 

 

Figure 9 Class diagram AFME platform used in the Centralized Mobile Object Tracking application. 
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The declarative definition of an agent includes the used actuators, perceptors and the rules for the 

resolution-based reasoning, which define the behavior of the agent. The simplest agent in the 

application is the RAT, whose declarative definition can be seen in Code Listing 3 a). The agent has 

one actuator named BeaconAct  ŀƴŘ ƻƴŜ ǊǳƭŜΦ ¢ƘŜ ǊǳƭŜ ŘŜǘŜǊƳƛƴŜǎ ǘƘŀǘ ƛŦ ǘƘŜ ǎǘŀǘŜ άǎŜƴŘ.ŜŀŎƻƴέ 

ƛǎ ōŜƭƛŜǾŜŘ ǘƻ ōŜ ǘǊǳŜ ǘƘŜ ŀŎǘƛƻƴ άǘǊŀƴǎƳƛǘǘ.ŜŀŎƻƴέ ǎƘƻǳƭŘ ōŜ ǇŜǊŦƻǊƳŜŘ όƭƛƴŜ н ƛƴ Code Listing 3 

a)).The actuator responsible for this action is implemented in the class BeaconAct . The source 

code of the actuator can be seen in appendix c.1.1. The mapping between declarative and imperative 

parts is defined through a string parameter in the constructor of the actuator class. According to this 

ǊǳƭŜΣ ǘƘŜ ŀƎŜƴǘ Ƙŀǎ ǘƻ ōŜƭƛŜǾŜ ǘƘŀǘ ǘƘŜ ǎǘŀǘŜ άǎŜƴŘ.ŜŀŎƻƴέ ƛǎ ǘǊǳŜΦ ¢Ƙƛǎ ƛǎ ŀŎŎƻƳǇƭƛǎƘŜŘ ǿƛǘƘ ŀ 

ǇŜǊǎƛǎǘŜƴǘ ƛƴƛǘƛŀƭ ōŜƭƛŜŦ ŦƻǊ άǎŜƴŘ.ŜŀŎƻƴέ ƛƴ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ǘƘŜ ǇƭŀǘŦƻǊƳ ƘƻǎǘƛƴƎ ǘƘŜ ŀƎŜƴǘΦ 5ǳŜ ǘƻ 

this rule the agent shows the desired behavior and emits a beacon in every scheduled sense-

deliberate-act cycle.  

¢ƘŜ w!{ ƛǎ ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǎŜƴǎƛƴƎ ǘƘŜ ŜƳƛǘǘŜŘ ōŜŀŎƻƴǎΦ ¢ƘŜǊŜŦƻǊŜ ǘƘŜ ŀƎŜƴǘΩǎ ŘŜŦƛƴƛǘƛƻƴΣ ǿƘƛŎƘ Ŏŀƴ 

be taken from Code Listing 3 b), includes a perceptor for this task. This perceptor is named 

BeaconPer  (line 1 in Code Listing 3 b)) and is executed at the beginning of the sense-deliberate-act 

ŎȅŎƭŜΦ LŦ ŀ ōŜŀŎƻƴ ōǊƻŀŘŎŀǎǘ ƛǎ ǊŜŎŜƛǾŜŘ ōȅ ǘƘƛǎ ǇŜǊŎŜǇǘƻǊΣ ǘƘŜ ōŜƭƛŜŦ ǎǘŀǘŜ άōŜŀŎƻƴwŜŎŜƛǾŜŘέ ƛǎ ŀŘŘŜŘ 

to the belief set (see appendix c.1.2 for more information). The belief state includes two parameters: 

the first parameter determines the ID of the destined agent, which should process the measured 

signal strength and the second parameter is the signal strength itself. The agent rule defines that if 

thƛǎ ōŜƭƛŜŦ ǎǘŀǘŜ ƛǎ ŎƻƴǎƛŘŜǊŜŘ ǘƻ ōŜ ǘǊǳŜΣ ǘƘŜ ŀŎǘƛƻƴ άƛƴŦƻǊƳέ ǎƘƻǳƭŘ ōŜ ǇŜǊŦƻǊƳŜŘ ǿƛǘƘ ǘƘŜ ǎŀƳŜ 

parameters (line 3 in Code Listing 3 b)). This action is provided by the InformActuator (line 2 in 

Code Listing 3 b)), which is part of the middleware and which is used to send messages over the MTS 

of AFME. These messages are received from the RAC and the SCA. 

  



28 

 

 
1)act BeaconAct; 
 
2)sendBeacon>transmittBecaon; 

a) 
 

 
1)per BeaconPer; 
 
2)act  InformActuator; 
 
3)beaconReceived(?agent,?txpwr) > inform(?agent,?txpwr); 
 

b) 
 

 
1)per MTSPerceptor,PositionModPer; 
 
2)act InfoReceiveSCAAct, InformActuator; 
 
3)mod posMod=PositionModule; 
 
4)message(inform,sender(?agt,?addr),?msg )>receiveIncomingInfo(?agt,?addr,?msg); 
 
5)coordinator(?agent),newTargetPos(?pos) >inform(?agent,?pos); 
 

c) 
 

 
1)per MTSPerceptor, CoordinatorModPer; 
 
2)act InfoReceiveRACAct, InformActuator; 
 
3)mod corMod  =  CoordinatorModule; 
 
4)message(inform,sender(?agt,?addr),?content)>receiveIncomingInfo(?agt,?addr,?content); 

 
5)info (?agent,?msg) > inform(?agent,?msg); 

 
d) 

 

Both agent definitions are shown in Code Listing 3: c) for the SCA and d) for the RAC. In order to 

receive the messages from the MTS, both agents use the MTSPerceptor , which is also provided 

from AFME (line 1 in Code Listing 3 Ŏύ ŀƴŘ ŘύύΦ ¢Ƙƛǎ ǇŜǊŎŜǇǘƻǊ ŀŘŘǎ ǘƘŜ ǎǘŀǘŜ άƳŜǎǎŀƎŜέ ǘƻ ǘƘŜ ŀƎŜƴǘΩǎ 

belief set. This belief state includes three parameters: the message type, the ID of the sending agent 

and the message itself. As mentioned in section 3.3 of this thesis, it is not possible to share data 

between actuators and perceptors directly. Hence the functionalities of RAC and of SCA are 

implemented as modules, which act on the data provided by the actuators that handle the 

άǊŜŎŜƛǾŜLƴŎƻƳƛƴƎLƴŦƻέ ŀŎǘƛƻƴΦ ¢ƘŜǎŜ ŀŎǘǳŀǘƻǊǎ ŀǊŜ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ ǘƘŜ ŎƭŀǎǎŜǎ 

InfoReceiveSCAAct  of the SCA and InfoReceiveRACAct  of the RAC. Furthermore, both 

agents use perceptors to perceive data from their modules and to update their sets of belief states.  

For the PositionModule , which performs the tracking algorithm and which is executed by a SCA 

in the role of the master, the perceptor is implemented in the class PositionModPer . This 

Code Listing 3 AFME definitions of all AFME based agents for the tracking application 

a) RAT, b) RAS, c) SCA and d) RAC 
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perceptor receives new target positions that are calculated from the module and extends the belief 

ǎŜǘ ǿƛǘƘ ŀ ƴŜǿ ǎǘŀǘŜ άƴŜǿ¢ŀǊƎŜǘtƻǎέΦ ¢Ƙƛǎ ǎǘŀǘŜ Ŏƻƴǘŀƛƴǎ ǘƘŜ Ǉƻǎƛǘƛƻƴ ƻŦ ǘƘŜ ǘŀǊƎŜǘ ƻōƧŜŎǘΦ LŦ ǘƘŜ 

ōŜƭƛŜŦ ǎǘŀǘŜ άƴŜǿ¢ŀǊƎŜǘtƻǎέ ƛǎ ŎƻƴǎƛŘŜǊŜŘ ǘƻ ōŜ ǘǊǳŜΣ ǘƘŜ ŀƎŜƴǘ ŘŜŎƛŘŜǎ ƛƴ ǘƘŜ ǊŜŀǎƻƴƛƴƎ ǎǘŜǇ ƻŦ ǘƘŜ 

sense-deliberate-act cyŎƭŜ ǘƘŀǘ ǘƘŜ ŀŎǘƛƻƴ άƛƴŦƻǊƳέΣ ŀƎŀƛƴ ǇǊƻǾƛŘŜŘ ōȅ ǘƘŜ InformActuator , 

should be performed. According to the second rule (line 5 in Code Listing 3 c)) in ǘƘŜ {/!Ωǎ ŘŜŦƛƴƛǘƛƻƴ 

ǘƘŜǊŜ ƛǎ ŀ ǎŜŎƻƴŘ ǎǘŀǘŜΣ ǘƘŜ ǎǘŀǘŜ άŎƻƻǊŘƛƴŀǘƻǊέΣ ǿƘƛŎƘ Ƙŀǎ ǘƻ ōŜ ǘǊǳŜ ŦƻǊ ŀƴ ŜȄŜŎǳǘƛƻƴ ƻŦ ǘƘƛǎ 

άƛƴŦƻǊƳέ ŀŎǘƛƻƴ ŀƴŘ ǿƘƛŎƘ ǇǊƻǾƛŘŜǎ ǘƘŜ ŀŘŘǊŜǎǎ ƛƴŦƻǊƳŀǘƛƻƴ ƻŦ ǘƘŜ w!/ ŀǎ ǇŀǊŀƳŜǘŜǊΦ  

The RAC receives messages that contain the signal strength readings and supplementary messages 

that include the target positions. These messages are handled by its actuator, 

InfoReceiveRACAct , in order to process incoming MTS traffic. Signal strength readings are 

forwarded to the coordinator module to manage the roles of the SCA in the WSN. Due to movement 

or the activation of the target, the role of a SCA might need to be changed. If this is the case, the RAC 

perceives all necessary information via the module. The RAC then informs the affected agents to 

switch their roles and to change their parameters. For example, if the master is located on a different 

node due to target movement, the address of the agent that acts as new master is a parameter for 

SCA agents in the role of a slave. This functionality is provided by CoordinatorModPer  perceptor 

ŀƴŘ a!t{Ωǎ InformActuator . Incoming target positions are stored in the database through a 

common interface which is used in all prototypes of this application. 

Figure 10 shows a class diagram, which contains all used actuators and perceptors of the RAC. The 

figure illustrates the relation of inheritance between the implemented classes and the classes 

provided by AFME API. In the class diagram can be seen that both actuators are subclasses of the 

Actuator class that the perceptors are subclasses of the Perceptor class and that the 

CoordinatorModule  is also a subclass of the Module  class. This is true for every actuator, 

perceptor and module in all AFME based implementation. The class diagram also illustrates the 

methods, which had to be implemented to substitute the abstract definitions of the superclasses. 

To fulfill the requirement of an almost similar implementation on all agent platforms, the internal 

structure of the implemented AFME modules is designed to function as a state machine. This 

programming model was chosen because it allows an almost similar implementation on the other 

platforms. This is due to the fact that MAPS agents are implemented according to event- and state- 

programming paradigms, as described in chapter 3.4. It is also possible to implement JADE based 

agents following this paradigm.  
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Figure 10 Class diagram of the used module, perceptors and actuators by RAC implementation in AFME 

MAPS 

In contrast to AFME, MAPS cannot be executed on a base station (see chapter 3.4) and it cannot run 

on other VMs, because of its dependency on the Squawk VM isolates. Therefore, a normal Sun Spot 

has to host the RAC agent and has to act as sink node of the WSN.  

The class diagram in Figure 11 shows the most important classes involved when implementing a 

MAPS based application. The MAP is represented through a class called MobileAgentServer  

with its interface IMobileAgentServer  that utilizes the MobileAgentExecutionEngine  

through its interface. The MobileAgentExecutionEngine  is the core component of the 

middleware. MAPS agents, which extend the Agent class provided by MAPS and which provides the 

agents with the requirements for the executions as Squawk VM Isolates, are created and started 

from the MobileAgentExecutionEngine . These Isolates are managed by the 

InterIsolateServer , both provided by the SPOT SDK. For the implementation of a MAPS agent 

at least two classes have to be created. One class represents the agent itself and the other class 

ƛƳǇƭŜƳŜƴǘǎ ŀ ǇƭŀƴŜ ǘƘŀǘ Ŏƻƴǘŀƛƴǎ ǘƘŜ ǎǘŀǘŜ ƳŀŎƘƛƴŜΣ ǿƘƛŎƘ ŘŜŦƛƴŜǎ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƘŀǾƛƻǊΦ !ǎ 

presented in chapter 3.4, MAPS supports role based programming that is achieved via the multi-

plane state machine implementation. Therefore, it would be possible to implement the three roles of 
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SCA within a three-plane state machine, but for a higher consistency in the different 

implementations, every MAPS based agent in this work utilizes a single-plane state machine.  

 

 

Figure 11 Class diagram of the MAPS agent platform and the implemented class of the RAT 

The class diagram in Figure 11 also contains the agent and the agent plane classes implementing the 

RAT agent. The implementation of these two classes can be seen in appendix c.2.1 and c.2.2. As it can 

be seen the class RATAgent , representing the agent, includes a static main function which is called 

when the isolate responsible for the execution of the agent starts. The implemented state machine of 

the RAT has two states, in which one of them is responsible by the setup state in which the 

initialization of the state machine and dependencies is realized. In this case a timer is created, 

responsible for the scheduled and repeatedly creation of a timed event. After the initialization a state 

change moves the agent in the work state, in which on every timer event a beacon is created. A UML 

state diagram of this state machine is shown in Figure 12. 
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Figure 12 State diagram of the state machine implementing the MAPS based w!¢Ωǎ ōŜƘŀǾƛƻǊ 

The state machine that realizes the desired behavior for the RAS agents is illustrated in Figure 13. The 

ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƛǎ ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ w!¢Ωǎ ǎǘŀǘŜ ƳŀŎƘƛƴŜΦ 9ǉǳŀƭƭȅΣ ŀ ǘƛƳŜǊ ƛǎ ǳǎŜŘ ǘƻ ǇŜǊƛƻŘƛŎŀƭƭȅ ŎǊŜŀǘŜ 

timed events while staying in one Work state. The timed event triggers an attempt to receive a 

beacon broadcast on the wireless interface. If no beacon is obtained, the attempt runs into a defined 

timeout. If a beacon is received, its signal strength is measured and message events are transmitted 

to a local active SCA and the RAC.  

 

Figure 13 State diagram of the state machine implementing the MAPS based RASΩǎ ōŜƘŀǾƛƻǊ 
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The coordinator agent also operates on a similar state machine that consists out of a setup and a 

work state. If a message containing signal strength information is received via MTS, the agent 

updates its list of active nodes and sorts it according to the received signal strength. If state changes 

of SCA are necessary, the agent requests the changes from the SCA via the event based messaging 

system of MAPS. Furthermore, the agent reacts on message events, which contain the target 

positions and uses the USB interface to transmit the target positions to a connect PC. 

¢ƘŜ {/!Ωǎ ǎǘŀǘŜ ƳŀŎƘƛƴŜ Ŏƻƴǎƛǎǘǎ ƻǳǘ ƻŦ ŦƻǳǊ ǎǘŀǘŜǎΥ ŀ {ŜǘǳǇ ǎǘŀǘŜ ŀƴŘ ƻƴŜ ǎǘŀǘŜ for every possible 

ǊƻƭŜ ƻŦ ǘƘŜ ŀƎŜƴǘΦ ¢ƘŜ ¦a[ ǎǘŀǘŜ ŘƛŀƎǊŀƳ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ {/!Ωǎ ǎǘŀǘŜ ƳŀŎƘƛƴŜ ƛǎ ŘŜǇƛŎǘŜŘ ƛƴ 

Figure 14. The initialization that is done in the Setup state is followed by a transition into the Sleep 

state, in which the agent reacts only to requests of the RAC to change its role. In case of such a 

request, the agent switches its states either from Sleep state to one of the two working states, 

Master or Slave or the other way around. A direct transition from one of the two working states to 

the other one is not implemented. In both working states the agent can receive parameters from the 

RAC, which are necessary to fulfill its task. For a SCA acting in the role of a slave, the parameter 

includes the ID and address of the SCA that acts as master. Otherwise the parameter consists out of 

the addresses and positions of the nodes, which host the SCA acting as slave and the position of the 

maǎǘŜǊΩǎ ƴƻŘŜΦ  

 

Figure 14 State diagram of the state machine implementing the MAPS based {/!Ωǎ ōŜƘŀǾƛƻǊ 
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JADE  

JADE based agents are implemented with a behavior based approach. Therefore the JADE API 

provides an abstract object form type Behaviour , which has to be extended when implementing 

new types of behaviors. But the implementation of a custom subclass of Behaviour  is not 

mandatory because JADE also provides predefined behavior classes for usage or extension. In this 

work only two types of predefined behaviors are utilized. A cyclic behavior implemented in the class 

CyclicBehaviour . This subclass of Behaviour , repeatedly executes an implemented method 

similar to a method call in a loop. The second behavior is implemented in the JADE class 

TickerBehaviour , where an implemented method is repeatedly scheduled for execution after a 

give time span. Due to the requirement of comparable implementations, the agent behaviors 

developed for this prototype are internally implemented as state machines, driven from a 

CyclicBehaviour  or TickerBehaviour . Their internal structure is almost identical to 

behavior defining planes of the MAPS implementations. ¢ƘŜ w!¢Ωǎ ōŜƘŀǾƛƻǊ for example is 

implemented as TickerBehaviour . The implementation of the JADE RAT agent can be taken 

from appendix c.3.1. 
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Agent Based User Interface 

 

Figure 15 Screenshot of implemented Android user interface. 

The GUI of the tracking application is implemented with the JADE middleware. The main task of the 

D¦L ƛǎ ǘƻ ǾƛǎǳŀƭƛȊŜ ǘƘŜ ǘŀǊƎŜǘ ƻōƧŜŎǘΩǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ǘƘŜ ǇŀǘƘ ǿƘƛŎƘ ƛǘ ǘƻƻƪ ǘƘǊƻǳƎƘ ǘƘŜ ²{bΦ ¢ƘŜ 

growing popularity of mobile applications and smartphones has led to the decision to implement the 

GUI for the mobile object tracking application on the Android platform. This choice induced the 

implementation of a mobile application prototype, which features mobile real time tracking and 

monitoring. A screenshot of the implemented Android user interface can be seen in Figure 15. In the 

visualization of the WSN in the GUI, sensor nodes and their positions are represented through green 

dots. The actual position of the target is indicated with a small red dot. Former target positions are 

illustrated with blue dots. The track, on which the target has moved, is visualized with yellow lines 

between the target positions. 

The implementation of the GUI requires independence from the MAP, on which the running WSN 

tracking application is implemented, because the GUI can then be used with AFME and MAPS 

implementations of Centralized Mobile Object Tracking application. Hence, the agents that are 

relevant for the GUI are executed on a JADE platform, which is independent from the WSN 

component of the application, although JADE could host the GUI relevant agent on the same JADE 

platform as the other JADE agents. If the GUI relevant agents were executed on the same JADE 

platform, a direct communication between the GUI agents and the JADE implementation of the RAC 

agent would be possible, but the GUI could not be operated with AFME and MAPS.  
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The GUI utilizes the split container execution mode for the agents that are hosted on an ANDROID 

device, just as in the tracking application implemented with JADE. Two cooperating agents are 

developed to realize an agent based GUI, because agent mobility is not supported by split 

containers[30]. The architecture of agent based GUI implementation is depicted in Figure 16.  

A GUI Host Agent (GHA) is performed on a main container that runs on the PC connected to the WSN. 

The PC provides the data base management system (DBMS) which hosts a database for the 

Centralized Mobile Object Tracking application. The GHA is responsible for the query of this 

database. It uses the same database interface as the RAC agents and the MAPS host tool to store the 

tracking results. More information about the realization of the database and its interface is presented 

in the next subchapter. After the database query the GHA informs the second type of GUI agents, 

which is called GUI Android Agent (GAA) and which is executed on ANDROID devices, via JADE MTS 

on request.  

The GAA has to request the information about the track of the target positions from the GHA. After 

the first request the GHA also informs the GAA continually about updates in the target positions. The 

GAA receives the information via MTS and forward it to an ANDROID Activity for visualization. An 

Activity represents a view or page of an ANDROID application. The development of ANDROID 

applications is not the focus of this thesis. Therefore, interested readers are referred to [32] for more 

information. In case a GAA is terminated, the agent informs the GHA to now lower send target 

location updates.  
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Figure 16 Architecture of the implement agent based Android user interface 
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Database and Interface 

The main task of the MySql database is to store the positions of the target object. This is 

accomplished over Java Database Connectivity (JDBC), which provides an API to access database with 

Java. Additionally to the main task, the database also contains positions of all sensor nodes forming 

the WSN. 

The interface to the database is implemented through a single class, which is designed according to 

the well known singleton design pattern [33] and which allows an object based access and storage of 

information. Therefore, the interface can be used without any local references of the object. To store 

a new target position in the database only one line of code is necessary: 

 

Common.getInstance().getDB().add(new Position(x,y)); 

 

As a result of the object orientated interface, the creation of data classes that simply include data is 

necessary. In the code line exemplified above a class, which only contains variables for a value of x 

and y and which represents a target position, is implemented. The free DBMS MySql hosts the 

database of the Centralized Mobile Object Tracking application. The database also includes tables to 

store results of measurements. This allows the realization of an automated process that stores the 

results for the comparisons of the tested MAPs.  
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4.2 Decentralized Search 

The Decentralized Search application is developed on the existing implementations of the centralized 

tracking application. Some components are modified in the Decentralized Search. The target object, 

its platform and its agent can be reused with one modification: the frequency, in which the beacons 

are emitted, is 0,66 Hz. 

The RAS of the Centralized Mobile Object Tracking application can also be employed in the 

Decentralized Search. Its behavior differs only in the recipients that receive the information of the 

beacon frames and in the handling of the virtual pheromone mark. The difference is that a RAS only 

informs the CSA of current value of the virtual pheromone mark via local message broadcast, if the 

CSA is present on the sensor node of the RAS. Furthermore, the RAS stores the value of the 

pheromone reading and decreases it over time to simulate the fading of the mark, similar to a 

pheromone trail in the real world. 

AFME 

 

Figure 17 UML class diagram of an AFME platform supporting agent mobility. 

Due to the fact that the Decentralized Search utilizes agent mobility in its search algorithm, the 

definition of the AFME platform for sensor nodes has been modified to support agent mobility. 

Figure 17 depicts a UML class diagram that represents the generated JAVA classes, which result from 

the changes in the definition of the platform. As it can be seen the JAVA classes that represent such a 

platform implement the MigrationPlatform  interface additionally to the Platform  interface. 

This MigrationPlatform  interface provides the necessary functionality for the agent mobility to 

the platform. Furthermore, a platform supporting agent mobility has to provide a service to manage 

agent migration. In this case, corresponding service implemented in the class RadioMigManager  
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has to be used for migration on Sun Spots over the wireless interface. This required additional service 

is illustrated in the class diagram in Figure 17. In contrast to the previous used MTS of AFME, which 

offers system wide message transportation, the MTS in the Decentralized Search is only used for 

node internal communication. Therefore, the MTS in this application does not listen to any incoming 

messages on the wireless interface. The sensor node, on which the migration platform is executed, 

hosts the modified version of the RAS. This informs the mobile CSA about the current value of the 

pheromone mark. To be able to fulfill its task the CSA receives the pheromone readings only from a 

local RAS. AFME does not support broadcast messages and therefore the RAS has to register the CSA 

so that the CSA can receive information about the pheromone trail from the RAS. 

       
1)      per  MTSPerceptor, SW01Per; 
2)      act   InformActuator, MigrateActuator, SearchBestNodeAct, DeregisterAct; 
 
3)      searchState(?state),parameter(?p),message(inform,sender(?agt,?addr),?lread),visitedNodes(?oldNodes),highestSearchReading(?hr4s) 
                      > search4bestNode(?state, ?p, ?lread, ?oldNodes, ?hr4s); 
 
4)       deploy,destAddr(?destaddr) > par( deregisterAtRAS , migrate(?destaddr,null) ); 

 
Code Listing 4 Agent definition of the AFME Decentralized Search agent. 

 

The definition of the CSA can be taken from Code Listing 4. After the CSA is resumed or started on a 

node, the registration of the CSA to the RAS is initiated via the already known InformActuator . 

¢ƻ ƳƛƎǊŀǘŜ ǘƻ ŀƴƻǘƘŜǊ ƴƻŘŜΣ /{! ǘǊƛƎƎŜǊǎ ǘƘŜ ŀŎǘƛƻƴ άƳƛƎǊŀǘŜέ ǇǊƻǾƛŘŜŘ ŦǊƻƳ ǘƘŜ 

MigrateActuator  that is part of the AFME API (line 2 in Code Listing 4). The rule for the 

migration (line 4 Code Listing 4) declares that if both a state deploy  and a state destAddr , which 

contains the address of the destination node, are believed to be true, two action should be 

ǇŜǊŦƻǊƳŜŘΦ CƛǊǎǘΣ ǘƘŜ /{! ǳƴǎǳōǎŎǊƛōŜǎ ƛǘǎŜƭŦ ŦǊƻƳ ǘƘŜ w!{ ǿƛǘƘ ǘƘŜ ŀŎǘƛƻƴ άŘŜǊŜƎƛǎǘŜǊ!ǘw!{έ ƛƴ ƻǊŘŜǊ 

to stop the transmission of messages. This action is provided by an actuator named 

DeregisterAct . Second, the migration of the CSA is executed. Due to the fact that CSA is a 

mobile agent, all inner states have to be available on the agents destination node and they have to 

ōŜ ƛƴ ǘƘŜ ŀƎŜƴǘΩǎ ōŜƭƛŜŦ ǎŜǘ ƛƴ ƻǊŘŜǊ ǘƻ ōŜ ǘǊŀƴǎƳƛǘǘŜŘΦ IŜƴŎŜΣ ǘƘŜ ŘƛƳŜƴǎƛƻƴ ƻŦ ǘƘŜ ǊǳƭŜ ǘƘŀǘ ƛǎ 

responsible for driving the search algorithm implemented as state machine contains all necessary 

parameters. This rule is illustrated in line 3 of Code Listing 4. For more details on the state machine 

see the next sub-section. The states searchState , parameter, visitedNodes  and 

highestSearchReading  are contain data needed for the search algorithm, e.g. 

visitedNodes  contains a list with already visited nodes which is required to avoid that a node is 

again chosen as migration destination(line 3 in Code Listing 4 Agent definition of the AFME 
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Decentralized Search agent.). If the perceptor SW01Per perceives a push on the first button on a 

Sun Spot, it starts the Decentralized Search by adding the required state to the belief set. 

MAPS 

Similar to the AFME based application, the MAPS application reuses the same modified components 

and agents as in the Centralized Mobile Object Tracking application. Therefore, for the discussion of 

the RAT and RAS implementations see subchapter 4.1 MAPS. In contrast to AFME, MAPS supports 

broadcast message events (local and remote). Hence, the implementation of the registration process 

as described in the previous sub-section is not necessary. 

After the initialization is done in a Setup state, the CSA is in a state in which the agent handles 

incoming message events, as illustrated in Figure 18. If the agent receives a pheromone reading, the 

reading is compared to the highest reading that has been achieved so far. If the reading is of a higher 

value than the previous one, the agent stores the value and the node address in its internal states. 

The CSA checks an internal list of nodes, which should be visited by the CSA. If there are nodes in the 

list, the agent migrates to the next node in the list. If the list is empty, the agent checks whether the 

current hosting node is the node with the highest pheromone mark so far. In this case the list of 

nodes that has to be visited is extended with unvisited neighboring nodes of the current hosting 

node. If the pheromone mark is not the highest one, the agent migrates to the node with has the 

highest pheromone mark so far. After a migration process the agent is in a New node  state, in 

which the new hosting node is added to the list of already visited nodes. Afterwards the agent 

transits into the Read state in order to continue the execution of the search. Under the circumstance 

that the CSA cannot obtain any new neighboring nodes while being executed on the node with the 

strongest pheromone mark, the agent transits into a final Finished  state and ends the search 

algorithm.  
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Figure 18 UML state diagram modeling the behavior of a MAPS based Decentralized Search agent. 
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5 Experiments and Results 

For the evaluation of the MAP performances in the execution of test prototypes, four criteria are 

identified. The utilization of a nodes CPU and its memory are chosen to be the first criteria, because 

they represent a ƴƻŘŜΩǎ ŘŜƎǊŜŜ ƻŦ ŎŀǇŀŎƛǘȅΦ 9ƴŜǊƎȅ ŎƻƴǎǳƳǇǘƛƻƴ ƛǎ ŀ ǾŜǊȅ ƛƳǇƻǊǘŀƴǘ ŦŀŎǘƻǊ ŦƻǊ 

embedded wireless devices due to their limited power supply. Thus, the energy consumption is also 

identified to be one of the evaluation criteria. Directly responsible for a certŀƛƴ ǇŀǊǘ ƻŦ ŀ ƴƻŘŜΩǎ 

energy consumption is the degree of usage of the wireless interface. Therefore, the network traffic 

created by the different MAP is also used as criteria. In regard to agent mobility, the migration time is 

the last of the chosen criteria. To be able to evaluate several MAPs according to their performances, 

a test scenario that realizes agent mobility is defined to measure the chosen criteria in a migration 

context.  

The distributed characteristics of the developed test system and the different states, in which its 

components can operate, require a definition of the test configurations for both applications, the 

Centralized Mobile Object Tracking and the Decentralized Search. Configuration 1 represents an 

empty node as reference, on which no agent or agent platform is executed. A RAT and its platform 

are hosted according to Configuration 2. Due to the two different applications, which lead to 

different test scenarios, a distinction between the configurations has to be made. This distinction 

refers to all configurations that include a higher number than 2. In Configuration 2 the only 

difference in the implementation of the two applications is the frequency of the emitted beacons. 

For the Centralized Mobile Object Tracking application in the Configuration 3T a sensor node hosts 

one RAS and one inactive SCA. This leads to the conclusion that no target node is present in the range 

of the sensor node. Hosted active SCAs in the role of master or slave with an active target object in 

range are found in Configuration 4T and Configuration 5T.  

Four different possible configurations are used for the Decentralized Search application. In 

Configuration 3S a sensor node executes RAS including its platform. In Configuration 3S no target 

node is in range in contrast to Configuration 4S, in which a target node is in the range. These two 

possibilities also exist, if the sensor node is additionally hosting a registered but inactive CSA. This 

leads to Configuration 5S, which has a registered but inactive CSA and in which the target is not in 

range. In Configuration 6S the CSA is also registered and inactive, but the target is in range. A 

migrating CSA has the focus on the Migration Test Configuration, because in this configuration three 

sensor nodes are arranged in a row and the CSA migrates from the first one over the second one to 

the third one. 
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All of these configurations are illustrated in Figure 19. They represent fixed setups of nodes for the 

conducted experiments. Due to these configurations an extraction of metrics is achieved that 

represents information about the execution of the two test applications. The metrics are extracted 

during system runtime by an instrumented code. This instrumented code is realized as a separate 

thread. It is executed pseudo parallel to the relative implementations and it measures the criteria 

over a defined time span. 

  

Configuration 1: 

Configuration 3T 

Configuration 2: 

Spot 

RAS 

RAT 

SCA 

inactive 

SCA as 

Master 

SCA as 

Slave 

CSA 

Configuration 3T: 

Configuration 4T and 5T: 

Search Application: 

Configuration 3S: 

Configuration 4S: 

Configuration 5S: 

Configuration 6S: 

Node 1 

Node 2 

Node 3 

Step 1 Step 2 Step 3 

Tracking Application: 

Migration Test Configuration: 

Figure 19 Test configurations for experiments 
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The instrumented code is implemented in several classes designed to interfere as less as possible 

ǿƛǘƘ ŜŀŎƘ ƻǘƘŜǊΩǎ ƳŜŀǎǳǊŜƳŜƴǘǎΦ !ƴ ŀŘŘƛǘƛƻƴŀƭ ŎƭŀǎǎΣ ƛƴ ǿƘƛŎƘ ǘƘŜ ǎŜǇŀǊŀǘŜ ǘƘǊŜŀŘ ŦƻǊ ǘƘŜ ŜȄŜŎǳǘƛƻƴ 

measurements is started, is responsible for managing the execution and the timing of the different 

measurements. To minimize side effects between different measurements, several precautions were 

ǘŀƪŜƴΣ ŜΦƎΦ Ƴŀƴǳŀƭ Ŏŀƭƭǎ ǘƻ ǘƘŜ ±aΩǎ ƎŀǊōŀƎŜ ŎƻƭƭŜŎǘƻǊ ŦƻǊ ǘƘŜ ƳŜƳƻǊȅ ƳŜŀǎǳǊŜƳŜƴǘ ŀƴŘ ǎŜǾŜǊŀƭ 

pauses were performed. These pauses allow the system to settle or the garbage collector to finish. 

In addition to that the measurement managing class is also responsible for transmitting the results of 

measurements to a nearby sink node via radiogram broadcast. It should be noted that the radiogram 

functionality is provided by the libraries of the SPOT SDK and therefore has no dependencies to any 

MAPs. Through an independent implement process on PC the measurement result is received and 

forwarded to the database for storage and data preparation. 

The deployment of the nodes in the WSN can be seen in Figure 20 as well as the minimu 

communication range for one Sun Spot. The figure shows in a) the deployment of the sensor nodes 

for the Centralized Mobile Object Tracking application. The nodes are arranged in a way that they 

form equilateral triangles with a side length of two meters. The deployment of the sensor nodes for 

the Decentralized Search is illustrated in figure 20 b). In this application four nodes form a two by 

four meter rectangle. 
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Figure 20 Node deployment in the WSN for a) Centralized Mobile Object Tracking b) Decentralized Search 
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5.1 CPU Utilization 

The first criterion for the evaluation is the CPU utilization of the hosting node in a certain state. The 

SPOT API does not provide a method for monitoring the CPU. Therefore, an energy saving feature of 

SPOT is utilized to determine the CPU load. The CPU of a Sun Spot is automatically set to a sleep 

ƳƻŘŜ ǘƻ ǇǊŜǎŜǊǾŜ ŜƴŜǊƎȅΣ ƛƴ ŎŀǎŜ ǘƘŜ /t¦ ƛŘƭŜǎΦ {ƻ ƛǘ ƛǎ ǇƻǎǎƛōƭŜ ǘƻ ƳŜŀǎǳǊŜ ŀ {ǳƴ {ǇƻǘΩǎ /t¦ ƭƻŀŘ 

through the proportion of the runtime to the time span, in which the CPU is in sleep mode. A Sun 

Spot has also a third operation mode, the so called Deep Sleep mode, but this mode was deactivated 

for these CPU measurements.  

 The results of the CPU measurements can be seen in Table 1. The cyclic emission of the beacon 

frames require more processing time in the Centralized Mobile Object Tracking application than in 

the Decentralized Search application. The reason for this difference is the higher frequency of the 

beacons. As it can be seen in Table 1 JADE has the lowest load for configuration 1 to 3T in the 

Centralized Mobile Object Tracking application, but in configuration 4T and 5T JADE utilizes the CPU 

more than the others MAPs. This can be explained by the split execution mode of JADE. Local 

execution is therefore very efficient, but if it comes to an interaction with other agents, JADE has a 

higher demand for processing time in comparison to the AFME and MAPS. This is also displayed in 

the results of Configuration 5T, in which JADE needs almost twice as much processing time than the 

other MAPs. The comparison between AFME and MAPS in both applications show that MAPS has a 

lower CPU utilization than AFME. This is the result of the more complex architecture of AFME.  

Table 1 Measured CPU utilizations in % of the Centralized Mobile Object Tracking application and the 

Decentralized Search application in comparison 

CPU Load in %   

Centralized Mobile Object 
Tracking 

 

Decentralized 
Search 

 

 
AFME MAPS JADE AFME MAPS  

Configuration 1 
(Empty node) 0,26 0,26 0,26 0,26 0,26 

Configuration 1 
(Empty node) 

Configuration 2 
(Target Sunspot) 16,56 12,56 10,39 9,05  8,64  

Configuration 2 
(Target Sunspot) 

Configuration 3T 
(Inactive SCA) 3,42 3,63 3,14 5,68  1,75  

Configuration 3S 
(RAS no Target) 

Configuration 4T 
(SCA as Slave) 22,43 20,89 27,35 7,30  4,52  

Configuration 4S 
(RAS with Target) 

Configuration 5T 
(SCA as Master) 31,87 26,95 59,28 9,26  2,53  

Configuration 5S 
(RAS and CSA no 

Target) 

 
      10,77  5,28  

Configuration 6S 
(RAS and CSA with 

Target) 
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5.2 Memory 

Java Applications executed in a Java VM have to use the VM memory management that utilizes a 

garbage collector to free objects, which are no longer referenced. To save energy, the garbage 

ŎƻƭƭŜŎǘƻǊΩǎ ŎƻƭƭŜŎǘƛƻƴ ǇǊƻŎŜǎǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ ǘƘŜ {ǉǳŀǿƪ ±a ƛǎ ǎǘŀǊǘŜŘ ŀǎ ǎƻƻƴ ŀǎ ŀƭƳƻǎǘ ŀƭƭ ƳŜƳƻǊȅ 

resources are reserved. Although it is a great feature to preserve energy, it is most obstructive for 

memory monitoring. To overcome this effect, manual calls to the garbage collector are used to free 

unused memory before a measurement is taken. 

 Table 2 Memory utilization during execution (in kilo bytes) of the Centralized Mobile Object Tracking 

application and the Decentralized Search application in comparison 

 

The results of the memory related measurements are shown in  Table 2. As it can be seen, MAPS is 

the one MAP that uses the most memory and hence shows the worst results. In comparison with 

AFME, which has a modular architecture, MAPS has a monolithic structure and instantiates all 

platform components in the beginning, even if they are not needed. JADE shows an almost constant 

low memory need regardless of the test configuration. The reason for this is the split execution 

mode, in which the backend of the agent container is not executed on the mobile device. Thus, JADE 

is the best memory preserving MAP in the centralized object tracking application. In the 

Decentralized Search application AFME presents the best results, because of its modular 

architecture. 

  

Used Memory in 
kilo bytes   

Tracking 
Application 

 
Decentralized Search 

 

 

AFME MAPS JADE AFME MAPS  

Configuration 1 
(Empty node) 

86 86 86 86 86 Configuration 1 
(Empty node) 

Configuration 2 
(Target Sunspot) 

91 109 103 91 109 Configuration 2 
(Target Sunspot) 

Configuration 3 
(Inactive SCA) 

110 130 105 98 116 Configuration 3 
(RAS no Target) 

Configuration 4 
(SCA as Slave) 

124 132 109 97 113 Configuration 4 
(RAS with Target) 

Configuration 5 
(SCA as Master) 

138 159 115 108 131 

Configuration 5 
(RAS and DSA no 

Target) 

 

      108 131 

Configuration 6 
(RAS and DSA 
with Target) 
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5.3 Energy 

The SPOT API provides access to the information about the remaining capacity of the battery in 

milliamp hours. Therefore, this information is used to determine the energy consumption of the 

Spot. Three measurements with a different run time were performed: 10 sec, 30 sec and 300 sec. The 

results of these measurements are then used to calculate the energy consumption. 

Table 3 Energy consumption of the implementations. 

Consumed Energy 
(mA)   

Tracking 
Application 

 
Decentralized Search 

 

 

AFME MAPS JADE AFME MAPS  

Configuration 1 
(Empty node) 

54,00 54,00 54,00 54,00 54,00 Configuration 1 
(Empty node) 

Configuration 2 
(Target Sunspot) 

60,30 68,57 61,56 56,63 66,94 Configuration 2 
(Target Sunspot) 

Configuration 3 
(Inactive SCA) 

69,25 79,66 63,18 59,75 78,90 Configuration 3 
(RAS no Target) 

Configuration 4 
(SCA as Slave) 

84,49 98,26 73,89 60,33 70,74 Configuration 4 
(RAS with Target) 

Configuration 5 
(SCA as Master) 

86,34 81,60 77,17 67,12 78,33 

Configuration 5 
(RAS and DSA no 

Target) 

 

      67,71 70,06 

Configuration 6 
(RAS and DSA 
with Target) 

 

The results of the nodes energy consumption are presented in Table 3. Differently to the presented 

results for the CPU utilization, in which JADE has high values for test configurations that involve agent 

communication, the energy consumption of JADE is quite moderate in comparison to the processor 

load. Together with the CPU load results that, due to the more efficient coding in the backend 

frontend connection as mentioned in Section 3.5, a compression algorithm is reducing the usage of 

the wireless interface by shrinking the amount of data which has to be transferred.  

The influence of the CPU utilization on energy consumption can be seen in Figure 21 which shows a 

combined diagram depicting the CPU load together with the consumed energy for both applications. 

Furthermore, the figure visualizes that MAPS needs the most energy of all MAPs in almost every test 

configuration. This can also be explained wiǘƘ a!t{Ωǎ monolithic structure. 




