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Abstract

Modelling defaultable contingent claims has attracted a lot of interest in
recent years, motivated in particular by the Late-2000s Financial Crisis.
In several papers various approaches on the subject have been made.
This thesis tries to summarize these results and derive explicit formu-
las for the prices of financial derivatives with credit risk. It is divided
into two main parts. The first one is devoted to the well-known theory
of modelling the default risk while the second one presents the results
concerning pricing of the defaultable models that we obtained ourselves.
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Chapter 1

Introduction

In the world of finance, it is crucial to consider the models based on the
fact that the companies may default. Hearing the word ’default’ one can
imagine the biggest defaults in the history of economy like that of Lehman
Brothers in 2008. However, the exact definition of a default explains it only
as a failure to meet debt obligations such as loans or bonds. The debtor
is in default when he is either unable or unwilling to pay the debt. One
has to distinguish the default from a state of being unable to pay the debts
precisely which is called insolvency. The company is insolvent when it is
unable to pay debts as they fall due (cash flow insolvency) or when the
liabilities exceed the assets (balance sheet insolvency). It is worth mentioning
that the insolvency can lead to a bankruptcy which is the process of legally
defining a financial situation as insolvent. While modelling credit risk, one
usually takes under consideration the company’s default in general, without
looking into the causes and hence distinguishing between being unable or
unwilling to pay the debts.

In the world of mathematics, the default appears as default time which is
a strictly positive random variable. One can define this random variable in
many ways. However, the most common one is the first time of crossing a
barrier by a certain process, e.g. a stock price process of a company (see a
Figure 9.1).

Modelling of the default event can be done in two manners. The first one is
called structural approach. It assumes that default time τ is a stopping time
in the assets filtration F. The second one, called reduced-form approach, is
based on the assumption that τ is a stopping time in a larger filtration and
may no longer be measurable with respect to the prices filtration. In our
thesis, we focus on the last approach.

1



2 Chapter 1. Introduction

Figure 1.1: An example of a defaultable company stock price process.

We consider a non-defaultable world which consists of riskless and risky
assets. A filtration generated by the prices of those assets is denoted by F
and called the reference filtration. It represents the information available
to the regular investor in a non-defaultable world. However, when we take
under consideration a possibility of a default we have to introduce default
time τ and create a defaultable framework which may consists of default-
free and defaultable assets, e.g. stock of the company that may default.
We have to study different types of information flows available to agents
trading in a defaultable market. On the one hand, the regular investors
add the information about default to F when it occurs, i.e. they work in
a progressive enlargement setting. On the other hand, we shall examine
also the insider, i.e. the agent who possesses information about default time
from the beginning. The information accessible to this agent is represented
by a filtration F initially enlarged by a positive random variable τ . In our
thesis, we explore the special theory which establishes methods of enlarging
the reference filtration by the additional information, namely Carthaginian
Enlargement of Filtrations (see [2]).

We distinguish two methods of modelling default time in a reduced-form
approach, namely the intensity (see [1]) and the conditional density-based
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approach (see [2] and [3]). They are used to establish the expectation and
projection tools which are necessary for pricing an hedging of financial deriva-
tives. An intensity of default is simply a ratio of probability that default will
appear in a infinitely small time interval (under the condition that there
was no default before) and the time step. However, to determine the condi-
tional density of default, we need to assume that the conditional law of τ is
equivalent to the law of τ .

In the first chapter, we study some basic results concerning probability
spaces and filtrations, as well as stochastic processes, in particular a Brownian
motion. We introduce some facts concerning stopping times and martingales.

In the second chapter, we introduce crucial assumptions related to the
filtered probability space involving default time and all the price processes.
Then, we introduce the law of τ and we give a definition of a default process.
We determine the form of a random variable measurable with respect to
the σ-algebra generated by that process and give some properties of the
corresponding filtration.

Third chapter is devoted to the intensity approach in the filtration gen-
erated by the default process. In this framework, we give tools to compute
expectations with respect to the σ-algebra generated by this process. Then,
we value under the physical measure defaultable zero-coupon bond at time
t in the case of zero and non-zero spot rate for the agent whose information
flow is the filtration mentioned above. Finally, we give formulas and prop-
erties of the survival and hazard function and we represent once again the
defaultable zero-coupon bond value using these functions.

In the fourth chapter, we present firstly the theory of Carthaginian En-
largement of Filtrations and hence, the methods to enlarge reference filtra-
tion with an additional information. Secondly, we represent random variables
with respect to the corresponding σ-algebras. Then, we introduce the crucial
assumption that states that the conditional law of default time τ is equiv-
alent to the law of τ . In addition, we present the density hypothesis which
allows to express the distribution of τ conditioned on the information from
the reference filtration in terms of the conditional density process and the
law of τ . We show that under the additional assumption concerning the law
of τ , namely the property of being non-atomic, default time avoids stopping
times from the reference filtration. The second important part of this chap-
ter is devoted to introducing the so-called decoupling measure which makes
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τ and the underlying risky assets independent. We consider some proper-
ties of the new measure and establish the expectation tools using obtained
independence. What is more, we establish the form of the survival process
under the physical and decoupling measure. Finally, we prove that initially
enlarged filtration inherits right-continuity from the reference filtration.

Fifth chapter presents some results obtained in the initially enlarged fil-
tration, i.e. the expectation tools and the characterization of martingales
from the enlarged filtration in terms of martingales from the reference filtra-
tion. We finish the chapter with establishing the conditions for the absence
of arbitrage in the enlarged filtration.

In the sixth chapter we examine the progressive enlargement framework.
We begin with the intensity-based approach and assume that a price process
follows the log-normal distribution and the reference filtration is generated
by a standard Brownian motion. Firstly, we establish some expectation tools.
Secondly, we introduce a hazard process in terms of the results obtained from
the expectation tools. Then, we introduce the intensity in the progressively
enlarged filtration. We continue the chapter by studying the hypothesis that
martingales from the reference filtration remain martingales in the enlarged
filtration, namely H-hypothesis which is strongly related to the absence of
arbitrage. We finish the intensity-based approach part with demonstrating
the value of the default information, i.e. the difference between the price of
a defaultable contingent claim for an agent who possesses the information
about the default when it occurs and the one who does not have this in-
formation. In the second part of this chapter, we analyse the density-based
approach. We begin with establishing the projection of random variables on
the progressively enlarged filtration and we obtain the Radon-Nikodým on
this filtration. We continue with examining the relation between the density
hypothesis and the H-hypothesis and finish with the martingales character-
ization.

The seventh chapter consists of our own results. We calculate the price
of the option written on a investment consisting of both, default-free and
defaultable assets. We consider a default-free market consisting of one risk-
less asset and one risky asset and a defaultable market created by adding
one defaultable asset to the preceding model. We define a reference filtra-
tion as a filtration generated by a price process of a default-free asset. We
define default time τ as the first time when defaultable asset’s price crosses
a certain barrier from interval (0, 1) and we establish distribution of τ . We
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consider two agents trading in a defaultable market, a regular investor who
observes only a price process of a default-free asset and a special agent who
has additional information concerning default time τ from the beginning, i.e.
its distribution. We put an accent on the fact that the defaultable market is
arbitrage-free and incomplete for the regular investor and hence, we find it
interesting to calculate the price of the option for such an investor. We find a
pricing measure using the connection between two well-known methods, the
utility maximization and the f -divergence minimization.
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Chapter 2

Stochastic background

In the Theory of Financial Markets pricing is based either on the stochastic
or partial differential equations approach. We will focus on the former one.
It is important to remind the most important definitions from the Theory of
Stochastic Processes which will be used throughout our thesis.

2.1 The probability space and filtrations
While considering the randomness, it is necessary to introduce a proba-

bility space (Ω,F ,P) which is a mathematical form essential for modelling
the stock prices and default processes consisting of the states which occur
with uncertainty. A non-empty sample space Ω is an universe of all possi-
ble random events ω. In our case it is a space of all possible scenarios that
can happen on the financial market. For further calculations and reasoning
it is crucial to use a certain type of collections of these events ω ∈ Ω. Let
us denote P(Ω) the set of all subsets of Ω. From the Theory of Probabil-
ity we know how to treat the collections which are closed under countable
unions and joints. Consequently, we introduce the most important algebraic
structure, σ-algebra over Ω, as following.

Definition 2.1. Let Ω be a non-empty sample space. F ⊂ P(Ω) is called a
σ-algebra over Ω, if

i) ∅ ∈ F ,

ii) F ∈ F ⇒ FC ∈ F ,

iii) ∀i ∈ I, Fi ∈ F ⇒
⋃
i∈I Fi ∈ F , where I ⊂ N.

N is a set of natural numbers.

7
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From the De Morgan’s laws we can easily combine ii) and iii) from the
previous definition and get that the countable joints remain in the σ-algebra.
Remark 2.1. If F is a σ-algebra over Ω, then

i) Ω ∈ F ,

ii) ∀i ∈ I, Fi ∈ F ⇒
⋂
i∈I Fi ∈ F .

Through equipping the sample space with the σ-algebra F we get a pair
(Ω,F) called a measurable space. On such a space we can define a probability
measure and obtain the probability space.

Definition 2.2. Let Ω be a non-empty sample space and F a σ-algebra over
Ω. The pair (Ω,F) is called a measurable space.

In the Mathematical Finance, for pricing financial derivatives, one can use
several probability measures calculated from the actual market movements.
For instance, a martingale measure is based on the risk-neutrality approach.
Accordingly, in pursuance of the previous notations and assumptions we can
define a probability measure P on measurable space (Ω,F) defined on the
set of events from Ω.

Definition 2.3. We call a function P : F → [0, 1] a probability measure on
(Ω,F) if

i) P(∅) = 0,

ii) P(Ω) = 1,

iii) ∀i ∈ I Fi ∈ F are disjoint, i.e. Fi ∩ Fj = ∅ if i 6= j then

P(
⋃
i∈I

Fi) =
∑
i∈I

P(Fi),

where I ⊂ N.

Broadly speaking, a probability space is a measurable space such that the
measure of the whole space is equal to one. In accordance with the previous
suppositions we can define it more formally.

Definition 2.4. We call a triplet (Ω,F ,P) a probability space where Ω 6= ∅,
F is a σ-algebra over Ω and P is a probability measure on (Ω,F).

In mathematics there are some sets which can be ignored. In the Theory
of Probability we call them P-negligible sets. They can be omitted when
calculating integrals of measurable functions.
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Definition 2.5. A set A ∈ F is called a P-negligible set if P(A) = 0.

In general, the probability space (Ω,F ,P) does not have to contain all
P-negligible sets. However, it can be completed by incorporating all subsets
of P-negligible sets in a suitable manner.

Definition 2.6. A triplet (Ω,F ,P) is called a complete probability space if
F contains all P-negligible sets.

It is important in the Theory of Martingales to define the filtration on
a measurable space (Ω,F). In the mathematical finance we understand the
filtration as the information available up to and including each time t which
is more and more precise as more data from the stock becomes accessible.

Definition 2.7. F is a filtration if F is a family of non-decreasing sub-σ-
algebras (PFt)t≥0 such that ∀t ≥ 0 Ft ⊂ F and ∀0 ≤ s < t <∞ Fs ⊂ Ft.

Similarly as before, we define a filtered probability space (Ω,F ,F,P) also
known as a stochastic basis or a probability space with a filtration of its
σ-algebra.

Definition 2.8. We call the quadruple (Ω,F ,F,P) a filtered probability
space, where Ω 6= ∅, F is a σ-algebra over Ω, F is a filtration and P is a
probability measure.

For further considerations we introduce a complete filtered probability
space.

Definition 2.9. (Ω,F ,F,P) a complete filtered probability space if F con-
tains all P-negligible sets and ∀t ≥ 0 F contains all P-negligible sets.

2.2 Stochastic processes

In the study of stochastic processes there is an important reason to include
σ-fields and filtrations because they are necessary to keep the track of the
information. The relating to time feature of stochastic processes implies the
flow of time. It means that at every moment t ≥ 0 we can talk about the
past, present and future as well as ask how much the observer of the process
knows about them at present. We can compare this information with how
much he knew in the past or will know in some certain time in the future.
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In this chapter we give the definition of a stochastic process, a natural
filtration and we distinguish three types of measurability.

Definition 2.10. A stochastic processX = (Xt)t≥0 is a family of (Rd,B(Rd))-
valued random variables Xt, where ∀t ≥ 0 Xt is defined on the probability
space (Ω,F ,P).

We will assume that d = 1 in further considerations.

Given the stochastic process X the most intuitive and the simplest way to
choose the filtration is to take the one generated by the stochastic process
itself.

Definition 2.11. A natural filtration FX of a process X = (Xt)t≥0 is a
filtration

FX = (FXt )t≥0,

where
FXt = σ(Xs, s ≤ t)

is the smallest σ-algebra with respect to which Xs is measurable for every
s ∈ [0, t].

One can interpret set A ∈ FXt as follows. By the time t the observer
knows if the set A has occurred or not.

To avoid problems with the measurability in the Theory of Lebesgue
Integration, the probability measures are defined on σ-algebras and consid-
ered random variables are assumed to be measurable with respect to these
σ-algebras.

X is a function of two variables (t, ω) and it is convenient to have the
following definitions of the measurability.

Definition 2.12. The stochastic process X = (Xt)t≥0 is called B(R+)⊗F -
measurable if for every A ∈ B(R), the set

{(t, ω)|t ∈ R+, ω ∈ Ω : Xt(ω) ∈ A}

belongs to the product σ-algebra B(R+)⊗F .

One can be more precise and say that the stochastic process is B(R+)⊗F -
measurable if ∀t ≥ 0 the mapping

(t, ω) 7→ Xt(ω) : (R+ × Ω,B(R+)⊗F)→ (R,B(R))

is measurable.
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The concept of measurability presented in the previous definition is rather
weak. Given the definition of the filtration we can define a stronger and more
interesting concept.

Definition 2.13. A stochastic process X is F-adapted if ∀t ≥ 0 Xt is F -
measurable.

Certainly, every process X is adapted to its natural filtration FX . Further-
more, if FX consists of all P-negligible sets and a process Y is a modification
of X then Y is also F-adapted. We can extend the previous study with the
definition of a progressive measurability as follows.

Definition 2.14. We say that a process X is progressively measurable if for
every A ∈ B(R) the set

{(s, ω)|s ≤ t, ω ∈ Ω : Xs(ω) ∈ A}

belongs to the product σ-algebra B([0, t])⊗Ft.

In other words, X is a progressively measurable stochastic process if ∀s ≥ 0
the mapping

(s, ω) 7→ Xs(ω) : ([0, t]× Ω,B([0, t])⊗Ft)→ (R,B(R+))

is B([0, t]) ⊗ Ft-measurable. Fr the further calculations it is necessary to
introduce the following lemma.

Lemma 2.1. Let Y be an integrable random variable defined on a probability
space (Ω,F ,P). Let (Ai)i∈N be a sequence of disjoint sets such that

⋃
i∈N Ai =

Ω. Then
EP(Y ) =

∑
i∈N

EP(Y |Ai)P(Ai). (2.1)

2.3 The Brownian filtration
In this section we will remind the definition of a standard Brownian motion

and make discussion about the Brownian filtration. In describing the Brow-
nian motion we put an accent on the fact that it is important to distinguish
different filtrations.

Definition 2.15. A standard, one-dimensional Brownian motion is a con-
tinuous adapted process B = (Bt,Ft)t≥0 defined on some probability space
(Ω,F ,P) with the properties that:
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i) B0 = 0 a.s.,

ii) for each t ≥ s ≥ 0, the increment Bt −Bs is independent of Fs,

iii) for each t ≥ s ≥ 0, the increment Bt −Bs is normally distributed with
mean 0 and variance t− s.

Consequently, the filtration F = (Ft)t≥0 is a part of the definition of a
Brownian motion. However, if it is not precise which filtration we are dealing
with but we know that B has stationary independent increments and that
Bt − Bs is normally distributed with mean 0 and variance t − s, then B =
(Bt,FBt )t≥0 is a Brownian motion. FB = (FB)t≥0 is Brownian motion’s
natural filtration. Moreover, it ∀t FBt ⊂ Ft and Bt − Bs is independent of
Fs then (Bt,Ft)t≥0 is also a Brownian motion. We mentioned before how to
construct the natural filtration FB = (FB)t≥0. We will study the definition
of an augmented filtration.

Firstly, we denote by FB a σ-algebra generated by a Brownian motion, i.e.

FB = σ(Bs, s ∈ R+).

We remind that FBt = σ(Bs, s ≤ t). We consider the following definition
of a collection of P-negligible sets relative to a σ-algebra F .

Definition 2.16. We say that N is a collection of P-negligible sets relative
to a σ-algebra F if for any set A ∈ N there exists a set B ∈ N such that
A ⊂ B and P(B) = 0.

Let us denote by N a collection of P-negligible sets relative to FBt . We
consider the following filtration.

Definition 2.17. In the previous notations we call F̃B = (F̃Bt )t≥0 an aug-
mentation of FB where ∀t F̃Bt = σ(FBt ∪N ).

From this definition we also get a σ-algebra F̃B. We can easily consider the
process B on the filtration (Ω, F̃B,P) and get that (Bt, F̃Bt )t≥0 is a Brownian
motion.
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We can define the usual conditions for a filtration.

Definition 2.18. We say that the filtration F satisfies the usual conditions
if it is complete and right-continuous.

Lemma 2.2. The augmented filtration F̃B = (F̃Bt )t≥0 satisfies the usual
conditions.

We will be only considering filtrations which satisfy the usual conditions.

2.4 Stopping times
In the Financial Mathematics it is essential to introduce the Stopping

Times Theory.

Let us consider an American option. The buyer of such a financial deriva-
tive can decide when to exercise it. The choice of such a moment, let us call
it τ , depends on the information about the stock price process up to time
t. Then the value of an American call at τ is (Sτ − K)+. When the agent
pricing the option knows which stopping time the buyer will follow the cost of
such a financial derivative at time 0 will be EP∗(exp(−rτ)(Sτ −K)+), where
P∗ is the equivalent martingale measure. However, if we do not know which
stopping time exactly will the observer use, he has to take the supremum.
Accordingly, the price of the contingent claim at time 0 will be

sup
τ

EP∗(exp(−rτ)(Sτ −K)+).

It is crucial to consider the following definition of a random time.

Definition 2.19. A random time T is a strictly positive P-a.s. random
variable.

It is essential to define an F-stopping time τ, which is an example of a
random time.

Definition 2.20. A random variable τ such that

τ : (Ω,F)→ (R+B(R+))

is called an F-stopping time if ∀t ≥ 0

{τ ≤ t} is F -measurable.
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Definition 2.21. XT = XT∧t is a process stopped at a stopping time T if

i) X is a stochastic process,

ii) T is a stopping time.

2.5 The Martingale Theory
In this section we present a fundamental characteristic which underlies

many important results in Finance, namely a martingale property. Its mo-
tivation lies in the notion of a fair game. Broadly speaking, the martingale
property states that tomorrow’s price is expected to be today’s and thus it
is its best prediction. The martingale condition is assumed to be essential
for an efficient market in which the information included in the past prices is
fully reflected in the current prices. Furthermore, the Fundamental Theorem
of Asset Prices states that if the market is arbitrage-free then discounted
assets prices are martingales under a risk-neutral measure.

Here, we give a formal definition of a martingale and more general processes
such as a submartingale and a supermartingale.

Definition 2.22. An adapted, integrable stochastic process M = (Mt)t≥0

on a filtered probability space (Ω,F ,F,P) is a

i) martingale if EP(Mt|Fs) = Ms ∀s ≤ t,

ii) submartingale if EP(Mt|Fs) ≥Ms ∀s ≤ t,

iii) supermartingale if EP(Mt|Fs) ≤Ms ∀s ≤ t.



Chapter 3

The default setting

3.1 Basic assumptions

We consider a probability space (Ω,F ,P) equipped with a filtration F =(Ft)t≥0,
where F fulfills the usual conditions, i.e. it is right-continuous and complete,
F0 is trivial σ-field. Let us specify that σ-algebra Ft represents a t-time
information available to the agent in the default-free market.

We can define default time τ as a R+-valued finite random variable on

(Ω,F ,P).

Let us determine the distribution of τ as a càdlàg function F such that
F (t) = P(τ ≤ t), where F (0) = 0 and lims→t F (s) = P(τ < t) = F (t−). F
defines a measure η which is the distribution of τ on R+, e.g.

η([a, b]) = F (b)− F (a−), [a, b] ∈ B(R+)

and
η(du) = P(τ ∈ du).

Assumption 3.1. Let us assume that η is absolutely continuous with respect
to the Lebesgue measure λ. Then, τ admits a Radon-Nikodým density fτ
such that

fτ =
dη

dλ
.

Moreover, if F is differentiable, then fτ = F ′.

15
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Remark 3.1. Let us now interpret P(τ ∈ du). This is a probability of τ being
in a small interval which we can denote also as (u, u+ du). We know that

P(τ ∈ (u, u+ du)) = F (u+ du)− F (u).

If F is continuously differentiable, then from the Taylor series we have that

F (u+ du) = F (u) + F ′(u)du

which gives us

F ′(u)du = P(τ ∈ (u, u+ du)) = P(τ ∈ du).

Then, since in this case the law η of τ has a density with respect to the
Lebesgue measure, the equality above becomes

P(τ ∈ du) = f(u)du.

In addition,

∀A ∈ B(R) P(τ ∈ A) =

∫
A

P(τ ∈ du) =

∫
A

η(du) =

∫
A

fτ (u)du.

3.2 The default process

We define a default process indicating whether the default occured or not as
N =(Nt)t≥0 where Nt = I{τ≤t} is càd and increasing. We denote H=(Ht)t≥0

as a natural filtration generated by N , i.e. Ht = σ(Nu, u ≤ t) and we
complete H with all P-negligible sets. The σ-algebra Ht represents the in-
formation generated by the observations of τ on the time interval [0, t]. It is
necessary to mention two main properties of the filtration H. First of all, H is
the smallest filtration such that τ is H-stopping time. Moreover, σ(τ) = H∞.

Let us now establish the form of an Ht-measurable random variable with
the following proposition.

Proposition 3.1. A random variable Ut is Ht-measurable if and only if it
is of the form

Ut(ω) = ũI{τ(ω)>t} + h(τ(ω))I{τ(ω)≤t},

where h is a Borel function on [0, t] and ũ is constant.
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Proof. We can base the proof on the fact that Ht-measurable random vari-
ables are generated by random variables of the form U0

t (ω) = h(t ∧ τ(ω)),
where h is a bounded Borel function on R+. Now we can specify h(t∧ τ(ω))
on before the default set and after the default set, i.e.

h(t ∧ τ(ω)) = h(t ∧ τ(ω))I{τ(ω)>t} + h(t ∧ τ(ω))I{τ(ω)≤t} =

= h(t)I{τ(ω)>t} + h(τ(ω))I{τ(ω)≤t}.

For a fixed t, h(t) is constant. We denote it as ũ and we have

Ut(ω) = ũI{τ>t} + h(τ(ω))I{τ(ω)≤t}.

Since we use function h only on the set {τ ≤ t} we can characterize the
function h as a Borel function on [0, t] without loss of generality.
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Chapter 4

The intensity-based approach in
filtration H

The intensity-based approach has a lot in common with the Reliability
Theory. Clearly, default time is precisely expressed by the likelihood of the
default event conditional on the information flow. These considerations help
us to deliver the reduced form of a price for a defaultable contingent claim.
Specifically, we assume that the agent pricing the contingent claim knows
only time of default. The assumption of the agent’s lack of knowledge about
the price process is crucial for the first glance at the valuation.

Let τ , as defined before, be a positive random variable on the probabil-
ity space (Ω,F ,P). Firstly, we study the distribution function F (t) of τ
which is absolutely continuous with respect to the Lebesgue measure. In this
case we can easily compute the intensity function which is a non-negative
deterministic function defined as follows.

4.1 The H-intensity of τ
In this section we give the definitions of H-intensity of default time τ

and deliver the expectation tools which are essential for pricing defaultable
claims.

4.1.1 The intensity of default

Let us define more formally an intensity of default time.

Definition 4.1. An intensity of default time is a ratio of the probability
that default will appear in a infinitely small time interval ∆s, condition on

19
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that there was no default before, and the time step ∆s, i.e.

λs = lim
∆s→0

P(τ ∈ (s, s+ ∆s)|τ > s)

∆s
.

Consequently, from the Reliability Theory, we can obtain the following
form of the intensity.

Proposition 4.1. λs = fτ (s)
1−F (s)

is the intensity function for a default time τ .

Proof. Let us assume that the distribution function of τ is absolutely con-
tinuous with respect to the Lebesgue measure. From the definition we have
that

λs = lim
∆s→0

P(τ ∈ (s, s+ ∆s)|τ > s)

∆s
.

Using the definition of the conditional probability we can write

λs = lim
∆s→0

P({τ ∈ (s, s+ ∆s)} ∩ {τ > s})
P(τ > s)∆s

.

We have that

{ω : τ(ω) ∈ (s, s+ ∆s)} ∩ {ω : τ(ω) > s} = {ω : τ(ω) ∈ (s, s+ ∆s)} .

Thus, we can write

λs = lim
∆s→0

P({τ ∈ (s, s+ ∆s)})
P(τ > s)∆s

.

From the definition of the distribution function F (t) of τ and the fact that
F (t) is absolutely continuous it follows that

λs = lim
∆s→0

F (s+ ∆s)− F (s)

P(τ > s)∆s
=

fτ (s)

1− F (s)
.

Recall that we introduced the intensity function for default time τ . Since
we defined the default process N =(Nt)t≥0 with Nt = I{τ≤t} and the filtra-
tion H is generated by the default process we can formulate the following
definition.

Definition 4.2. An H-adapted non-negative process

λ = (λt)t≥0

is called anH-intensity of τ if (I{τ≤t}−
∫ t

0
λuI{τ≥u}du)t≥0 is an (P,H)-martingale.



Pricing and Hedging of Defaultable Models 21

Here, we give a proposition which is essential in delivering the expectation
tools for pricing defaultable claims.

Proposition 4.2. Let ζ be an F-measurable random variable, then

EP(ζ|Ht) = I{τ>t}
EP(ζI{τ>t})
P(τ > t)

+ I{τ≤t}EP(ζ|H∞).

Proof. Since ζ is an F -measurable random variable, we can represent

EP(ζ|Ht)

on two sets {τ ≤ t} and {τ > t} in the following way

EP(ζ|Ht) = I{τ>t}EP(ζ|Ht) + I{τ≤t}EP(ζ|Ht).

Firstly, let us study the first term on the right-hand side of the last equation.
Then using the properties of conditional probability with respect to σ-algebra
Ht we have

I{τ>t}EP(ζ|Ht) = I{τ>t}I{τ>t}
EP(ζI{τ>t})
P(τ > t)

+ I{τ>t}I{τ≤t}
EP(ζI{τ≤t})
P(τ ≤ t)

.

We see that the second term on the right-hand side vanishes and we obtain

I{τ>t}EP(ζ|Ht) = I{τ>t}
EP(ζI{τ>t})
P(τ > t)

.

Secondly, let us ponder the term

I{τ≤t}EP(ζ|Ht).

To prove that
I{τ≤t}EP(ζ|H∞) = I{τ≤t}EP(ζ|Ht)

we use the fact that
H∞ = σ(Ns, s ∈ R+)

and
∀A ∈ H∞ A ∩ {τ ≤ t} ∈ Ht.

From the properties of the conditional expectation we have∫
A

EP(ζI{τ≤t}|H∞)dP =

∫
A

ζI{τ≤t}dP,
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which is also equal to ∫
A∩{τ≤t}

ζI{τ≤t}dP.

Again, using the property of the conditional expectation we obtain∫
A

EP(ζI{τ≤t}|H∞)dP =

∫
A∩{τ≤t}

EP(ζI{τ≤t}|Ht)dP,

which can be written as ∫
A

I{τ≤t}EP(ζ|Ht)dP.

Finally, we obtain the result∫
A

EP(ζI{τ≤t}|H∞)dP =

∫
A

EP(I{τ≤t}ζ|Ht)dP.

We give a lemma concerning previously defined intensity of τ.

Lemma 4.1. A process λ = (λt)t≥0, where

λt =
fτ (t)

1− F (t)

is an H-intensity of τ .

Proof. The process

λt =
fτ (t)

1− F (t)

is deterministic and non-negative. Thus it is H-adapted.
Now, we will check that M =(Mt)t≥t with

Mt =
(
I{τ≤t} −

∫ t

0

λuI{τ≥u}du
)

is a (P,H)-martingale.
Let us assume that s < t.

We will show that
EP(Mt −Ms|Hs) = 0
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Using the previous notations and the additive property of integrals we obtain

EP(Mt −Ms|Hs) = EP(Nt −Ns|Hs)− EP

(∫ t

s

λuI{τ≥u}du|Hs

)
.

We will show that

EP(Nt −Ns|Hs) = EP

(∫ t

s

λuI{τ≥u}du|Hs

)
.

Let us use the fact that

EP(I{τ>t}|Hs) = P(τ > t|Hs).

Then, we can rewrite the right-hand side of the last equality on two sets,
{τ ≤ s} and {τ > s}, and use the definition of the conditional probability to
obtain

P(τ > t|Hs) = I{τ>s}
P(τ > t, τ > s)

P(τ > s)
+ I{τ≤s}

P(τ > t, τ ≤ s)

P(τ ≤ s)
.

We easily see that the second term on the right-hand side of the last equation
vanishes. We have that

{τ > t} ∩ {τ > s} = {τ > t} .

Thus we have

EP(I{τ>t}|Hs) = I{τ>s}
1− F (t)

1− F (s)
.

We have that

EP(Nt −Ns|Hs) = I{τ>s}
F (t)− F (s)

1− F (s)
.

Let us denote

J =

∫ t

s

λuI{τ≥u}du.

Then we can write

J =

∫ t∧τ

s∧τ
λudu.

Knowing that

λt =
fτ (t)

1− F (t)
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we get

J = ln
1− F (s ∧ τ)

1− F (t ∧ τ)
.

As previously, we can study J on two sets, before and after the default and
get

J = I{τ>s} ln
1− F (s ∧ τ)

1− F (t ∧ τ)
+ I{τ≤s} ln

1− F (s)

1− F (s)
.

Consequently, we get

J = I{τ>s} ln
1− F (s ∧ τ)

1− F (t ∧ τ)
.

Thus
J = JI{τ>s}.

Now, we use the Proposition 4.2 and calculate the conditional expectation of
J .

EP(J |Hs) = I{τ>s}
EP(JI{τ>s})
P(τ > t)

+ I{τ≤s}EP(J |H∞).

Due to the fact that
J = JI{τ>s}

we get

EP(J |Hs) = I{τ>s}
EP(J)

P(τ > s)
.

Using the definition of J and λu we get

EP(J |Hs) = I{τ>s}
EP(
∫ t
s
λuI{τ≥u}du)

P(τ > s)
.

We can take the expectation operator inside the integral and get

I{τ>s}

∫ t
s
λuEP(I{τ≥u})du

1− F (s)
.

From the fact that
EP(I{τ≥u}) = P(τ ≥ u)

we obtain

I{τ>s}

∫ t
s
λuP(τ ≥ u)du

1− F (s)
.
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Consequently, from the form of the function λu we get

I{τ>s}

∫ t
s
fτ (u)

1− F (s)
du,

which is equal to

I{τ>s}
F (t)− F (s)

1− F (s)
.

Finally,

EP(Nt −Ns|Hs) = EP

(∫ t

s

λuI{τ≥u}du|Hs

)
⇒
(
I{τ≤t} −

∫ t

0

λuI{τ≥u}du
)
t≥0

is a (P,H)-martingale.

Using those results we can value a defaultable zero-coupon bond which pays
1 if the default has not appeared before maturity time T . Let us consider
a case when default time τ is exponentially distributed with a deterministic
intensity function λs.

Proposition 4.3. Expected value of this contingent claim for an agent who
knows only that the default is exponentially distributed, is

EP(I{τ>T}|Ht) = I{τ>t} exp
(
−
∫ T

t

λsds
)
.

Proof. We use the Proposition 4.2. Firstly, we realize that I{τ>T} is an HT -
measurable random variable. We have

EP(I{τ>T}|Ht) = I{τ>t}
EP(I{τ>t}I{τ>T})

P(τ > t)

Using the property that
EP(IA) = P(A)

and the fact that τ is exponentially distributed we obtain

EP(I{τ>T}|Ht) = I{τ>t} exp
(
−
∫ T

t

λsds
)
.
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4.1.2 The hazard function Γ

In this section we define a survival and hazard function which are frequently
used further. We begin with the assumption necessary for those functions to
be well defined.

Assumption 4.1. We assume that ∀ t ≥ 0 F (t) < 1.

Definition 4.3. We say that G(t) = 1 − F (t) is a survival function of τ if
F (t) ∀t ≥ 0 is a distribution function of τ .

From the Assumption above we have that ∀t ≥ 0 G(t) : R → (0, 1] because
∀t ≥ 0 F (t) : R → [0, 1). In the default framework we have that the survival
function for τ is given by the following formula

G(t) = P(τ > t).

From the fact that ∀t ≥ 0 G(t) > 0 we can take a natural logarithm of G(t)
and define a hazard function for τ .

Definition 4.4. We call a function Γ(t) = − ln(G(t)) a hazard function of
τ , where G(t) is a survival function for τ ∀t ≥ 0.

If F (u) is differentiable we can approximate it by dF (u) = F ′(u)du. With
the analogical argumentation we get dΓ(u) = Γ′(u)du. We can write the
hazard function in a form as follows.
Proposition 4.4.

Γ(t) =

∫ t

0

dF (s)

G(s)

is a hazard function ∀t ≥ 0.

Proof. We have

Γ(t) =

∫ t

0

dF (s)

G(s)
=

∫ t

0

dF (s)

1− F (s)
.

We can easily obtain the result after realizing that the nominator of the
fraction inside the integral is a derivative of the denominator but without
the minus sign. By the formula∫ t

0

dV (s)

V (s)
= ln(V (t))− ln(V (0))

and the fact that G(0) = 1 we end the proof.
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From this form of the hazard function it is obvious that Γ(t) satisfies the
following property.

Proposition 4.5. The hazard function Γ(t) of τ is increasing.

Proof. From the definition of an integral and the fact that if the integrand
does not change but we integrate on a larger interval the integral will be
greater. More formally, ∀s < t

Γ(s) =

∫ s

0

dF (u)

G(u)
<

∫ t

0

dF (s)

G(s)
= Γ(t).

In the case when F (t) is continuous and has a derivative F ′(t) = fτ (t) we
can write the hazard function of τ as

Γ(t) =

∫ t

0

fτ (s)

G(s)
ds.

Consequently, the derivative of Γ(t) is

Γ′(t) =
(∫ t

0

fτ (s)

G(s)
ds
)′

=
fτ (t)

G(t)
.

Definition 4.5. We will call the derivative of Γ an H-generalized intensity
of τ if (

I{τ≤t} − Γ(t ∧ τ)
)
t≥0

is a (P,H)-martingale.

Let us introduce and prove the following proposition which is important
for further calculations.

Proposition 4.6. Let h(τ) be a Borel function (i.e. h(τ) is σ(τ)-measurable
random variable). Then

EP(h(τ)|Ht) = I{τ>t}
EP(h(τ)I{τ>t})

P(τ > t)
+ I{τ≤t}h(τ).

Proof. We mentioned before that σ(τ) = H∞. According to the Proposition
4.2 we have

EP(h(τ)|Ht) = I{τ≤t}EP(h(τ)|H∞) + I{τ>t}
EP(h(τ)I{τ>t})

P(τ > t)
.

From the fact that h(τ) is an H∞-measurable random variable we get

EP(h(τ)|Ht) = I{τ>t}
EP(h(τ)I{τ>t})

P(τ > t)
+ I{τ≤t}h(τ).
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Let us study a zero-coupon defaultable contingent claim that pays h(τ) if
the default has not appeared before the maturity time T . We assume that
the spot rate r(s) ≡ 0. It is natural to reckon such a payoff because the
agent pricing the claim knows that it is a defaultable one and he studies the
payoff as a Borel function of τ . Here, we do not assume that the distribution
function F of τ is absolutely continuous but we assume it is continuous.

Proposition 4.7. The expected value of this derivative in the case of the
knowledge only about the default time distribution is

EP(h(τ)I{τ>T}|Ht) = I{τ>t} exp(Γ(t))

∫ ∞
T

h(u)dF (u).

Proof. From the Proposition 4.6 we induce

EP(h(τ)I{τ>T}|Ht) = I{τ>t}
EP(h(τ)I{τ>T}I{τ>t})

P(τ > t)
+ I{τ≤t}I{τ>T}h(τ).

The second term of the right-hand side of the equation above vanishes as well
as the indicator I{τ>t} in the second term. From the definition of expected
value we obtain

EP(h(τ)I{τ>T}|Ht) = I{τ>t}

∫
R h(u)I{u>T}dF (u)

1− F (t)
.

Using the correlation between F and Γ we obtain

EP(h(τ)I{τ>T}|Ht) = I{τ>t}
∫ ∞
T

h(u)
1− F (u)

1− F (t)
dΓ(u).

Substituting the terms with F by the terms with Γ we get

EP(h(τ)I{τ>T}|Ht) = I{τ>t} exp(Γ(t))

∫ ∞
T

h(u) exp(−Γ(u))dΓ(u).

Finally, after coming back to the terms with F we obtain

EP(X(τ)I{τ>T}|Ht) = I{τ>t} exp(Γ(t))

∫ ∞
T

h(u)dF (u)
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Now, let us derive a value similar to that one in the Proposition 4.3 but
without any assumption about the distribution of τ except this one that the
distribution is continuous. We consider a defaultable zero-coupon financial
derivative which pays 1 if the default has not appeared before the maturity
time T . We assume that the spot rate r(s) ≡ 0.

Proposition 4.8. The expected value of the payoff for an agent who observes
default when it occurs is

EP(I{τ>T}|Ht) = I{τ>t} exp(−[Γ(T )− Γ(t)]).

Proof. From the Proposition 4.7 we have

EP(I{τ>T}|Ht) = I{τ>t} exp(Γ(t))

∫ ∞
T

dF (u).

From the definition of the improper integral we induce

I{τ>t} exp(Γ(t))

∫ ∞
T

dF (u) = I{τ>t} exp(Γ(t)) lim
v→∞

∫ v

T

dF (u).

Then, after calculating the integral, taking the limit and writing F in terms
of Γ, we obtain the result

EP(I{τ>T}|Ht) = I{τ>t} exp(−[Γ(T )− Γ(t)]).

Let us assume that there exists a deterministic spot rate r(s). Then the
present value (at time t) of a zero-coupon bond which pays 1 when the default
has not appeared before maturity time T is

exp
(
−
∫ T

t

r(s)ds
)
,

where t ∈ [0, T ]. Let us study a firm which issues a zero-coupon bond which
pays 1 at the maturity time T when the default has not appeared before T .
On this financial market we have the following.

Proposition 4.9. We assume that τ admits an H-intensity λs. Then, the
expected value at time t of described contingent claim calculated by an agent
who has the information Ht is

EP(exp(−
∫ T

t

r(s)ds)I{τ>T}|Ht) = I{τ>t} exp(−
∫ T

t

(r(s) + λs)ds).
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Proof. We can take the deterministic part outside the integral and obtain
after taking under consideration the Proposition 4.8 that the left-hand side
is equal to

exp
(
−
∫ T

t

r(s)ds
)
I{τ>t} exp

(
− [Γ(T )− Γ(t)]

)
.

We can take
exp

(
− [Γ(T )− Γ(t)]

)
inside the integral and obtain

I{τ>t} exp
(
−
∫ T

t

(
r(s)ds− [Γ(T )− Γ(t)]

))
.

From the fact that τ admits a H-intensity λs and Γ′(s) = λs we get

I{τ>t} exp
(
−
∫ T

t

(
r(s) + Γ′(s))ds

))
.

Consequently,

EP

(
exp

(
−
∫ T

t

r(s)ds
)
I{τ>T}|Ht

)
= I{τ>t} exp

(
−
∫ T

t

(
r(s) + λs

)
ds
)
.

However, we should not treat the last result as an actual price for a de-
faultable zero-coupon bond. This is because we are calculating it under the
initial measure P. What is more, it is impossible to hedge this default. We
can only use this value to see that the default might act as a change in the
interest rate r(s). The expected value calculated at time t of a contingent
claim H under the condition that the default has not appeared before time
T is

EP

(
H exp

(
−
∫ T

t

r(s)ds
)
I{τ>T}|Ht

)
.

This was the case when H was dependent on τ.

Proposition 4.10. If ζ is independent of default time τ then

EP

(
ζ exp

(
−
∫ T

t

r(s)ds
)
I{τ>T}|Ht

)
= I{τ>t} exp

(
−
∫ T

t

(r(s)+λs

)
ds
)
EP(ζ).
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Proof. We can take the exponent outside the expected value and obtain

EP

(
ζ exp

(
−
∫ T

t

r(s)ds
)
I{τ>T}|Ht

)
= exp

(
−
∫ T

t

r(s)ds
)
EP

(
ζI{τ>T}|Ht

)
.

Then, using the fact that I{τ>T} is Ht-measurable we can also take the in-
dicator function outside and from the independence ζ of τ , we obtain the
independence ζ of Ht and get

EP(ζ) exp
(
−
∫ T

t

r(s)ds
)
I{τ>t} exp

(
− [Γ(T )− Γ(t)]

)
.

Finally, analogically to the proof of the Proposition 4.9, we obtain the result

EP

(
ζ exp

(
−
∫ T

t

r(s)ds
)
I{τ>T}|Ht

)
= I{τ>t} exp

(
−
∫ T

t

(r(s)+λs)ds
)
EP(ζ).
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Chapter 5

The Carthaginian enlargement of
filtrations

5.1 Introduction
To add the information about the default to the filtration generated by

the price process, we have to enlarge it by a positive random variable which
is default time τ . It can be done in two different manners: initially, i.e.
from the beginning with the corresponding information σ(τ) or progressively
with σ(τ ∧ t). The procedure of enlargement lets us to obtain three nested
filtrations, hence it was called Carthaginian Enlargement of Filtrations. The
adjective "Carthaginian" was first introduced by Callegaro, Jeanblanc and
Zargari (see [2]) and it refers to three levels of different civilizations which
can be found at the archaeological site of Carthage.

The initially enlarged filtration Gτ = (Gτt )t≥0 is generated by σ-algebras of
the form Gτt = Ft∨σ(τ). More generally Gτt = Ft∨ F̃ , where F̃ is σ-algebra.

The progressively enlarged filtrationG = (Gt)t≥0 is generated by σ-algebras
of the form Gt = Ft ∨ Ht, where H is the natural filtration of the default
process N =(Nt)t≥0 with Nt = I{τ≤t}. More generally Gt = Ft ∨ F̃t, where
F̃ = (F̃t)t≥0 is the natural filtration generated by additional process. Usually
we consider the right-continuous version of G, namely

∀t ≥ 0 Gt = Gt+ =
⋂
s>t

Fs ∨Hs.

The three acquired filtrations represent different sources of information
available to the investors. The Enlargement of Filtrations Theory plays very
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important role in modelling additional gain due to such asymmetric informa-
tion as well as information itself.

In the previous chapter we introduced the intensity approach in filtration
H. Hereafter, some of the results for progressively enlarged filtration are also
obtained using this approach. Nonetheless, the intensity process allows for
a knowledge of the default conditional distribution only before the default.
Thus, we have to consider density approach which gives the full characteri-
zation of the links between the default time and the filtration generated by
the price process before and after the default.

5.2 General projection tools

Working in the initially enlarged filtration is easier since the whole infor-
mation concerning the default is possessed by the insider from the beginning.
However, we would like to represent the obtained results in terms of the pro-
gressively enlarged filtration so that they are accessible to the regular investor
as well. Thus, we have to establish some projection tools. Let us introduce a
following proposition determining a method of projecting martingale adapted
to some arbitrary filtration on the smaller filtration.

Proposition 5.1. [2] Let K and K̃ be filtrations such that K ⊂ K̃ and let
ζ =(ζt)t≥0 be uniformly integrable (P,K)-martingale.

Then, there exists an (P, K̃)-martingale ζ̃ = (ζ̃t)t≥0 such that

EP(ζ̃t|Kt) = ζt, t ≥ 0.

Proof. From ζ being a uniformly integrable (P,K)-martingale it follows that
P-a.s.

ζt = EP(ζ∞|Kt).

We define ζ̃t as EP(ζ∞|K̃t). Let us check that it is a (P, K̃)-martingale.
For any s ≤ t we have that

EP(ζ̃t|K̃s) = EP(EP(ζ∞|K̃t)|K̃s).

Applying the tower property we obtain P-a.s.

EP(EP(ζ∞|K̃t)|K̃s) = EP(EP(ζ∞|K̃s)|K̃t) = EP(ζ∞|K̃s) = ζ̃s
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and hence the martingale property.
Let us now prove that EP(ζ̃t|Kt) = ζt. Indeed, from the uniform integrability
and the tower property we obtain that

ζt = EP(ζ∞|Kt) = EP(EP(ζ∞|Kt)|K̃t) = EP(EP(ζ∞|K̃t)|Kt) = EP(ζ̃t|Kt).

5.3 Measurability properties in enlarged filtra-
tions

Let us now introduce some important results on the characterization of
the random variables measurable with respect to the filtrations Gτ and G.
We begin with the representation of a Gτt -measurable random variable.

Proposition 5.2. [2] A random variable Zt is Gτt -measurable if and only if
it is of the form

Zt(ω) = zt(ω, τ(ω)),

where ∀t ≥ 0 zt(·, τ(·)) is a Ft ⊗ B(R+)-measurable random variable.

For the proof see [2].

Let us now give the analogous results about the representation of a Gt-
measurable random variable.

Proposition 5.3. [2] A random variable Xt is Gt-measurable if and only if
it is of the form

Xt(ω) = ỹt(ω)I{τ(ω)>t} + ẑt(ω, τ(ω))I{τ(ω)≤t},

where ỹt is an Ft-measurable random variable and (ẑt(ω, u)ω∈Ω,u∈R)t≥u is a
family of Ft ⊗ B(R+)-measurable random variables.

Proof. Gt-measurable random variables are generated by the random vari-
ables of the form X0

t (ω) = yt(ω)h(t ∧ τ(ω)), where yt is an Ft-measurable
random variable and h is a Borel function on R+. Specifying X0

t (ω) on before
and after the default set we obtain

X0
t (ω) = yt(ω)h(t ∧ τ(ω))I{τ(ω)>t} + yt(ω)h(t ∧ τ(ω))I{τ(ω)≤t},

which is equal to

yt(ω)h(t)I{τ(ω)>t} + yt(ω)h(τ(ω))I{τ(ω)≤t}.
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We can replace yt(ω)h(t) with the Ft-measurable random variable ỹt(ω).
What is more, it is well known that the measurable function of two variables
can be approximated by the sum of the products of one variable measurable
functions, i.e.

f(x, y) = lim
N→∞

N∑
i=1

hi(x)gi(y).

where in this case x ∈ Ω and y ∈ R+. The random variable yt(ω)h(τ(ω))
is measurable with respect to the σ-algebra Ft ⊗ B(R+) and the sum of
random variables of such form is also measurable with respect to Ft⊗B(R+).
Then, by passing to the limit with N → ∞, we obtain that the random
variable ẑt(·, τ(·)) which is an approximation of functions as in (5.3) is also
an Ft ⊗ B(R+)-measurable random variable. Finally we have that

Xt(ω) = ỹt(ω)I{τ(ω)>t} + ẑt(ω, τ(ω))I{τ(ω)≤t}.

5.4 The E-hypothesis
Let us consider now the crucial assumption which will be in force through-

out the rest of our thesis. It is called E-hypothesis.

Hypothesis 5.1. (E-hypothesis) We suppose that ∀t ≥ 0, P-a.s.

P(τ ∈ du|Ft) ∼ η(du),

i.e. the F-conditional law of τ is equivalent to the law of τ .

As a result, there exists a strictly positive Ft⊗B(R+)-measurable function
(t, ω, u) 7→ qt(ω, u), such that for every u ≥ 0, (qt(u))t≥0 is (P,F)-martingale
and

P(τ > θ|Ft) =

∫ ∞
θ

qt(u)η(du) ∀t ≥ 0, P− a.s.

or equivalently

EP(Zt|Ft) = EP(zt(τ)|Ft) =

∫ ∞
0

zt(u)qt(u)η(du),

for any Ft ⊗ B(R+)-measurable random variable Zt = zt(τ). The family of
the processes q(u) is called the (P,F)-conditional density of τ with respect
to η. In particular,

P(τ > θ) = P(τ > θ|F0) =

∫ ∞
θ

q0(u)η(du) and q0(u) = 1,∀u ≥ 0.
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Remark 5.1. One can consider a particular case when ∀u ≥ 0

qt(u) = qu(u), ∀t ≥ u dP− a.s.

It means that
P(τ > s|Ft) = P(τ > s|Fs), 0 ≤ s ≤ t

and new information does not change the conditional distribution of τ .

In the structural approach introduced by Merton τ is an F-stopping time.
In the reduced-form approach which we work with this property is no longer
fulfilled. Let us now present a proposition which shows that under the special
assumption concerning the measure η, τ avoids F-stopping times.

Assumption 5.1. We assume that the law of τ is non-atomic.

Proposition 5.4. [3] The Assumption 5.1 and the Hypothesis 5.1 are satis-
fied. Then, we have for every F-stopping time ξ bounded by T that

P(τ = ξ) = 0.

Proof. From the tower property we have

P(τ = ξ) = EP(I{τ=ξ}) = EP(EP(I{τ=ξ})|Ft) = EP(EP(I{τ=ξ}|Ft)).

Let us prove firstly that EP(I{τ=ξ}|Ft) = 0. Again, using the tower property

EP(I{τ=ξ}|Ft) = EP(EP(I{τ=ξ}|Ft)|FT ) = EP(EP(I{τ=ξ}|FT )|Ft).

Since τ admits the conditional density we can write that

EP(EP(I{τ=ξ}|FT )|Ft) = EP

(∫ ∞
0

I{u=ξ}qt(u)η(du)|Ft
)
.

The integral
∫∞

0
I{u=ξ}qt(u)η(du) is a Lebesgue integral with respect to the

measure η for each fixed ω. Since the measure η is non-atomic, η({ξ(ω)}) = 0,
the mentioned integral is also equal to 0, as well as its conditional expectation.
Thus,

EP

(
I{τ=ξ}|Ft

)
= 0

and
P(τ = ξ) = 0.
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5.5 The change of measure on Gτ

Due to the fact that working with τ independent of the prices filtration
F is easier we have to introduce a decoupling measure which provides this
property.

Proposition 5.5. [2] Let us suppose that E-hypothesis holds. There exists a
process L = (Lt)t≥0 with Lt = 1

qt(τ)
and EP(Lt) = L0 = 1 which is a strictly

positive (P,Gτ )-martingale and thus defines a probability measure P∗ - locally
equivalent to P such that

dP∗|Gτt = LtdP|Gτt , i.e. ∀A ∈ Gτt P∗(A) =

∫
A

LtdP.

The martingale L is called the Radon-Nikodým density of P∗ with respect to
P.

The measure P∗ has the following properties

i) Under P∗, the random time τ is independent of Ft, ∀ t ≥ 0;

ii) ∀ t ≥ 0 P∗|Ft = P|Ft ;

iii) P∗|σ(τ) = P|σ(τ);

iv) P∗(τ ∈ du|Ft) = P∗(τ ∈ du);

v) (P∗,F)-martingales remain (P∗,Gτ )-martingales.

For the proof of the proposition and the properties, see [2] and [4].

The following lemma presents the Bayes formula which plays a crucial role
in the proof of the next proposition.

Lemma 5.1. [4] We assume that E-hypothesis holds, the measures P and
P∗ are equivalent on Gτt and Yt - an Ft-measurable, P∗-integrable random
variable. Then, for any s < t

EP∗(Yt|Gτs ) =
EP(LtYt|Gτs )

Ls
,

where L is a Radon-Nikodým density of P∗ with respect to P.
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Proof. Let us denote ζ as EP(LtYt|Gτs )
Ls

. We will show that ζ is a Gτs -conditional
expectation of Yt under the measure P∗. We have that

EP∗(Yt|Gτs ) = ζ.

Let us modify firstly this condition. If we multiply both sides by a Gτs -
measurable random variable Ỹs, as a result we get

EP∗(ỸsYt|Gτs ) = Ỹsζ.

We take the expectation with respect to P∗, again on both sides, and apply
the tower property on the left-hand side to obtain

EP∗(ỸsYt) = EP∗(Ỹsζ). (5.1)

We transformed (5.1) to the equality above. Therefore, to prove (5.1) we can
show that (5.1) is fulfilled. Starting from the left-hand side and changing the
measure, we obtain

EP∗(ỸsYt) = EP(LtỸsYt),

since ỸsYt is Gτt -measurable. Then, we condition on Gτs and we use the tower
property. Therefore, we have that

EP(LtỸsYt) = EP(EP(LtỸsYt|Gτs )).

Since Ỹs is Gτs -measurable, we can take it outside the conditional expectation.
ỸsEP(LtYt|Gτs ) is a Gτs -measurable random variable so we can, again, change
the measure to obtain

EP(ỸsEP(LtYt|Gτs )) = EP∗(L
−1
s ỸsEP(LtYt|Gτs )).

Replacing
L−1
s EP(LtYt|Gτs )

with ζ, we get that
EP∗(ỸsYt) = EP∗(Ỹsζ)

and we proved (5.1) which is equivalent to (5.1) being satisfied.

Let us now analyse the proposition which allows to transform a Gτt -expected
value to an Ft-expected value under the decoupling measure.

Proposition 5.6. [2] Let Zt = zt(τ) be Gτt -measurable. For s ≤ t, if zt(τ) is
P∗-integrable and if zt(u) is P (or P∗)-integrable for any u ≥ 0 then,

EP∗(zt(τ)|Gτs ) = EP∗(zt(u)|Fs)|u=τ = EP(zt(u)|Fs)|u=τ P (or P∗)-a.s.

See [2] for the proof.
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Finally, using the proposition above, we prove in the following proposition
that the filtration Gτ inherits the right-continuity from the filtration F.

Proposition 5.7. [4] Let us assume that the Hypothesis 5.1 is satisfied.
Then,

∀t ∈ [0, T ) Gτt = Gτt+ (5.2)

Proof. To prove that (5.2) is satisfied we have to show that any Gτt+-measurable
random variable is Gτt -measurable.

At the beginning, let us fix t ∈ [0, T ) and δ ∈ (0, T − t) which preserves
δ + t being in the interval (t, T ). The proof will be done according to the
following plan.

i) Firstly, we prove that Gτt+-conditional expectation of the random vari-
able Z0

t+δ = yt+δh(τ) (where ∀t ≥ 0 yt is Ft-measurable and h is a
bounded Borel function on R+) is the same as a Gτt -conditional expec-
tation.

ii) Then, we extend the obtained result to any Gτt+δ-measurable random
variable Zt+δ.

iii) Finally, we use ii) to show that any Gτt+-measurable random variable is
also Gτt -measurable.

i) Let us assume that we are working at the beginning under the decou-
pling measure P∗, i.e. τ is independent of the filtration F. ∀ε ∈ (0, δ)
we get

EP∗(Z
0
t+δ|Gτt+) = EP∗(yt+δh(τ)|Gτt+).

Since Gτt+ =
⋂
ε>0 Gτt+ε =

⋂
ε>0F τt+ε ∨ σ(τ) and h(τ) is σ(τ)-measurable

we have
EP∗(yt+δh(τ)|Gτt+) = h(τ)EP∗(yt+δ|Gτt+).

Using the tower property and the fact that ∀ε > 0,
⋂
ε>0 Gτt+ε ⊂ Gτt+ε

we obtain that

h(τ)EP∗(yt+δ|Gτt+) = h(τ)EP∗(EP∗(yt+δ|Gτt+ε)|Gτt+).

From the Proposition 5.6 and the definition of Gτt+ε as Ft+ε ∨ σ(τ) it
follows that

EP∗(yt+δ|Gτt+ε) = EP∗(yt+δ|Ft+ε)|u=τ = (yt+δ)|u=τ = yt+δ = EP∗(yt+δ|Ft+ε).
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From the right-continuity of F we get that

lim
ε→0

EP∗(yt+δ|Ft+ε) = EP∗(yt+δ|Ft)

and

lim
ε→0

[h(τ)EP∗(EP∗(yt+δ|Ft+ε)|Gτt+)] = h(τ)EP∗(EP∗(yt+δ|Ft)|Gτt+).

Since ∀ t ≥ 0, Gτt+ ⊃ Gτt ⊃ Ft, we can omit the conditional expectation
with respect to σ-algebra Gτt+ and in the result we obtain that

h(τ)EP∗(yt+δ|Ft).

Now from the independence of τ and F we can replace Ft by Gτt and
put h(τ) inside the conditional expectation what follows that

h(τ)EP∗(yt+δ|Ft) = EP∗(h(τ)yt+δ|Gτt ) = EP∗(Z
0
t+δ|Gτt ).

As a result, we obtained that

EP∗(Z
0
t+δ|Gτt+) = EP∗(Z

0
t+δ|Gτt ).

ii) Since the property is fulfilled for the random variables Z0
t+δ of the form

yt+δh(τ), which are Ft+δ ⊗ B(R+), using the property of the mathe-
matical expectation, we can state that (5.7) is satisfied for the sum
of such variables. From the Proposition 5.2 which establishes form of
Gτt+δ-measurable random variable and by passing to the limit, we obtain
that (5.7) is satisfied for any Gτt+δ-measurable random variable Zt+δ.

iii) Since Gτt+δ ⊃ Gτt+ε ⊃
⋂
ε>0 Gτt+ε = Gτt+ we can apply the result from ii)

to any Gτt+-measurable random variable Zt+, hence

Zt+ = EP∗(Zt+|Gτt+) = EP∗(Zt+|Gτt ).

Since P∗ ∼ P and G0 contains all P-negligible events, Zt+ is also Gt-
measurable.
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5.5.1 The survival process under measure P and P∗

Let us finally introduce the conditional survival process R applying the
density approach under the measure P and P∗. More precisely,

Rt := P(τ > t|Ft) =

∫ ∞
t

qt(u)η(du),

R∗t := P∗(τ > t|Ft) =

∫ ∞
t

η(du).

The form of Rt is straightforward while the form of R∗t requires more detailed
explanation. Due to the properties of the measure P∗ in relation with the
measure P (see section 5.5) we have

P∗(τ > t|Ft) = P∗(τ > t)

and

P∗(τ > t) = P∗(τ > t|F0) = P(τ > t|F0) = P(τ > t) =

∫ ∞
t

η(du).

As a result we obtained that

P∗(τ > t|Ft) =

∫ ∞
t

η(du).

Remark 5.2. Properties of the process R

i) (R∗)t≥0 is a deterministic, continuous and decreasing function;

i) (Rt)t≥0 is an (P,F)-supermartingale (called Azéma supermartingale).
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The initial enlargement
framework

In this chapter we explore some propositions concerning the expectation tools
and the martingales characterization in the initially enlarged filtrations. We
assume that the Hypothesis 5.1 is satisfied throughout the entire chapter and
we show finally that it is a sufficient condition for the defaultable market to be
arbitrage-free for the agent with initially enlarged filtration as an information
flow. Let us introduce firstly an auxiliary lemma which will be used in the
proofs below.

Lemma 6.1. [2] Let Zt = zt(τ) be a Gτt -measurable, P-integrable random
variable and

zt(τ) = 0 P− a.s.

Then, for η-a.e. u ≥ 0,
zt(u) = 0 P− a.s.

Proof. Since zt(τ) is integrable, EP(|zt(τ)|) <∞. On the other hand, zt(τ) =
0 P-a.s. Therefore, if we put the conditional expectation on both sides and
apply the tower property thereafter, we will obtain that

EP(zt(τ)) = EP(0) = 0

and
0 = EP(zt(τ)) = EP(EP(zt(τ))|Ft) = EP(EP(zt(τ)|Ft)).

From the Hypothesis 5.1 we obtain that

EP(EP(zt(τ)|Ft)) = EP

(∫ ∞
0

|zt(u)|qt(u)η(du)

)
43
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and from the previous results

EP

(∫ ∞
0

|zt(u)|qt(u)η(du)

)
= 0.

Due to the fact that ∀t ≥ 0 zt(u) ≥ 0, ∀u ≥ 0 (qt(u))t≥0 is a strictly positive
martingale P-a.s. and η is a positive measure, we get that∫ ∞

0

|zt(u)|qt(u)η(du) ≥ 0.

Given that the expected value from this integral is equal 0, we conclude that∫ ∞
0

|zt(u)|qt(u)η(du) = 0 P− a.s.

Again, from the fact that (qt(u))t≥0 is a strictly positive process P-a.s. and η
is a positive measure, we obtain that for η− a.e. u ≥ 0 zt(u) = 0−P-a.s.

6.1 Expectation tools
In the following lemma we make precise how to express the Gτs -conditional ex-
pectation in terms of the Fs-conditional expectation under the same measure
P.

Lemma 6.2. [2] Let Zt = zt(τ) be Gτt -measurable. For s ≤ t, if zt(τ) is
P-integrable then,

EP(zt(τ)|Gτs ) =
1

qs(τ)
EP(zt(u)qt(u)|Fs)|u=τ .

Proof. Since P and P∗ are equivalent on Gτs and L = ( 1
qt(τ)

)t≥0 is a Radon-
Nikodým density of P∗ with respect to P, we can apply the Bayes formula
(see Lemma 5.1) to obtain

EP(zt(τ)|Gτs ) =
EP∗(L

−1
t zt(τ)|Gτs )

L−1
s

.

Using the explicit form for Lt, we get

EP∗(L
−1
t zt(τ)|Gτs )

L−1
s

=
EP∗(qt(τ)zt(τ)|Gτs )

qs(τ)
.

Eventually, from the Proposition 5.6, we have

EP∗(qt(τ)zt(τ)|Gτs )

qs(τ)
=

EP∗(qt(u)zt(u)|Fs)|u=τ

qs(τ)
.
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Since P and P∗ coincide on Fs

EP(zt(τ)|Gτs ) =
EP(qt(u)zt(u)|Fs)|u=τ

qs(τ)
.

6.2 The martingales characterization

Our task now is to find a characterization of (P,Gτ )-martingales in terms of
(P,F)-martingales. Let us consider the following proposition.

Proposition 6.1. [2] A process Z = z(τ) is a (P,Gτ )-martingale if and only
if the process (zt(u)qt(u))t≥0 is a (P,F)-martingale, for η-a.e. u ≥ 0.

Proof. Let us prove firstly the necessity condition by assuming that Z is a
(P,Gτ )-martingale. As a result, we have

zs(τ) = EP(zt(τ)|Gτs ).

Using the Lemma 6.2, we get that

EP(zt(τ)|Gτs ) =
1

qs(τ)
EP(zt(u)qt(u)|Fs)|u=τ

and hence,
zs(τ)qs(τ) = EP(zt(u)qt(u)|Fs)|u=τ .

zs(τ)qs(τ)−EP(zt(u)qt(u)|Fs)|u=τ is a Gτs -measurable random variable and it
is equal to 0. Therefore, we can use the Lemma 6.1 and write that η-a.s. for
all u > 0

zs(u)qs(u)− EP(zt(u)qt(u)|Fs) = 0.

Finally we have that η-a.s. for all u > 0

EP(zt(u)qt(u)|Fs) = zs(u)qs(u),

which proves that (zt(u)qt(u))t≥0 is a (P,F)-martingale.



46 Chapter 6. The initial enlargement framework

To prove the sufficiency part, let us assume that the process (zt(u)qt(u))t≥0

is a (P,F)-martingale, for η-a.e. u ≥ 0. We have to show that

EP(Zt|Gτs ) = Zs.

If we apply the Lemma 6.2 for the left-hand side we obtain that

EP(Zt|Gτs ) = EP(zt(τ)|Gτs ) =
1

qs(τ)
EP(zt(u)qt(u)|Fs)|u=τ .

From the martingale property stated above, we get

1

qs(τ)
EP(zt(u)qt(u)|Fs)|u=τ =

1

qs(τ)
(zs(u)qs(u))|u=τ = zs(τ).

6.3 The E-hypothesis and the absence of arbi-
trage in the filtration Gτ

We shall remind in the beginning the general condition for the absence of
arbitrage. It is a well-known fact that if there exists at least one martingale
measure (a measure equivalent to the physical measure such that a stock
price process is a martingale with respect to the given filtration), i.e. the set
of all martingales measures is not empty, then the market is arbitrage-free.

Let us now consider a default-free and arbitrage-free market with assets
remaining assets of the full filtration Gτ . We set Q as one of the martingale
measures equivalent to P on F and assume that the set of measures equivalent
to P on Gτ is non-empty. We showed before that if E-hypothesis holds, then
there exists a decoupling measure P∗ making τ independent of the reference
filtration and coinciding with Q on F (see section 5.5). As a result, P∗
preserves martingale property in the initially enlarged filtration and a set
of martingale measures equivalent to P on Gτ is non-empty. Therefore, E-
hypothesis is a suitable condition to make the defaultable market arbitrage-
free for the agent with the initially enlarged filtration as an information flow.
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The progressive enlargement
framework

7.1 The intensity approach

In this section we study the progressive enlargement of filtration which we
introduced before in the preceding chapter. Hereafter, we assume that the
price process follows the log-normal distribution. Thus, the filtration F is
considered as a Brownian filtration (i.e. F = (Ft)t≥0 and Ft = σ(Bs, s ≤ t),
where Bs is a standard Brownian motion). It is not necessary to require the
Hypothesis 5.1 to hold.

We can easily describe Gt-measurable events on the set {τ > t}. Any Gt-
measurable random variable Xt satisfies XtI{τ>t} = YtI{τ>t}, where Yt is an
Ft-measurable random variable.

7.1.1 Expectation tools

Proposition 7.1. Let ζ be an integrable random variable. Let T be a fixed
time horizon. Then, for any t < T ,

EP(ζ|Gt)I{τ>t} = I{τ>t}
EP(ζI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

Proof. Since ζ is an integrable random variable we can write the conditional
expectation

Xt = EP(ζ|Gt)

47
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which is a Gt-measurable random variable. We make the assumption that
Gt ⊂ G∗t , where

G∗t = {A ∈ Gt : ∃B ∈ Ft A ∩ {τ > t} = B ∩ {τ > t}}.

Thus, there exists an Ft-measurable random variable Yt such that

XtI{τ>t} = YtI{τ>t}.

Taking the conditional expectation with respect to Ft from both sides we
obtain

EP(XtI{τ>t}|Ft) = EP(YtI{τ>t}|Ft).

Knowing that Yt is an Ft-measurable random variable we take it outside the
conditional expectation and get

EP(XtI{τ>T}|Ft) = YtEP(I{τ>t}|Ft).

Thus,

Yt =
EP(XtI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

We have

EP(ζ|Gt)I{τ>t} = YtI{τ>t} = I{τ>t}
EP(XtI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

We get that
Xt = EP(ζ|Gt)

and I{τ>t} is Ft-measurable. Hence we have

I{τ>t}
EP(XtI{τ>t}|Ft)
EP(I{τ>t}|Ft)

= I{τ>t}
I{τ>t}EP(EP(ζ|Gt)|Ft)

EP(I{τ>t}|Ft)
.

From the fact that F ⊂ G we deduce

I{τ>t}
I{τ>t}EP(EP(ζ|Gt)|Ft)

EP(I{τ>t}|Ft)
= I{τ>t}

I{τ>t}EP(ζ|Ft)
EP(I{τ>t}|Ft)

.

Consequently, using again the fact that I{τ>t} is Ft-measurable, we obtain

I{τ>t}
I{τ>t}EP(ζ|Ft)
EP(I{τ>t}|Ft)

= I{τ>t}
EP(ζI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.
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Corollary 7.1. Let X be a Gt-measurable integrable random variable. Let T
be a fixed time horizon. Then, for any t ∈ [0, T ),

EP(X|Gt)I{τ>t} = I{τ>t}
EP(XI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

Proof. When we put X = EP(X|Gt) we can use the proof of the Proposition
7.1 to obtain the result.

Proposition 7.2. Let X be a GT -measurable random variable where T is a
fixed time horizon. Then

EP(X|Gt)I{τ>t} = I{τ>t}
EP(XI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

Proof. We have that EP(X|Gt) is Gt-measurable. Hence, there exists an Ft-
measurable random variable Yt such that

EP(X|Gt)I{τ>t} = YtI{τ>t}.

Taking the conditional expectation with respect to Ft from both sides we
obtain

EP(EP(X|Gt)I{τ>t}|Ft) = EP(YtI{τ>t}|Ft).

Knowing that Yt is Ft-measurable and I{τ>t} is Ht-measurable, we can
write

I{τ>t}EP(EP(X|Gt)|Ft) = I{τ>t}EP(X|Ft) = EP(XI{τ>t}|Ft) = YtEP(I{τ>t}|Ft).

We obtain

Yt =
EP(XI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

Then

EP(X|Gt)I{τ>t} = I{τ>t}
EP(XI{τ>t}|Ft)
EP(I{τ>t}|Ft)

.

Proposition 7.3. Let X be a GT -measurable integrable random variable and
T a fixed time horizon, then

EP(XI{τ>T}|Gt) = I{τ>t}
EP(XI{τ>T}|Ft)
EP(I{τ>t}|Ft)

.
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Proof. We can write the expectation on two sets

EP(XI{τ>T}|Gt) = I{τ>t}EP(XI{τ>T}|Gt) + I{τ≤t}EP(XI{τ>T}|Gt)

Then we can take the indicators inside the expectations because they are
Gt-measurable. We get

EP(XI{τ>t}I{τ>T}|Gt) + EP(XI{τ≤t}I{τ>T}|Gt).

The second term on the right-hand side vanishes and we get

I{τ>t}EP(XI{τ>T}|Gt).

Finally, from the Proposition 7.2 we have

I{τ>t}
EP(XI{τ>T}I{τ>t}|Ft)

EP(I{τ>t}|Ft)
= I{τ>t}

EP(XI{τ>T}|Ft)
EP(I{τ>t}|Ft)

.

7.1.2 The F-hazard process (Γt)t≥0

In the previous chapter we introduced a hazard function in a framework of
the filtration H. We had a supposition that the agent pricing the defaultable
contingent claims knows only the distribution function F (t) = P(τ ≤ t) of
default time τ . Accordingly, the hazard function was purely deterministic.
Nevertheless, in this chapter we assume that the agent also observes the price
process. Thus, we add to our study this information and the hazard function
is no more deterministic. Moreover, while calculating the probability of τ we
take under consideration the flow of information about the prices process F.
We denote

F̃ (t) = P(τ ≤ t|Ft)

and make the following assumption.

Assumption 7.1. We assume that ∀t ≥ 0 F̃ (t) < 1.

Consequently, we define an F-hazard process as follows.

Definition 7.1. We call a process Γ = (Γt)t≥0 an F-hazard process where

Γt = − ln(1− F̃ (t)).

We can easily check that the process is a submartingale.
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Proposition 7.4. P(τ ≤ t|Ft) is an F-submartingale.

Proof. We have

EP(P(τ ≤ t|Ft)|Fs) = EP(EP(I{τ≤t}|Ft)|Fs) = EP(I{τ≤t}|Fs) = P(τ ≤ t|Fs)

and clearly
P(τ ≤ t|Fs) ≥ P(τ ≤ s|Fs)

Thus, F̃ (t) is an F-submartingale.

Proposition 7.5. Let T be a fixed time horizon and Y be an FT -measurable
integrable random variable. Then

EP(Y I{τ>t}|Gt) = I{τ>t}EP(Y exp(Γt − ΓT )|Ft).

Proof. If Y is FT -measurable, then Y is GT -measurable because FT ⊂ FT ∨
HT = GT .
According to the Proposition 7.3 we have

EP(Y I{τ>T}|Gt) = I{τ>t}
EP(Y I{τ>T}|Ft)
EP(I{τ>t}|Ft)

.

From the definition of a hazard process we have

EP(I{τ>t}|Ft) = P(τ > t|Ft) = exp(−Γt),

which is Ft-measurable.
Function f(x) = 1

x
, where x ∈ R+\{0}, is a Borel function. Hence, if

exp(−Γt) is Ft-measurable then

1

exp(−Γt)

is Ft-measurable. Thus, we can take 1
exp(−Γt)

inside the expectation in the
nominator and obtain

I{τ>t}EP(Y exp(Γt)I{τ>T}|Ft).

From the tower property we can condition the expectation in the nomina-
tor with a bigger σ-algebra FT . exp(Γt) is Ft-measurable so it is also FT -
measurable because Ft ⊂ FT . We can take Y exp(Γt) outside this expected
value because the function f(x, y) = xy is a Borel function so Y exp (Γt) is
FT -measurable. We get

I{τ>t}EP(Y exp(Γt)EP(I{τ>T}|FT )|Ft).



52 Chapter 7. The progressive enlargement framework

Then again from the definition of a hazard process we have

EP(I{τ>T}|FT ) = P(τ > T |FT ) = exp(−ΓT ).

We obtain the result

I{τ>t}EP(Y exp(Γt) exp(−ΓT )|Ft).

Corollary 7.2. Let T be a fixed time horizon. Then

EP(I{τ>T}|Gt) = I{τ>t}EP(exp(Γt − ΓT )|Ft).

Proof. The proof is straightforward from the Proposition 7.5.

7.1.3 The G-intensity of τ

In the enlarged filtration we can also define a G-intensity of default time τ .
From the Definition 4.2, λ̃s is a G-intensity of τ if

i) λ̃s is a G-adapted non-negative predictable process,

ii) (I{τ≤t} −
∫ t

0
λ̃uI{τ≥u}du)t≥0 is a (P,G)-martingale.

Proposition 7.6. If (k̃t)t≥0 is a G-predictable bounded process, then there
exists an F-predictable bounded process (kt)t≥0 such that

k̃tI{τ≥t} = ktI{τ≥t}.

Proof. On the set I{τ≥t}, i.e. before the default appears, we do not have any
information about the distribution of default time. We observe the default
only when it occurs. From this it follows that on I{τ≥t} any G-predictable
process is an F-predictable process (kt)t≥0, i.e.

k̃tI{τ≥t} = ktI{τ≥t}.

Corollary 7.3. There exists an F-predictable process λ = (λt)t≥0, such that

λ̃tI{τ≥t} = λtI{τ≥t}

and

(Nt −
∫ t

0

λ(u)I{τ≥u}du)t≥0

is a G-martingale.
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Proof. The existence follows from the Proposition 7.6.

In the future calculations we change the measure so that τ is independent
of F. Thus, we consider the following proposition.

Proposition 7.7. If τ is independent of F then the G-intensity of τ on the
set I{τ>t} is

λs =
f(s)

1− F (s)
.

Equivalently,

λ̃sI{τ>t} =
f(s)

1− F (s)
I{τ>t}.

7.1.4 H-hypothesis and the absence of arbitrage in the
filtration G

The H-hypothesis

Let us consider the H-hypothesis (or the immersion property) which is
strongly related to the absence of arbitrage in the progressively enlarged
filtration.

Hypothesis 7.1. (H-hypothesis) Every square-integrable F-martingale re-
mains square-integrable G-martingale.

It is also pivotal to give the conditions equivalent to the H-hypothesis.

Proposition 7.8. [1] The following statements are equivalent:

(H) Every F-square integrable martingale is a G-square integrable mar-
tingale,

(H1) ∀t ≥ 0, ∀Y ∈ F∞, ∀X ∈ Gt E(Y X|Ft) = E(Y |Ft)E(X|Ft),

(H2) ∀t ≥ 0, ∀X ∈ Gt E(X|F∞) = E(X|Ft),

(H3) ∀t ≥ 0, ∀Y ∈ F∞, E(Y |Gt) = E(Y |Ft),

(H4) ∀s ≤ t, P(τ ≤ s|F∞) = P(τ ≤ s|Ft).

For the proof see [1].

The absence of arbitrage
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Let us consider a default-free market with the property of the absence of
arbitrage and assume that assets of the reference filtration F remain assets
of the full filtration G. Moreover, Q is a martingale measure equivalent
to P on F. Consequently, if the immersion property holds under a risk-
neutral measure Q, i.e. F-martingales are G-martingales, then the set of all
martingale measures equivalent to P on G contains already the measure Q.
Therefore, it is not empty and the market is arbitrage-free.

7.1.5 The value of information

To price the contingent claims we have to use the martingale measure. Let
us consider a complete market with the risk-free interest rate r(t) ≡ 0 and
B0 = 0. Equivalently, every FT -measurable claim Y is hedgeable and the
price of Y is

EQ(Y |Ft),
where Q is a martingale measure equivalent to P. We consider default time
such that {τ > T} is GT -measurable. Let us denote by Cun

t the price of the
defaultable contingent claim Y calculated by an agent who knows only the
price process (i.e. the agent does not know the distribution of default time
τ) and by Cin

t - the price of Y calculated by the agent who knows the price
process as well as observes the default when it happens (i.e. the agent knows
the distribution of default time τ). Let us study the following proposition.
Proposition 7.9. The difference between the prices calculated by these two
agents is

Cin
t − Cun

t = EQ(Y I{τ>T}|Ft)
( 1

EQ(I{τ>T}|Ft)
− 1
)
.

Proof. The informed agent knows the price process and the default distribu-
tion. It means that at time t he has the information Gt. We can write

Cin
t = EQ(Y I{τ>T}|Gt.

Further, from the Proposition 7.3 we have

Cin
t = I{τ>t}

EQ(Y I{τ>T}|Ft)
EQ(I{τ>t}|Ft)

.

At time t the uninformed agent has only the information Ft. Hence,
Cun
t = EQ(Y I{τ>T}|Ft).

Finally,

Cin
t − Cun

t = EQ(Y I{τ>T}|Ft)
( 1

EQ(I{τ>T}|Ft)
− 1
)
.
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7.2 The density approach
Let us now present alternative approach for the default modelling, namely

the density approach. It was proved in [3] that the G-intensity (see 7.1.3) can
be completely derived from the conditional density process q(u). However,
given the G-intensity, we can only obtain the knowledge of qt(u) for u ≥ t.
As a result, the intensity-based approach is not suitable for after the default
case.

In the following subsection we study the projections tools. The lemmas
below allow us to express σ(τ)- and a Gτt -measurable random variable in
terms of a Gt-measurable random variable, i.e. project the results obtained
in Gτ and the filtration generated by σ(τ) on the filtration G.

7.2.1 Projection tools

We begin with a G-projection of a σ(τ)-measurable random variable.

Lemma 7.1. [2] Let V = h(τ) be σ(τ)-measurable and P-integrable random
variable. Then, for s ≤ t,

EP(V |Gs) = EP(h(τ)|Gs) = ỹsI{τ>s} + h(τ)I{τ≤s},

with
ỹs =

1

Rs

∫ ∞
s

v(u)qt(u)η(du),

where ỹs is an Fs-measurable random variable and h - a Borel function on
R+.

See [2] for the proof.

In the lemma below we establish analogous results for a Gτt -measurable
random variable.

Lemma 7.2. [2] Let Zt = zt(τ) be a Gτt -measurable and P-integrable random
variable. Then, for s ≤ t,

EP(Zτ
t |Gs) = EP(zt(τ)|Gs) = ỹsI{τ>s} + ẑs(τ)I{τ≤s},

with
ỹs =

1

Rs

E
(∫ ∞

s

zt(u)qt(u)η(du)|Fs
)
,

ẑs(u) =
1

qs(u)
EP(zt(u)qt(u)|Fs).
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For the proof see [2].

As an application, let us consider the following lemma which by projecting
the martingale L defined earlier in section 5.5 gives us a Radon-Nikodým
density on G.

Lemma 7.3. [3], [2] Let us assume that P∗ is equivalent to P on G. Then,
there exists a process l = (lt)t≥0 such that

dP|Gt = ltdP∗|Gt ,

i.e. ∀t ≥ 0 lt defines the corresponding Radon-Nikodým density on Gt. More-
over,

lt = EP(Lt|Gt) = I{τ>t}
Rt

R∗t
+ I{τ≤t}

1

qt(τ)
,

where L was defined earlier as (Lt)t≥0 with

Lt =
1

qt(τ)
.

For the proof, see [3].

7.2.2 The H-hypothesis and special property of the con-
ditional density process

Let us now study the relation between the H-hypothesis introduced in the
Proposition 7.8 and the conditional density process q(u) with the special
property shown in the Remark 5.1, namely

qt(u) = qu(u), ∀t ≥ u ≥ 0 dP− a.s.

One can consider the following proposition.

Proposition 7.10. [3] We recall the H-hypothesis, in the form of (H2),
which can be stated as: for any fixed t and any bounded Gt-measurable random
variable Xt,

EP(Xt|F∞) = EP(Xt|Ft) P− a.s.

Then, the H-hypothesis is fulfilled if and only if

qt(u) = qu(u), ∀t ≥ u ≥ 0 dP− a.s.

One can find the proof in [3].
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Remark 7.1. In the subsection 7.1.4 we established that the H-hypothesis
satisfied under a risk-neutral measure is a suitable condition for the absence
of arbitrage. If we combine this result with the proposition above, we can
state that to provide the arbitrage-free market, it is sufficient to introduce
the Hypothesis 5.1 and assume that the new information does not change
the conditional distribution of τ .

7.2.3 The martingales characterization

In this subsection we give some results concerning the characterization of
(P,G)-martingales in terms of (P,F)-martingales.

Proposition 7.11. [2] A G-adapted process X =(Xt)t≥0, given by Xt :=
x̃tI{τ>t}+ x̂t(τ)I{τ≤t}, is a (P,G)-martingale if and only if the following con-
ditions are satisfied

i) the process (x̂(u)qt(u))t≥u is a (P,G)-martingale for η-a.e. u ≥ 0;

ii) the process m =(mt)t≥0 with

mt := EP(Xt|Ft) = x̃tZt +

∫ t

0

ẑt(u)qt(u)η(du),

is a (P,F)-martingale.

For the proof, see [2].
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Chapter 8

Pricing and hedging of
Black-Scholes type models with
default

8.1 The model evaluation and the description
of the task

We consider two companies which may be related to each other. The default
event is triggered by the second company while the first company is default-
free with respect to that default. However, it does not necessarily mean
that the first company is default-free in general. We assume that the regular
investor observes only the stock prices of the default-free company (1) but he
wants to price a European call option written on the investment consisting
of

• a stock of the company (1),

• a defaultable corporate bond issued by the company (2) (see Figure
8.1).

One may interpret this situation in the following way. The issuer of the
option knows that the companies may be correlated. Thus, he adds to the
stock of the default-free company, a defaultable corporate bond issued by the
defaultable company as an additional gain opportunity.

Basic assumptions

59
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Figure 8.1: The task model.

We fix T as a maturity time for the option and from now on we consider
all the price processes and filtrations up to moment T . Let (Ω,G,P) be a
probability space on which we define two-dimensional standard Brownian
motion W = (W

(1)
t ,W

(2)
t )t∈[0,T ]. We endow (Ω,G,P) with a filtration F(1) =

(F (1)
t )0≤t≤T generated by W (1), i.e. ∀ t ∈ [0, T ] F (1)

t = σ(W
(1)
s , 0 ≤ s ≤ t).

The default-free market

We consider a default-free Black-Scholes market (B, S(1)) consisting of one
riskless asset B = (Bt)t∈[0,T ] and one risky asset S(1) = (S

(1)
t )t∈[0,T ]. Their

prices follow the random walk with the dynamics

dBt = rBtdt, t ∈ [0, T ], B0 = 1,

dS
(1)
t = S

(1)
t (µ(1)dt+ σ(1)dW

(1)
t ), t ∈ [0, T ], (8.1)

where r, µ(1), σ(1) are real constants, σ(1) > 0. For the simplicity we put
r = 0.

The defaultable market

Furthermore, we can establish a defaultable market (B,S(1),S(2)) by adding
to the default-free market one defaultable asset S(2) = (S

(2)
t )t∈[0,T ] which

follows the random walk with the dynamics

dS
(2)
t = S

(2)
t (µ(2)dt+ σ(2)dW

(2)
t ), t ∈ [0, T ],

where µ(2), σ(2) are real constants, σ(2) > 0. The processes S(1) and S(2)

represent the stock price processes of respectively company (1) and (2). Ad-
ditionally, we assume that there is a defaultable bond traded in the market.
The bond consists of a payment of one monetary unit at time T if and only
if default has not occurred before time T, i.e. the payment is I{τ>T}.
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The default time

Finally, we define default time τ as the first time when the stock price
process S(2) hits a barrier a, i.e.

τ = inf{t ∈ [0, T ] : S
(2)
t ≤ a}, (8.2)

where 0 < a < 1. Since we determined all the price processes up to the

Table 8.1: Definition of default time τ

{t ∈ [0, T ] : S
(2)
t ≤ a} 6= ∅ {t ∈ [0, T ] : S

(2)
t ≤ a} = ∅

↓ ↓
τ = inf{t ∈ [0, T ] : S

(2)
t ≤ a} τ = T

Figure 8.2: Default time occurs before
time T

Figure 8.3: Default time occurs after
time T

maturity time T we have to take under consideration the fact that the default
may not occur before time T . If this is the case, then the set in (8.2) is empty
and inf of such a set is equal to ∞. To avoid this situation, we put τ equal
to T instead. Nevertheless, if the barrier a was crossed at least once by the
process S(2) in the time interval [0, T ], then τ is min of all time moments for
which it occurred. As a result, we have to consider a random variable of the
form τ ∧ T .

The insider

Let us now present a special type of an investor trading in such a de-
faultable market, we call this investor an insider of the company (2). The
insider observes the prices of the stock (1) and has access to some additional
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information concerning default time τ of the company (2). In our case this
additional information consists of the distribution of τ . Moreover, the in-
sider has it from the beginning, i.e. the filtration F(1) is enlarged with the
default time τ in an initial manner (see chapter 5). Consequently, we make
precise that the information available to the insider at time t is represented
by σ-algebra Gτt = Ft∨σ(τ). We assume that the regular investor who wants
to price the option knows that there exists an insider in the market.

The wealth process

Let us define Xφ, where Xφ = (Xφ
t )t∈[0,T ], as a wealth process obtained by

the regular investor using a self-financing strategy φ, where φ = (φt)t∈[0,T ]

with φt = (φSt , φ
B
t ) - an F(1)-predictable strategy. We remind that the self-

financing property means that no money is withdrawn or added to the portfo-
lio. More precisely, (φSt )t∈[0,T ] indicates the financial position of the investor
in the stocks of the company (1) and (φBt )t∈[0,T ] describes the position in
riskless bonds. Specifically, if we denote by

π = (πt)t∈[0,T ]

ratio of wealth from shares of the company (1) and the whole wealth Xφ then

1− π = (1− πt)t∈[0,T ]

is the ratio of wealth from bonds and the whole wealth Xφ. We can write

φSuSu = Xφ
uπu

and
φBuBu = Xφ

u (1− πu).

Therefore, the wealth at time t is defined as

Xφ
t = x+

∫ t

0

φSudS
(1)
u +

∫ t

0

φBu dBu,

where x is the initial capital. Furthermore, by (8.1) we obtain

Xφ
t = x+

∫ t

0

(
µ(1)πu + r(1− πu)

)
Xudu+

∫ t

0

πuXudW
(1)
u .
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Let us make precise in the end of this chapter that our goal is to price a
European call option written on the investment consisting of a default-free
and defaultable assets. However, we want to find this price for the regular
investor whose information flow is only the filtration generated by the stock
price process of the default-free company. Finally, we assume that the regular
investor knows that there exists an insider in the market.

8.2 Methods of pricing in arbitrage-free and in-
complete market

In this section we begin with explaining why the defaultable market is
arbitrage-free and incomplete for the regular investor. Then, we continue
with finding a pricing measure via minimizing f -divergence method which is
strongly related to the utility approach.

8.2.1 The arbitrage-free market

From the fact that default time τ and the reference filtration are independent
under the physical measure P, P admits the properties of the decoupling
measure. Thus, it preserves the martingale properties in the initially enlarged
filtration and according to the section 6.3 the market is arbitrage-free. As a
result, there exists at least one martingale measure.

8.2.2 The incomplete market

The incompleteness of the market is caused by the influence on the stock
prices by an informed investor. The additional information is considered as
a strong initial information which we model by the initial enlargement. On
the one hand, for an informed investor the influenced market is complete.
On the other hand, for a common investor it is incomplete which means
that there exists more than one martingale measure. Consequently, one of
the most challenging tasks is to choose a martingale measure for pricing
financial derivatives.

8.2.3 The f-divergence minimization approach

A common method of pricing derivatives in incomplete market is to base the
prices on a martingale measure which minimizes certain distance, namely f -
divergence which measures the difference between the probability measures
P and Q.
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Definition 8.1. If f is a convex function on [0,∞), Q and P are the prob-
ability measures such that Q << P and dQ

dP is a Radon-Nikodým density of
Q with respect to P, then we call

f(Q|P) = EP

(
f
(dQ
dP

))
an f -divergence of Q with respect to P.

As a function f we can take for example f(x) = (
√
x− 1)2, f(x) = 2(1−√

x) (Hellinger distances) or f(x) = |x − 1| (total variation distance). The
standard approach is to choose as a pricing measure f -divergence minimal
equivalent martingale measure Q∗ such that

EP

(
f
(dQ∗
dP

))
= inf

Q∈M(P)
EP

(
f
(dQ
dP

))
,

whereM(P) is the set of all martingale measures equivalent to P.

It is crucial in our case that the f -divergence minimization is closely related
to the utility maximization via the Legendre transform. Let us introduce now
the utility approach in more details.

8.2.4 The utility approach

The utility approach is based on the fact that one has to estimate the
value of some (defaultable) contingent claim seen from the perspective of
an agent who optimizes his behavior relative to some utility function. The
utility function measures the investor’s satisfaction. Therefore, in this section
we have to introduce briefly some known results concerning the maximizing
expected utility theory. Let us begin with the following definition.

Definition 8.2. We define the utility function u as a strictly increasing,
strictly concave, twice continuously differentiable function on dom(u) = {x ∈
R, u(x) > −∞} which satisfies

u′(∞) = lim
x→∞

u′(x) = 0,

u′(x) = lim
x→x

u′(x) =∞,

where x = inf{u ∈ dom(u)}.
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It is important to comment the definition above. We require that the
utility function is an increasing function of wealth because with the growth
of wealth the usefulness which the investor has also grows. The concavity of
the function stands for an investor who is risk-averse. The utility function’s
slope gets flatter as the wealth increases. It means that the first unit of wealth
yields more utility (satisfaction) than the second and subsequent units.

The standard utility functions

Let us consider three standard utility functions:

i)
u(x) = 1− e−x, (8.3)

ii)
u(x) = lnx, (8.4)

iii)

u(x) =
xp

p
, p ∈ (−∞, 0) ∪ (0, 1). (8.5)

The maximization of the expected value of the power utility u(x) = xp

p
, p ∈

(−∞, 0) ∪ (0, 1) is equivalent to the maximization of the expected rate of
return compounded 1

pT
times per year:

1

pT
E
((XT

x

)p
− 1
)
.

The values p < 0 correspond to the discount rate. With the increase in p the
investor’s risk tolerance also increases.

The case of the logarithmic utility function u(x) = lnx we consider as a
limiting case of a power utility function as p → 0. The application is in the
maximization of the expected continuously compounded growth rate:

1

T
E
(

ln
(XT

x

))
.

The exponential utility function u(x) = 1−e−x corresponds to the entropic
measure.
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Reformulating the problem

Our task now is to formulate the problem in terms of the expected utility
theory. We begin with reminding that the wealth at time t obtained using
strategy φ is defined as

Xφ
t = Xφ

0 +

∫ t

0

φSudS
(1)
u +

∫ t

0

φBu dBu,

where Xφ
0 is the initial capital and φ = (φt)0≤t≤T with φt = (φSt , φ

B
t ) is the

self-financing strategy (see section 8.1). Let us assume for the simplicity that
the risk-free interest rate r = 0. It means that

Xφ
t = Xφ

0 +

∫ t

0

φSudS
(1)
u .

According to [5], to avoid phenomena like doubling strategies (doubling the
position), we make an assumption that during the trading the losses do not
exceed a finite credit line, i.e.

∃b > 0 such that ∀t ∈ [0, T ]

∫ t

0

φSudS
(1)
u ≥ −b.

We say that such a strategy φ is admissible. The preferences of the in-
vestor are represented by the utility functions described above. The resulting
optimization problem is of the form

sup
φ∈A

EP(u(Xφ
T )) = sup

φ∈A
EP(u(Xφ

0 +

∫ T

0

φSudS
(1)
u )) = EP(u(Xφ

0 +

∫ T

0

φ∗Su dS
(1)
u )),

where A is a set of admissible strategies.

The Legendre transformation and the dual approach

Let us now explain briefly the relationship between the utility maximiza-
tion and the f -divergence minimization. We start with the definition of the
Legendre transformation.

Definition 8.3. If u : R → R is twice continuously differentiable and ∀x ∈ R
u′′(x) < 0 (u is concave), then we call

û(x) = u(I(y))− yI(y)

a Legendre transform of u, where I = (u′)−1.
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The function û which we obtain in this case is convex. However, u is also
a Legendre transform of û and

u(x) = inf
y∈R
{û(y) + xy} = û(I(x)) + xI(x).

This property is called duality. Here we give the form of the convex duals of
the standard utility functions given by (8.3), (8.4) and (8.5).

i)
u(x) = 1− e−x → û(x) = 1− x+ xlnx (8.6)

ii)
u(x) = lnx → û(x) = −lnx− 1 (8.7)

iii)

u(x) =
xp

p
, p ∈ (−∞, 0) ∪ (0, 1) → û(x) = −p− 1

p
x

p
p−1 . (8.8)

Via the Legendre transformation one can obtain the equivalent problem
in the following form

sup
φ∈A

EP(u(Xφ
T )) = inf

y>0
{Xφ

0 y + EP(û(y
dQ∗T
dPT

))}, (8.9)

where Q∗ is û-minimal equivalent martingale measure. As a result we can
base the price of the option in our task on the û-minimal equivalent martin-
gale measure. The problem now is to find Q∗ such that

EP

(
û
(dQ∗
dP

))
= inf

Q∈M(P)
EP

(
û
(dQ
dP

))
.

8.3 Martingale measures on Gτ

Let us denote the set of martingale measures equivalent to P on F(1)

as MF(1)(P) and the set of martingale measures equivalent to P on Gτ as
MGτ (P). Our goal now is to choose one measure from the setMGτ (P) as a
pricing measure. We remind firstly that Q equivalent to P is a martingale
measure on Gτ when the discounted price process

(
S

(1)
t

)
t∈[0,T ]

is a (Q,Gτ )-

martingale. We have to consider prices as (Q,Gτ )-martingales since the reg-
ular investor knows that in the market there is also an insider who influences
the prices. For the simplicity we assumed that the risk-free interest rate r is
equal to 0 and then ∀t ∈ [0, T ] Bt = 1.
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The ordinary investor with the public information flow F(1) does not have
the arbitrage opportunities since the default-free market in our case is arbitrage-
free. In addition, it is complete. This means that there exists a uniquely
defined martingale measure Q equivalent to P such that the discounted price
process

(
S

(1)
t

)
t∈[0,T ]

is a (Q,F(1))-martingale, i.e. MF(1)(P) = {Q}.

Let us denote p = (pt)t∈[0,T ] as a corresponding density process, i.e.

dQ|F(1)
t

= ptdP|F(1)
t
, i.e. ∀A ∈ F (1)

t Q(A) =

∫
A

ptdP. (8.10)

It is well known that for a Black-Scholes market (B, S(1)) and the filtration
F(1) (see section 8.1 for the definition) the density process p is defined as such
that

pt = exp
{
− θ2t

2
− θW (1)

t

}
, where θ =

µ(1) − r
σ(1)

. (8.11)

In the end of the previous chapter we established that to find a pricing
measure it is necessary to find a density process such that

EP

(
û
(dQ∗
dP

))
= inf

Q∈M(P)
EP

(
û
(dQ
dP

))
,

where dQ
dP has simply the following form

dQ|GτT = PT (τ)dP|GτT .

However, let us remind that PT (τ) has to be a positive random variable with
EP(PT (τ)) = 1.

We start with bounding EP

(
û
(
dQ
dP

))
from below. Firstly we need to con-

dition EP

(
û
(
PT (τ)

))
on F (1)

T to obtain

EP

(
EP

(
û
(
PT (τ)

))
|F (1)

T

)
which from the tower property is equal to

EP

(
EP

(
û
(
PT (τ)

)
|F (1)

T

))
.

Using Jensen inequality we get that

EP

(
EP

(
û
(
PT (τ)|F (1)

T

)))
≥ EP

(
û
(
EP

(
PT (τ)|F (1)

T

)))
.
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Let us now specify the form of EP

(
PT (τ)|F (1)

T

)
. We can rewrite it as an

integral

EP

(
PT (τ)|F (1)

T

)
(ω) =

∫ ∞
0

PT (ω, u)qT (u)η(du) = P̃T (ω).

We omit ω for the simplicity.

It is necessary to check the properties of P̃T . From the fact that PT (τ)
is a positive random variable, the conditional density process q(u) and the
measure η are strictly positive, we obtain that P̃T ≥ 0. We need to calculate
also the expected value of P̃T . We begin with rewriting it using the definition
of P̃T and the tower property. We obtain that

EPP̃T = EP(EP(PT (τ)|F (1)
T )) = EP(EP(PT (τ))|F (1)

T ).

Since PT (τ) is a density process and EP(PT (τ)) = 1, we have that

EP(EP(PT (τ))|F (1)
T ) = EP(1|F (1)

T ) = 1

and hence
EPP̃T = 1.

What is more this process is lying on the filtration F(1). As a result, we get
a candidate for a density process, which is P̃T such that

EP

(
û
(
PT (τ)

))
≥ EP

(
û
(
P̃T

))
.

However, to use a measure defined by this density process, we need to prove
that (S

(1)
t P̃t)t≥0 is a (P,Gτ )-martingale.

To prove that (S
(1)
t P̃t)t≥0 is a (P,Gτ )-martingale, we can use the fact that

∀u ≥ 0 (Pt(u))t≥0 is a density process lying on the filtration Gτ and hence
(S

(1)
t Pt(u))t≥0 is a (P,Gτ )-martingale.

Proposition 6.1 defines martingales in Gτ . It states that Gτ -adapted
process (zt(u))t≥0, u ≥ 0 is a (P,Gτ )-martingale if and only if the process
(zt(u)qt(u))t≥0 is a (P,F(1))-martingale, where (qt(u))t≥0 is the conditional
density process (see Proposition 5.1). In our case random variable zt(u) is of
the form S

(1)
t Pt(u) and it clearly is measurable with respect to σ-algebra Gτt .
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As a result we obtain that since (S
(1)
t Pt(u))t≥0 is a (P,Gτ )-martingale then,

(S
(1)
t Pt(u)qt(u))t≥0 is a (P,F(1))-martingale. It means that

EP(S
(1)
t Pt(u)qt(u)) = S

(1)
0 .

We put conditional expectation on both sides

EP(EP(S
(1)
t Pt(u)qt(u))) = EP(S

(1)
0 )

and get that

EP

(∫ ∞
0

S
(1)
t Pt(u)qt(u)η(du)

)
= S

(1)
0 .

We can take S(1)
t outside the integral and obtain

EP

(
S

(1)
t

∫ ∞
0

Pt(u)qt(u)η(du)
)

= S
(1)
0 .

Since
∫∞

0
Pt(u)qt(u)η(du) is the definition of P̃t we obtain that

EP(S
(1)
t P̃t) = S

(1)
0 = S

(1)
0 P̃0.

As a result, we proved that (S
(1)
t P̃t)t≥0 is a (P,Gτ )-martingale and we can

take (P̃t)t≥0 as a density process. However, it is crucial to notice that the
process (P̃t)t≥0 is lying on the filtration F(1) and since the density process
is defined uniquely on the filtration F(1), the process (P̃t)t≥0 has to coincide
with the process (pt)t≥0. Finally we showed that minimum is attained at
(pt)t≥0 and we take as a pricing measure, the measure Q∗ such that

dQ∗|GτT = pTdP|GτT .

8.4 The distribution of τ with respect to P
In this section we study the distribution of default time. Firstly, for sim-

plification we consider the well known results for a hitting time defined as
the first time when the barrier value is crossed by a Brownian motion with
drift or the first time when a linear function barrier is crossed by a standard
Brownian motion. Then, we apply them to our stopping time τ .
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The density for a hitting time

Figure 8.4: A hitting time of a linear function barrier by a standard Brownian
motion.

From [7] we know that for a hitting time τab = inf{t ≥ 0 : W
(2)
t ≥ a+ bt},

where a > 0 and b < 0 (see Figure 8.4), the density function is of the form

fτab(t) =
a

t
Ψt(a+ bt), (8.12)

where Ψt(u) = 1√
2πt

exp{−u2

2t
}. To get the distribution function we integrate

(8.12) and obtain

Fτab(t) = P(τab ≤ t) = 1− Φ
(a+ bt√

t

)
+ exp{−2ab}Φ

(bt− a√
t

)
.

To check (8.12) we verify that

EP(exp{−λτab}) = exp{−a(b+
√
b2 + 2λ)}. (8.13)

We have ∫
[0,∞]

1√
2πt

a

t
exp{−(a+ bt)2

2t
} exp{−λτab}dt

which we can write as

exp{−ab}
∫

[0,∞]

1√
2πt

a

t
exp{a

2

2t
} exp{−(λ+

b2

2
)t}dt
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where∫
[0,∞]

1√
2πt

a

t
exp{a

2

2t
} exp{−(λ+

b2

2
)t}dt = EP(exp{−(λ+

b2

2
)τa})

with
τa = inf{t ≥ 0 : Wt ≤ a}.

From the fact that

EP(exp{−Λτa}) = exp{−a
√

2Λ}

we have

EP(exp{−(λ+
b2

2
)τa}) = exp{−a

√
2(λ+

b2

2
)}. (8.14)

After multiplying the right-hand side of (8.14) by exp{−ab} we get (8.13)
which proves that our formula for the density (8.12) is correct.

The density of default time τ

In our case
τ = inf{t ≥ 0 : S

(2)
t ≤ a}

which is equivalent to

τ = inf
{
t ≥ 0 : W

(2)
t ≤

lna

σ(2)

+
(σ(2)

2
−
µ(2)

σ(2)

)
t
}
.

Let us denote
a1 =

lna

σ(2)

and
b1 =

σ(2)

2
−
µ(2)

σ(2)

.

We see that a1 < 0 and we assume that b1 > 0. Therefore, we can not apply
the result established in [7] directly. Nevertheless, we can use a Brownian
motion’s reflection property and calculate the density function for a hitting
time of a reflected barrier by a reflected standard Brownian motion.

We have that

τ = inf{t ≥ 0 : −W (2)
t ≥ −a1 + (−b1)t}.

We denote a2 = −a1 > 0 and b2 = −b1 < 0 and get (see Figure 8.5)

τ = inf{t ≥ 0 : −W (2)
t ≥ a2 + b2t}.
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Figure 8.5: A hitting time of a linear function barrier by a standard Brownian
motion - dual problems.

Finally, we obtain the form of the density

fτ (t) = − ln a

σ(2)

Ψt(−
ln a

σ(2)

− (
σ(2)

2
−
µ(2)

σ(2)

)t). (8.15)

We get the distribution function Fτ (t) = P(τ ≤ t) as

P(τ ≤ t) = Φ
( ln a− (µ(2) −

σ2
(2)

2
)t

σ(2)

√
t

)
(8.16)

+a
2
µ(2)

σ2
(2)

−1

Φ
( ln a+ (µ(2) −

σ(2)
2

)t

σ(2)

√
t

)
.

From the fact that we have to consider the random variable τ ∧ T it is
crucial to determine its distribution. In general, it has the form as follows

P(τ ∧ T ≤ t) =

{
Fτ (t), if t < T ,
1, if t = T ,

where Fτ (t) is the distribution of τ which has the density with respect to the
Lebesgue measure given by (8.15).

Thus in our case,

P(τ ∧ T ≤ t) =


Φ
(

ln a−(µ(2)−
σ2
(2)
2

)t

σ(2)
√
t

)
+a

2
µ(2)

σ2
(2)

−1

Φ
(

ln a+(µ(2)−
σ(2)
2

)t

σ(2)
√
t

)
, if t < T ,

1, if t = T ,
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Figure 8.6: The density of τ .

Figure 8.7: The distribution of τ ∧ T .

(see Figure 8.7). We can also calculate

P(τ > t) = 1− Φ
( ln a− (µ(2)

σ2
(2)

2
)t

σ(2)

√
t

)
(8.17)

− a
2
µ(2)

σ2
(2)

−1

Φ
( ln a+ (µ(2) −

σ(2)
2

)t

σ(2)

√
t

)
. (8.18)

8.5 European call option pricing
The goal of this section is to calculate a price of a European call option

written on a stock of the company (1) and on a bond issued by a defaultable
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company (2) which stock price process is described by S(2). Specifically, we
consider an option with the following payoff

g
(
S

(1)
T + I{τ>T}

)
=
(
S

(1)
T + I{τ>T} −K

)+

, (8.19)

where T is the maturity time and K is the strike price of the option.

Clearly, the payoff function can be written in the form

gT = I{S(1)
T +I{τ>T}−K>0}

(
S

(1)
T + I{τ>T} −K

)
, (8.20)

where
τ = inf{t ∈ [0, T ] : S

(2)
t ≤ a}.

Under the assumption that the (B, S(1), S(2))-market is arbitrage-free we
use Q∗ ∈MGτ (P) (see section 8.3) which has the following form

dQ∗|GτT = pTdP|GτT , (8.21)

where pT is a density process such that

dQ|FT = pTdP|FT , (8.22)

and Q ∈ MF(1)(P). See section 8.3 for definitions ofMF(1)(P) andMGτ (P).
The density process p = (pt)t∈[0,T ] is defined as in (8.11).

8.5.1 Pricing in the Black-Scholes market with default

Under the assumptions of the Black-Scholes model we have the following
formula for pricing the financial derivatives.

C0(T ) = B0EQ

( gT
BT

)
,

where gT is an F (1)
T -measurable payoff function andB = (Bt)t∈[0,T ] is a riskless

asset. C0(T ) denotes the price at time t = 0 of a financial derivative with
the maturity time T .

In our case the payoff gT = g
(
S

(1)
T + I{τ>T}

)
is GτT -measurable, where

∀t ∈ [0, T ] Gτt = F (1)
t ∨ σ(τ). To price a GτT -measurable payoff gT we need to

use Q∗ ∈MGτ (P) defined in section 8.3. We have

C0(T ) = B0EQ∗
( gT
BT

)
.
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Let us remind that the risk-free interest rate r = 0. Hence, dBt = 0 and
∀t ∈ [0, T ] Bt = 1. Thus,

C0(T ) = EQ∗(gT ).

According to (8.19) we get

C0(T ) = EQ∗
((
S

(1)
T + I{τ>T} −K

)+)
.

By (8.21) we change the measure and get

C0(T ) = EP

((
S

(1)
T + I{τ>T} −K

)+

pT

)
.

8.5.2 The case when W (1) and W (2) are uncorrelated

In this section we formulate and prove a theorem which gives us an exact
formula for pricing the European option with the payoff given by (8.19).

Theorem 8.1. In the case of uncorrelated Brownian motions the pricing for-
mula for the European option with the payoff given by (8.19) has the following
form

C0(T ) = ((Φ(d̃1)− K̃Φ(d̃2))P({τ > T}) (8.23)

+ (Φ(d1)−KΦ(d2))P({τ ≤ T}), (8.24)

where P({τ ≤ T}), P({τ > T}) are defined by (8.16), (8.17) respectively,

d̃1,2 =
ln 1

K̃
±

σ2
(1)

2
T

σ(1)

√
T

and d1,2 =
ln 1

K
±

σ2
(1)

2
T

σ(1)

√
T

.

We shall give the proof.

Proof. With accordance to (2.1) we can represent Ω by two disjoint sets as
follows.

Ω = {ω ∈ Ω : I{τ(ω)>T} = 1} ∪ {ω ∈ Ω : I{τ(ω)>T} = 0}. (8.25)

We see that

{ω ∈ Ω : τ(ω) > T}C = {ω ∈ Ω : τ(ω) ≤ T}.
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Consequently, we can write (8.25) in the simplified notations as follows.

Ω = {τ > T} ∪ {τ ≤ T}

and by the Lemma 2.1 we obtain

C0(T ) = EP

((
S

(1)
T + I{τ>T} −K

)+

pT

∣∣∣{τ > T}
)
P({τ > T})+

EP

((
S

(1)
T + I{τ>T} −K

)+

pT

∣∣∣{τ ≤ T}
)
P({τ ≤ T}).

On the set {τ > T} the random variable I{τ>T} has a value 1. However, on
the set {τ ≤ T} it vanishes. Thus, we can write the conditional expectations
as follows.

EP

((
S

(1)
T + I{τ>T} −K

)+

pT

∣∣∣{τ > T}
)

= EP

((
S

(1)
T + 1−K

)+

pT

)
(8.26)

EP

((
S

(1)
T + I{τ>T} −K

)+

pT

∣∣∣{τ ≤ T}
)

= EP

((
S

(1)
T −K

)+

pT

)
(8.27)

By inserting (8.26) and (8.27) into the pricing formula we get

C0(T ) = EP

((
S

(1)
T + 1−K

)+

pT

)
P({τ > T})+

+EP

((
S

(1)
T −K

)+

pT

)
P({τ ≤ T}).

Let us consider for simplification the expectation values separately. We
have that

EP

((
S

(1)
T + 1−K

)+

pT

)
= EP

((
S

(1)
T − K̃

)
I{S(1)

T −K̃>0}pT

)
,

where K̃ = K − 1.

We can calculate the expectation value by integration∫
Ω

(
S

(1)
T − K̃

)
I{S(1)

T −K̃>0}pTdP. (8.28)

Firstly, we write the inequality S(1)
T − K̃ > 0 in the form

W
(1)
T ≥

ln K̃ −
(
µ(1) −

σ2
(1)

2

)
T

σ(1)

.
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Let us denote

d̃
′

1 =
ln 1

K̃
+
(
µ(1) −

σ2
(1)

2

)
T

σ(1)

. (8.29)

Then, we can extend (8.28) to the following form∫ ∞
−d̃′1

1√
2πT

(
exp

{(
µ(1) −

σ2
(1)

2

)
T + σ(1)x

}
− K̃

)

· exp
{
−
µ(1)

σ(1)

x− 1

2

(µ(1)

σ(1)

)2}
exp

{
− x2

2T

}
dx. (8.30)

We can calculate the integral analogically as in the derivation of the Black-
Scholes formula by completing the square. We obtain the result

EP

((
S

(1)
T − K̃

)
I{S(1)

T −K̃>0}pT

)
= Φ(d̃1)− K̃Φ(d̃2), (8.31)

where

d̃1,2 =
ln 1

K̃
±

σ2
(1)

2
T

σ(1)

√
T

. (8.32)

We obtain
EP

((
S

(1)
T −K

)+

pT

)
= Φ(d1)−KΦ(d2), (8.33)

where

d1,2 =
ln 1

K
±

σ2
(1)

2
T

σ(1)

√
T

. (8.34)

Φ(.) is the cumulative distribution function of a normally distributed random
variable with mean 0 and variance 1 such that Φ(u) =

∫ u
−∞

1√
2π

exp{−y2

2
}dy.

Finally, we get

C0(T ) = ((Φ(d̃1)− K̃Φ(d̃2))P({τ > T}) (8.35)

+ (Φ(d1)−KΦ(d2))P({τ ≤ T}), (8.36)

where Φ(.) is a cumulative distribution function of a normally distributed
random variable with mean 0, variance 1 and P({τ ≤ T}), P({τ > T}), d̃1,2

and d1,2 are defined by (8.16), (8.17), (8.32) and (8.34), respectively.
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8.5.3 The case when W (1) and W (2) are correlated with
the correlation coefficient ρ

In this section we consider the case where W (1)
T and W

(2)
T are the corre-

lated standard Brownian motions with a correlation parameter ρ ∈ (−1, 1).
Namely, we formulate a theorem and give a proof for a pricing formula in
this case.

For the later purpose we calculate the conditional density function of W (1)
T

condition on W (2)
T = y.

Firstly, let us consider the fact that if two integrable random variables X
and Y defined on (Ω,F ,P) are dependent then

EP(g(X)|Y ) =
(∫

R
g(x)fX|Y=y(x|y)dx

)
|y=Y

, (8.37)

where g is a Borel function and fX|Y=y(x|y) is a conditional density function
such that

fX|Y=y(x|y) =
f(X,Y )(x, y)

fY (y)
,

where f(X,Y )(x, y) is the joint density function of a random vector (X, Y ) and
fY (y) is a density function of random variable Y .

For our further purposes we need a conditional density function f
W

(1)
T |W

(2)
T =y

(x|y).

Proposition 8.1. The law of W (1)
T |W

(2)
T is equivalent to a law of a normally

distributed random variable with mean ρy and variance T (1−ρ2). Specifically,

f
W

(1)
T |W

(2)
T =y

(x|y) = fZT (z),

where ZT is a normally distributed random variable with mean ρy and vari-
ance T (1− ρ2).

Proof. We begin with the formula for the conditional density, namely

f
W

(1)
T |W

(2)
T =y

(x|y) =
f

(W
(1)
T ,W

(2)
T )

(x, y)

f
W

(2)
T

(y)
.

We use also the miltivariate normal distribution to establish the following
form of the joint density of the vector (W

(1)
T ,W

(2)
T )

f
(W

(1)
T ,W

(2)
T )

(x, y) =
1

2πT
√

1− ρ2
exp{−x

2 + y2 − 2ρxy

2(1− ρ2)T
}.
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Since
f
W

(2)
T

(y) =
1√
2πT

exp{− y
2

2T
},

we obtain

f
W

(1)
T |W

(2)
T =y

(x|y) =
1√

2πT (1− ρ2)
exp{− (x− ρy)2

2T (1− ρ2)
}. (8.38)

Thus,
f
W

(1)
T |W

(2)
T =y

(x|y) = fZT (z),

where ZT is a normally distributed random variable with mean ρy and vari-
ance T (1− ρ2).

Let us now formulate the theorem concerning the pricing formula for the
case of two correlated Brownian motions.

Theorem 8.2. In the case of two correlated Brownian motions with the
correlation coefficient ρ ∈ (0, 1) the pricing formula for the European option
with the payoff given by (8.19) has the following form

C0 =

∫ D

−∞
C3(x)

1√
2πT

exp
{
− x2

2T

}
dx+

∫ ∞
D

C5(x)
1√
2πT

exp
{
− x2

2T

}
dx,

(8.39)
where

D =
ln a− (µ(2) −

σ2
(2)

2
)T

σ(2)

and
C5(x) = γ(x)C3(x) + (1− γ(x))C4(x),

where

γ(x) = a
2

(
x

σ(2)T
+
µ(2)

σ2
(2)

− 1
2

)
exp

{
− 2

T

( ln a

σ(2)

)2}
,

C3(x) = exp
{
−

((θ − σ(1))ρ)2

2
T − (θ − σ(1))ρx

}
Φ(D1),

−K exp
{
− (θρ)2

2
T − θρx

}
Φ(D2),

C4(x) = exp
{
−

((θ − σ(1))ρ)2

2
T − (θ − σ(1))ρx

}
Φ(D̃1)

−K̃ exp
{
− (θρ)2

2
T − θρx

}
Φ(D̃2),
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D1 =
ln 1

K
+

σ2
(1)

2
T + ρxσ(1)

σ(1)

√
T (1− ρ2)

+(θ−σ(1))
√
T

ρ2√
1− ρ2

, D2 = D1−σ(1)

√
T (1− ρ2),

D̃1 =
ln 1

K̃
+

σ2
(1)

2
T + ρxσ(1)

σ(1)

√
T (1− ρ2)

+(θ−σ(1))
√
T

ρ2√
1− ρ2

, D̃2 = D̃1−σ(1)

√
T (1− ρ2).

Proof. To price we need to calculate the following mathematical expectation

C0 = EP(g(S
(1)
T )pT ),

where
g(S

(1)
T ) = (S

(1)
T + I{τ>T} −K)+

and

pT = exp
{
− θ2

2
T − θW (1)

T

}
. (8.40)

From the fact that we can express g(S
(1)
T ) as

g(S
(1)
T ) = g(S

(1)
T )IΩ = g(S

(1)
T )I{τ≤T} + g(S

(1)
T )I{τ>T}

so that

C0 = EP((S
(1)
T + I{τ>T} −K)+pT I{τ≤T} + (S

(1)
T + I{τ>T} −K)+pT I{τ>T}),

we obtain

C0 = EP((S
(1)
T + 1−K)+pT I{τ>T} + (S

(1)
T −K)+pT I{τ≤T}).

We condition this mathematical expectation on F (2)
T = σ(W

(2)
s , 0 ≤ s ≤ t)

and take the random variables I{τ>T} and I{τ≤T} outside the conditional
expectation because they are F (2)

T -measurable. We get that

C0 = EP(EP((S
(1)
T −K)+pT |F (2)

T )I{τ≤T})+EP(EP((S
(1)
T +1−K)+pT |F (2)

T )I{τ>T}).

To simplify, we denote

C3(W
(2)
T ) = EP((S

(1)
T −K)+pT |F (2)

T ),

K̃ = K − 1

and
C4(W

(2)
T ) = EP((S

(1)
T − K̃)+pT |F (2)

T ).
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Let us now show that

EP((S
(1)
T −K)+pT |F (2)

T ) = EP((S
(1)
T −K)+pT |W (2)

T )

so we can replace F (2)
T with W

(2)
T . It is enough to prove that EP((S

(1)
T −

K)+pT |F (2)
T ) is W (2)

T -measurable. We start with the fact that EP((S
(1)
T −

K)+pT |F (2)
T ) is F (2)

T -measurable and we denote W (3) = (Wt)t∈[0,T ] as the
third Brownian motion which is independent of W (2). Let us also remind
that

S
(1)
T = exp

{(
µ(1) −

σ2
(1)

2

)
T + σ(1)W

(1)
T

}
and pT is defined as in (8.40). Using Normal Correlation Theorem which
says that we can represent W (1)

T as

W
(1)
T = ρW

(2)
T +

√
1− ρ2W

(3)
T ,

we obtain

EP

((
exp

{(
µ(1) −

σ2
(1)

2

)
T + σ(1)

(
ρW

(2)
T +

√
1− ρ2W

(3)
T

)}
−K

)+

· exp
{
− θ2

2
T − θ

(
ρW

(2)
T +

√
1− ρ2W

(3)
T

)}
|F (2)

T

)
.

Then, applying the formula for the calculation of the conditional expectation
with one measurable and one independent variable, we can conclude that
EP((S

(1)
T − K)+pT |F (2)

T ) = EP((S
(1)
T − K)+pT |W (2)

T ). Thus, we can examine
the latter.

To calculate this expectation we use the fact that

EP((S
(1)
T −K)+pT |W (2)

T ) =
(
EP((S

(1)
T −K)+pT |W (2)

T = w)
)
|w=W

(2)
T

.

Let us calculate

C3(w) = EP((S
(1)
T −K)+pT |W (2)

T = w)

which equals to

C3(w) = EP((S
(1)
T −K)I

{S(1)
T −K≥0}

pT |W (2)
T = w).

Using the conditional density function (8.38) we calculate that

EP(I
{S(1)
T −K≥0}

pT |W (2)
T = w)
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=

∫ ∞
−d′1

exp
{
− θ2

2
T − θx

} 1√
2πT (1− ρ2)

exp{− (x− ρw)2

2T (1− ρ2)
}dx,

where

d
′

1 =
ln 1

K
+ (µ(1) −

σ2
(1)

2
)T

σ(1)

.

We get

EP(I
{S(1)
T −K≥0}

pT |W (2)
T ) = exp

{
− (θρ)2

2
T − θρW (2)

T

}
Φ(D2),

where Φ(.) is a cumulative distribution function of a normally distributed
random variable with mean 0 and variance 1 and

D2 =
ln 1

K
−

σ2
(1)

2
T + ρσ(1)W

(2)
T

σ(1)

√
T (1− ρ2)

+ θ
√
T

ρ2√
1− ρ2

. (8.41)

Analogically, we calculate that

EP(S
(1)
T I
{S(1)
T −K≥0}

pT |W (2)
T ) = exp

{
−

((θ − σ(1))ρ)2

2
T − (θ − σ(1))ρW

(2)
T

}
Φ(D1),

where

D1 =
ln 1

K
+

σ2
(1)

2
T + ρW

(2)
T σ(1)

σ(1)

√
T (1− ρ2)

+ (θ − σ(1))
√
T

ρ2√
1− ρ2

. (8.42)

We got the formula

C3(W
(2)
T ) = exp

{
−

((θ − σ(1))ρ)2

2
T − (θ − σ(1))ρW

(2)
T

}
Φ(D1) (8.43)

−K exp
{
− (θρ)2

2
T − θρW (2)

T

}
Φ(D2),

where D1 and D2 are defined by (8.42) and (8.41), respectively.
The formula for C4(W

(2)
T ) is analogical but instead of K we have K̃. Specifi-

cally,

C4(W
(2)
T ) = exp

{
−

((θ − σ(1))ρ)2

2
T − (θ − σ(1))ρW

(2)
T

}
Φ(D̃1) (8.44)

−K̃ exp
{
− (θρ)2

2
T − θρW (2)

T

}
Φ(D̃2),
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where

D̃1 =
ln 1

K̃
+

σ2
(1)

2
T + ρW

(2)
T σ(1)

σ(1)

√
T (1− ρ2)

+ (θ − σ(1))
√
T

ρ2√
1− ρ2

(8.45)

and

D̃2 =
ln 1

K̃
−

σ2
(1)

2
T + ρσ(1)W

(2)
T

σ(1)

√
T (1− ρ2)

+ θ
√
T

ρ2√
1− ρ2

. (8.46)

Consequently, we have the pricing formula as following

C0 = EP(C3(W
(2)
T )I{τ≤T}) + EP(C4(W

(2)
T )I{τ>T}).

We condition on W (2)
T and can take C3(W

(2)
T ) and C4(W

(2)
T ) outside the

expectation value. We obtain

C0 = EP(C3(W
(2)
T )EP(I{τ≤T}|W

(2)
T )) + EP(C4(W

(2)
T )EP(I{τ>T}|W

(2)
T )).

Thus, we need to calculate

P(τ > T |W (2)
T ) and P(τ ≤ T |W (2)

T ).

Let us calculate the latter. We use the fact that

P(τ ≤ T |W (2)
T = w) = P( sup

t∈[0,T ]

(−W (2)
t + a1 + b1t) ≥ 0|W (2)

T = w),

where
a1 =

ln a

σ(2)

< 0 (8.47)

and
b1 =

σ(2)

2
−
µ(2)

σ(2)

> 0. (8.48)

We use the formula from [8] such that

P( sup
t∈[0,T ]

Wα(t) > z|Wα(T ) = y) =

{
exp

{
− 2z(z−y)

T

}
, if z > max(0, y),

1, otherwise,

where Wα is a Brownian motion with drift α. We get that

P(τ ≤ T |W (2)
T ) =

{
γ(W

(2)
T ), if −a1 > max(0, b1T −W (2)

T ),
1, otherwise

where
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γ(x) = exp
{2a1(x− a1 − b1T )

T

}
(8.49)

and

P(τ > T |W (2)
T ) =

{
1− γ(W

(2)
T ), if −a1 > max(0, b1T −W (2)

T ),
0, otherwise.

Let us firstly simplify the formula above. Since −a1 > 0 we have three
possibilities:

i) W (2)
T > b1T ,

ii) b1T + a1 < W
(2)
T < b1T ,

iii) W (2)
T < b1T + a1.

Thus we can write

P(τ ≤ T |W (2)
T )

= γ(W
(2)
T )I{

W
(2)
T >b1T+a1

} + I{
W

(2)
T <b1T+a1

}
and

P(τ > T |W (2)
T ) =

(
1− γ(W

(2)
T )
)
I{
W

(2)
T >b1T+a1

},
where a1, b1, γ(.) are defined by (8.47), (8.48), (8.49) respectively.
Finally, we denote a1 + b1T as D and we extend it to the form

D = a1 + b1T =
ln a− (µ(2) −

σ2
(2)

2
)T

σ(2)

. (8.50)

We get the pricing formula

C0 =

∫ D

−∞
C3(x)

1√
2πT

exp
{
− x2

2T

}
dx+

∫ ∞
D

C5(x)
1√
2πT

exp
{
− x2

2T

}
dx,

where
C5(x) = γ(x)C3(x) + (1− γ(x))C4(x),

where γ(x), C3(x) and C4(x) are defined by (8.49), (8.43), (8.44) respectively
and we transform the function γ to the form

γ(x) = exp
{2a1(x− a1 − b1T )

T

}
= a

2

(
x

σ(2)T
+
µ(2)

σ2
(2)

− 1
2

)
exp

{
− 2

T

( ln a

σ(2)

)2}
.
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To verify if the final formula is correct let us present a corollary showing
that if we put ρ ≡ 0 then we obtain the formula for uncorrelated Brownian
motions.

Corollary 8.1. Using the formula for correlated Brownian motions in the
case of uncorrelated Brownian motions (ρ ≡ 0) we get the same result as in
Theorem 8.1.

Proof. Let us start the proof by putting ρ = 0 to the formula (8.39).

We obtain that D1, D2, D̃1, D̃2 defined by (8.42), (8.41), (8.45), (8.46)
respectively, have the form as follows

D1,2 =
ln 1

K
+

σ2
(1)

2
T

σ(1)

√
T

= d1,2,

D̃1,2 =
ln 1

K̃
+

σ2
(1)

2
T

σ(1)

√
T

= d̃1,2,

for the formula of d1,2 and d̃1,2 see (8.34), (8.32).

With ρ = 0 the functions C3, C4 and C5 become

C3(x) = Φ(d1)−KΦ(d2) = C3,

C4(x) = Φ(d̃1)− K̃Φ(d̃2) = C4,

C5(x) = C3γ(x) + C4(1− γ(x)).

As a result the formula (8.39) has the following form

C0 = C3

∫ D

−∞

1√
2πT

exp
{
− x2

2T

}
dx+ C3

∫ ∞
D

γ(x)
1√
2πT

exp
{
− x2

2T

}
dx

+C4

∫ ∞
D

1√
2πT

exp
{
− x2

2T

}
dx−C4

∫ ∞
D

γ(x)
1√
2πT

exp
{
− x2

2T

}
dx, (8.51)

where D is defined by (8.50).
We notice that∫ D

−∞

1√
2πT

exp
{
− x2

2T

}
dx = Φ

( D√
T

)
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and ∫ ∞
D

1√
2πT

exp
{
− x2

2T

}
= 1− Φ

( D√
T

)
.

Putting these results and the formulas for C3 and C4 to the (8.5.3) we
get

C0 =
(

Φ(d1)−KΦ(d2)
)(

Φ
( D√

T

)
+

∫ ∞
D

γ(x)
1√
2πT

exp
{
− x2

2T

}
dx
)

+
(

Φ(d̃1)− K̃Φ(d̃2)
)(

1−
(

Φ
( D√

T

)
+

∫ ∞
D

γ(x)
1√
2πT

exp
{
− x2

2T

}
dx
))
.

We compare this formula with the final result for the uncorrelated case
and we realize that Φ

(
D√
T

)
+
∫∞
D
γ(x) 1√

2πT
exp

{
− x2

2T

}
dx is staying in the

place of P(τ ≤ T ) defined by (8.16). We shall prove that they are equal.

For the simplicity we use firstly the initial form of the function γ, namely
the form established in (8.49), and by the method of completing the square
we calculate the integral. We obtain that∫ ∞

D

γ(x)
1√
2πT

exp
{
− x2

2T

}
dx = exp

{
− 2a1b1

}(
1− Φ

(D − 2a1√
T

))
.

Putting this result and the final form of D we get that (8.5.3) is equal to

Φ
( ln a− (µ(2) −

σ2
(2)

2
)t

σ(2)

√
t

)
+ a

2
µ(2)

σ2
(2)

−1

Φ
( ln a+ (µ(2) −

σ(2)
2

)t

σ(2)

√
t

)
which is P(τ ≤ T ) defined in (8.16).

Finally we have that

C0 =
(

Φ(d1)−KΦ(d2)
)
P(τ ≤ T ) +

(
Φ(d̃1)− K̃Φ(d̃2)

)
P(τ > T )

which represents exactly the formula for the uncorrelated case.

The price of the option with the payoff given by (8.19) depends on the
correlation coefficient ρ (see Figure 8.8, 8.9, 8.10, 8.11).
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Figure 8.8: A graph illustrating the option’s price against ρ for µ(1) = 0.1,
µ(2) = 0.1, σ(1) = 0.3, σ(2) = 0.3. The strike price K = 2, S0 = 1 and the
maturity time T = 10.

Figure 8.9: A graph illustrating the option’s price against ρ for µ(1) = −0.1,
µ(2) = 0.1, σ(1) = 0.2, σ(2) = 0.3.The strike price K = 2, S0 = 1 and the
maturity time T = 10.
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Figure 8.10: A graph illustrating the option’s price against ρ for µ(1) = 0.1,
µ(2) = 0.1, σ(1) = 0.3, σ(2) = 0.3. The strike price K = 3, S0 = 1 and the
maturity time T = 10.

Figure 8.11: A graph illustrating the option’s price against ρ for µ(1) = −0.1,
µ(2) = 0.1, σ(1) = 0.2, σ(2) = 0.3.The strike price K = 3, S0 = 1 and the
maturity time T = 10.
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Chapter 9

Conclusions

Due to the different type of information available to the investor in the
defaultable market, pricing and hedging of the models with default is not so
elementary as of the default-free models. Firstly, since the informed agent
influences the stock prices, the market is incomplete for the regular investor.
Thus, perfect hedging is not always possible and as a result, we have to
choose the minimal martingale measure. What is more, if we work under the
measure providing independence of default time and the reference filtration,
the market is arbitrage-free since the measure preserves the martingale prop-
erty in the initially enlarged filtration. Nonetheless, if the measure is not a
decoupling one, we have to introduce some hypothesis for the market to be
arbitrage-free, namely H-hypothesis or E-hypothesis.

Since for the regular investor market is incomplete and arbitrage-free, there
exists more than one martingale measure equivalent to the physical mea-
sure in the initially enlarged filtration. However, they are all defined by
the Radon-Nikodým density process being the product of the correspond-
ing Radon-Nikodým density process from the reference filtration and a Borel
function of default time.

The most common method of dealing with the minimal martingale mea-
sure is the utility approach and it consists of estimating the value of some
contingent claim seen from the perspective of an agent who optimizes his
behavior relative to some utility function. As a result we obtained for three
different utility functions that the function of default time in the enlarged
filtration is equal to one under the independence of default time and the
reference filtration. It means that for these three utility functions the addi-
tional information is not valuable in the sense that it does not increase the
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expected utility. In the case of the correlated Brownian motions, the calcu-
lations involve the conditional density function of two Brownian motions. IT
appears that the conditional law of the correlated Brownian motions is still
a Brownian motion.

Pricing the option written on the investment consisting of a stock of the
default-free company and a corporate bond issued by the defaultable com-
pany in such a market is analogous to the pricing of Black-Scholes model.
The only difference in the case of the independence of default time and the
reference filtration is that as a result we have two formulas with different
strike prices combined by the corresponding probability whether the default
occurred or not. The dependence between default time and the reference
filtration results in calculating the conditional expectation of the discounted
payoff instead of the regular expected value. In this particular case, we
got the pricing formula using mainly some very important properties of the
Brownian motion.



Notation

(Ω,F ,P) Probability space.

(Ω,F ,F,P) Filtered probability space.

X = (Xt)t≥0 Stochastic process.

FX Natural filtration.

B(R) Borel σ-algebra on R.

B = (Bt)t≥0 Standard Brownian motion.

FB σ-algebra generated by B.

FBt σ-algebra generated by Bt.

S = (St) Price process.

τ Default time.

K Strike price.

T Maturity time.

EP Mathematical expectation under measure P.

η Law of τ .

F (t) Distribution function of τ .

fτ (t) Density function of τ .
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Notation

N = (Nt)t≥0 Default process.

Ht σ-algebra generated by Nt.

H Filtration generated by Ht.

Ut Ht-measurable random variable.

λ = (λt)t≥0 Intensity process of τ .

IA Indicator function of a set A.

Γ(t) Hazard function.

G(t) Survival function.

r(t) Deterministic risk-free interest rate.

σ(τ) σ-algebra generated by τ .

Gτt Enlarged σ-algebra Ft ∨ σ(τ).

Gt Enlarged σ-algebra Ft ∨Ht.

Gτ Filtration generated by Gτt .

G Filtration generated by Gt.
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Figure 9.1: The source code in Mathematica for derivation of option’s price
in the case of correlated Brownian Motions.
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