Guest editorial: Special section on wireless technologies in factory and industrial automation – part II

Daniele Miorandi, Elisabeth Uhlemann, Stefano Vitturi and Andreas Willig

N.B.: When citing this work, cite the original article.

©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.


DOI: http://dx.doi.org/10.1109/TII.2007.903227
Copyright: IEEE

Post-Print available at: Halmstad University DiVA
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-2019
This second part of the special section on wireless technologies in factory and industrial automation (the first part has been published in the May 2007 issue of the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS) completes the section. Three papers can be found in this second part, ranging from protocol design and evaluation to the design and assessment of system-level solutions for wireless sensor networks in industrial automation.

The paper “Evaluation of Response Times in Industrial WLANs” by G. Cena, I. C. Bertolotti, A. Valenzano, and C. Zunino deals with the performance by the IEEE 802.11 technology in industrial environments. In the paper, the authors report the outcomes of extensive experimental tests carried out using commercially available WiFi devices. Particular attention is devoted to the response time, identified as a critical performance metric for factory automation and other industrial applications. The paper includes also a simple computational model, which can be used in the dimensioning phase for estimating and predicting system’s performance. The enhancements obtainable with the use of the traffic prioritization mechanisms encompassed by the IEEE 802.11e standard are also evaluated and discussed.

The paper “System Level Design for Clustered Wireless Sensor Networks” by A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani, and A. Sangiovanni-Vincentelli deals with the design and configuration of cluster-based wireless sensor-networks for industrial applications. The basic protocol design takes a number of recent ideas into account, including the adoption of spatial diversity to improve the transmission reliability. The authors develop a methodology that allows to set the protocol parameters so as to achieve prescribed delay targets and to assess the consequences of these parameter settings in terms of energy consumption, which in itself is a very important concern in wireless sensor networks. A case study is presented as a showcase for the described methodology.

In the paper “VTP-CSMA: A Virtual Token Passing Approach for Real-Time Communication in IEEE 802.11 Wireless Networks” by R. Moraes, F. Vasques, P. Portugal, and J. A. Fonseca, a token passing procedure is proposed to enable the support of real-time communications in wireless IEEE 802.11 environments, where real-time traffic must share the same communication medium with non-real-time traffic. The VTP-CSMA protocol enhances the real-time properties of IEEE 802.11 networks by circulating a virtual token among real-time devices. This virtual token is complemented by an underlying traffic separation mechanism that prioritizes real-time traffic over non-real-time traffic. Thus, the protocol supports real-time traffic more efficiently as compared to the case where the highest priority of 802.11e is employed, while allowing standard non-real-time DCF/EDCA devices to coexist with VTP-CSMA enhanced devices. Further, this enhancement is made with the goal of keeping modifications at a minimum to facilitate the use of commercial components.

We again want to express our gratitude to all the people involved in the process of publishing this special section: the authors, the reviewers, and the editorial team.

DANIELE MIORANDI, Guest Editor
CREATE-NET
38100 Trento, Italy
(daniele.miorandi@create-net.org)

ELISABETH UHLEMANN, Guest Editor
Halmstad University
SE-301 18 Halmstad, Sweden
(bettan@ide.hh.se)

STEFANO VITTURI, Guest Editor
Italian National Research Council
I-35131 Padova, Italy
(vitturi@dei.unipd.it)

ANDREAS WILLIG, Guest Editor
Technical University of Berlin
10587 Berlin, Germany
(awillig@tkn.tu-berlin.de)
Daniele Miorandi received the Laurea (*summa cum laude*) and Ph.D. degrees in communications engineering from the University of Padova, Padova, Italy, in 2001 and 2005, respectively. He is the head of the Pervasive Area at CREATE-NET, Italy. He joined CREATE-NET in January 2005, where he is leading a group working on pervasive computing and communication environments. His research interests include bio-inspired approaches to networking and service provisioning in large-scale computing systems, modeling and performance evaluation of wireless networks, wireless extensions of fieldbus systems, and prototyping of wireless mesh solutions.

Elisabeth Uhlemann (S’98–M’05) received the M.Sc. degree in computer systems engineering from Halmstad University, Halmstad, Sweden, in 1998, and the Ph.D. degree in communications theory from Chalmers University of Technology, Gothenburg, Sweden, in 2004. She currently holds a position as Assistant Professor in wireless real-time communications at the Centre for Research on Embedded Systems (CERES), Halmstad University. The position is cofunded by Volvo Technology Corporation with focus on telematics applications. She has held visiting positions at the Institute for Telecommunications Research (ITR), University of South Australia, Adelaide, Australia, in 2002, 2003, and 2005. Her research interests include ARQ, channel coding, digital communications, and real-time communications.

Stefano Vitturi received the Laurea degree (*summa cum laude*) in electronics engineering from University of Padova, Padova, Italy, in 1984. He is a Senior Researcher with the Institute of Electronics, Information Engineering, and Telecommunications of the Italian National Research Council (IEIIT-CNR) since January 2002. From 1985 to 2001, he worked at the control and data acquisition system of RFX, a nuclear fusion experiment included in the Fusion Program of the European Community, located in Padova. His research interests include industrial communication systems, real-time communication networks (wired and wireless), implementation, and performance analysis of devices conforming to the most popular industrial communication protocols.

Andreas Willig received the diploma degree in computer science from the University of Bremen, Bremen, Germany, in 1994 and the Dr.-Ing. degree in electrical engineering from Technical University Berlin, Berlin, Germany, in 2002. He is a Senior Researcher with the Telecommunication networks group (TKN) at the Technical University of Berlin since April 2005. From 2002 to 2005, he was an Assistant Professor with the Hasso-Plattner-Institute at the University of Potsdam, Potsdam, Germany. His research interests include wireless networks, fieldbus and real-time systems, *ad hoc* and sensor networks, all with specific focus on protocol design and performance aspects.