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ABSTRACT 
 
In this paper, initial simulations are presented showing that the upcoming IEEE 802.11p stan-
dard is not suitable for traffic safety applications requiring reliable, low-delay communication 
between vehicles. The medium access control procedure is one of the most important parts in 
the design of delay-constrained communication systems, and emerging vehicle safety applica-
tions put new stringent demands on timely and reliable delivery of data packets. The medium 
access procedure used in 802.11p is carrier sense multiple access, which is inherently unsuit-
able for time-critical data traffic since it is contention-based and cannot provide a finite upper 
bound on the time to channel access. The simulation results indicate that with IEEE 802.11p, 
channel access cannot be granted in a manner that is sufficiently predictable to support reli-
able, low-delay communications between vehicles on a highway.  
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INTRODUCTION11 
 

Traffic safety systems, where vehicles communicate with each other and with roadside sta-
tions to enable higher safety for passengers, is a new application area within the intelligent 
transportation systems (ITS) sphere. Typical examples include pre-crash warning, communi-
cating slippery road conditions, emergency vehicle routing, etc. Such applications are consid-
ered by for example the American Intelligent Vehicle Initiative (IVI) (1) and the European 
eSafety group (2). These emerging traffic safety systems put high concurrent demands on 
timely and reliable delivery of data packets. Some applications also have additional demands 
on very low latency and therefore require direct communication between vehicles without the 
use of communications infrastructure, so-called vehicle-to-vehicle (V2V) communications. 
Further, all communication involving moving vehicles needs to be wireless and since wireless 
channels are subject to interference and signal fading, they are inherently unreliable. The high 
mobility of vehicular networks further complicates matters, since it rejects the use of tradi-
tional stable network topologies (3). 
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The data communication typically generated by traffic safety applications is characterized by 
short event-driven control messages that have to be received without errors in time. In addi-
tion, traffic safety systems often contain periodic messages that regularly provide information 
about the position, speed, direction, etc of vehicles. These messages are the foundation for a 
plethora of applications within ITS. Both the periodic (time-triggered) and the aperiodic 
(event-driven) messages require timely delivery. All messages sent will have a deadline or a 
best-before-date implying that if a message arrives late it is of little or no use. It is of essence 
that the aperiodic messages are delivered before the event takes place and further, the periodic 
messages are perishables as the vehicles are usually moving and more updated messages will 
become availabe. A traffic safety system can therefore be categorized as a critical real-time 
communication system (4). Real-time communication implies that there is an upper bound on 
the communication delay such that if the correct data does not reach its intended recipient be-
fore a certain deadline, it is more or less useless and this will potentially have severe conse-
quences for the system performance. This problem has also been pointed out in (5). Commu-
nicating real-time messages does not necessarily require a high transmission rate, or a low 
delay, but it does require that the message is delivered before the deadline. Obviously, high 
transfer rates and low average delays are beneficial features also in real-time communication 
systems, but even more important is the ability to predict worst cases of system behaviour.  
 
One of the most important things in a communication system in order to support real-time 
communication is the medium access control (MAC) method. This method decides who has 
the right to transmit when on the channel. To guarantee timely delivery such that time-critical 
communication tasks meet their deadlines, the MAC scheme must provide a finite worst case 
access time to the channel. Once channel access is a fact, different coding strategies, diversity 
techniques and retransmission schemes can be used to achieve a sufficiently reliable transmis-
sion. However, if the MAC scheme does not provide an upper bound on the maximum time 
before channel access, it is not possible to give any guarantees about meeting deadlines. In the 
upcoming vehicular communications standard IEEE 802.11p a contention-based MAC 
method, carrier sense multiple access (CSMA), is used. This implies that it is not possible to 
provide a finite upper bound on the time to channel access. However, as long as the system 
load is not too heavy, CSMA usually behaves satisfactory. Much attention within standardiza-
tion for vehicle communication systems has therefore been devoted to enhance this MAC 
method by providing different quality of service (QoS) classes for traffic with different priori-
ties (6, 7), which helps balancing the system load. However, the main problem of unpredict-
able delays in CSMA remains. It is therefore of essence to find out how severe this problem is 
when a typical traffic safety scenario is considered and to evaluate the boundaries when the 
system load becomes too heavy. Consequently, in this paper a MAC layer simulation of IEEE 
802.11p is presented and an initial evaluation of its suitability for traffic safety application 
using V2V communication is made. First, an introduction to MAC methods for vehicular net-
works is given. Next, the IEEE 802.11p standard is explained in more detail and the paper is 
concluded with simulation results of the IEEE 802.11p standard.  
 

MEDIUM ACCESS CONTROL FOR VEHICULAR COMMUNICATIONS 
 
All communication systems have a protocol stack which is more or less complex depending 
on the task of the communication system (e.g., general web surfing, industrial control loops, 
mobile telephone systems). The MAC layer is a sublayer of the data link layer of the OSI ref-
erence protocol stack (8), and it is present in most communication networks; wireline as well 
as wireless. The MAC protocol is responsible for determining who has the right to send on the 
channel for the moment. There exists many different MAC protocols and we have chosen to 
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classify them here as being either contention based or conflict-free protocols (9). Conflict-free 
protocols ensure that a transmission is not interfered by any other transmissions, i.e., no over-
lap occurs in time, frequency, or space between transmitters and thus no collisions arise. Ex-
amples of conflict-free protocols are time division multiple access (TDMA) and frequency 
division multiple access (FDMA). TDMA divides time into slots, where the total available 
frequency spectrum may be used in each slot and a user will get exclusive right to send in one 
time slot. FDMA, on the other hand, divides the frequency band into narrower subchannels 
where each user is allotted a subchannel and thereafter always has the ability to send at any 
point in time in the subchannel. The drawback with these protocols in their original design is 
that they generally require a central mechanism such as a base station or an access point that 
can share the resources among the users (i.e., allot time slots or frequency bands to users). A 
combination of TDMA and FDMA is used in the GSM mobile system which duly has a cen-
tralized network topology. With contention based protocols, on the other hand, the user is not 
guaranteed an exclusive right to send (using the assigned resources in a predetermined way) 
and hence collisions can occur. Contention based protocols provide mechanisms for taking 
care of the collisions such that a transmission eventually should be possible. There are two 
large groups of contention based protocols; Aloha and CSMA. In the simplest Aloha protocol, 
each transmitter sends its packet as soon as it is locally generated. CSMA is an improved 
Aloha protocol where the transmitter starts by sensing the channel before the transmission is 
initiated and only transmits if the channel is free, i.e., “listen before talk.” In order to reduce 
the probability that several transmitters starts sending immediately when the channel becomes 
free, each transmitter randomizes a backoff time during which it defers channel access. These 
two protocols are very popular, since they are easily deployed. The drawback is that there is a 
possibility that two or more transmissions collide and continues to collide infinitely many 
times and hence packets may suffer unbounded delays. This drawback is especially severe in 
a real-time system intended for traffic safety applications where a worst case access time is a 
must.  
 
Vehicular networks could be roughly divided into ad hoc networks and infrastructure-based 
networks. The latter contains some sort of communications infrastructure, such as a base sta-
tion, an access point, or a roadside station which controls the channel resources, and enables 
the deployment of a deterministic MAC method. We define a deterministic MAC method to be 
a scheme for which the time from channel access request to actual channel access has a finite 
upper bound. MAC methods that are inherently deterministic are the ones contained in the 
group of conflict-free protocols; e.g., TDMA and FDMA. All the communication within an 
infrastructure-based network must go through the centralized unit as opposed to a vehicular 
ad hoc network (VANET) with direct communication between vehicles, i.e., V2V. In a 
VANET a deterministic MAC scheme is harder to implement since no central entity is pre-
sent.  
 
The MAC schemes in the literature that are targeting VANETs are either based on CSMA or 
TDMA. CSMA has the drawback of not being deterministic and it is generally not possible to 
make adjustments or additions to make it deterministic. However, enhancements providing 
different priority levels (10, 11), such that packets with higher priorities wait a shorter time 
period before channel access, has been made. This is a way of reducing and controlling the 
network load. However, despite these enhancements collisions may still occur and when they 
do, a transmitter with higher priority data traffic will randomize a shorter backoff time than 
transmitters with lower priority traffic. This way, unbounded delays are reduced for higher 
priority data traffic – but not removed. This type of prioritization mechanism is also found in 
the standard IEEE 802.11e which will be used by the upcoming IEEE 802.11p standard. In 
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(10) an additional feature is considered, where a potential transmitter sends a busy tone using 
a reserved frequency in order to get the attention from the intended recipient, which will then 
poll the transmitter.   
 
The TDMA-based protocols in (12, 13, 14, 15) use time slots to achieve collision-free trans-
mission of data. The difference between these TDMA protocols lies in how they assign the 
time slots. In (12, 13) space division multiplexing (SDM) is used, where the road is first di-
vided into subspaces, and within each subspace a TDMA scheme is applied. Each vehicle will 
use different time slots depending on where it is currently situated. In (14), the 3G radio inter-
face UMTS terrestrial radio access time division duplex (UTRA TDD) is used as physical 
layer, and at the MAC level, the available time is divided into slots. To achieve a transmission 
slot in this TDMA scheme, a random access channel (i.e., CSMA) is deployed. This approach 
with a contention based protocol for time slot reservation requests is also used in the ADHOC 
MAC (15) proposal.  
 
The drawback with almost all the MAC protocols (10, 11, 14, 15) proposed for vehicular en-
vironments is that they do not incorporate the dynamics of the network and therefore, they are 
still only applicable to slow moving objects and ordinary mobile ad hoc networks. Further, 
some MAC methods, such as (10, 11) prioritize packets, but the presence of collisions still 
results in that there is no upper bound on when channel access can take place (theoretically 
nodes can keep colliding forever). The ad hoc mode and the prioritization do decrease the av-
erage delay, but the worst case collision scenario is still the same. In (12, 13) the schemes are 
dependent both on a tight synchronization and on exact space awareness, something that is 
not easily obtained in a highly mobile VANET. 
 
 

WAVE AND IEEE 802.11P 
 
Wireless access in vehicular environment (WAVE) is IEEE’s proposal to a vehicular commu-
nication system standard. WAVE is a protocol stack (6) that has support for TCP/IP traffic as 
well as simpler transport, network and application protocols, Figure 1. Besides the TCP/IP 
part, it consists of, IEEE 1609.1, IEEE 1609.2, IEEE 1609.3, IEEE 1609.4, and IEEE 
802.11p, where 802.11p is the only part which has not yet been ratified.  

 
Figure 1. Overview of the WAVE protocol stack. 

 
WAVE short message protocol (WSMP) is a transport and network layer protocol which is 
described in 1609.3. This provides the application layer protocol 1609.1 with the ability to 
determine physical layer characteristics such as channel number and output power. The 
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1609.1 protocol is a resource manager that multiplexes communication between one sender 
and multiple receivers. A WAVE compliant station must support a control channel (CCH) and 
multiple service channels (SCH) as defined in 1609.4. This approach is totally different from 
the one used in the original WLAN standard of IEEE 802.11, which instead has a cellular ap-
proach. Exactly how this new channel strategy is used is decided by 802.11p. The 1609.2 pro-
tocol adds security which is very important in this kind of networks.  
 
The network topology in 802.11p will be a loose form of independent basic service set (IBSS) 
called WAVE BSS (WBSS). IBSS is the ad hoc mode of 802.11 where all nodes are peers. In 
an infrastructure-based 802.11 network, an AP is responsible for sending beacons and thereby 
also providing the synchronization of the network. In an 802.11 network using IBSS this bea-
coning is distributed among the nodes in the IBSS network. However, in an 802.11p network 
no beaconing exists and instead the network synchronization depends on a global time refer-
ence, such as the coordinated universal time (UTC). This can be provided by a global naviga-
tion satellite system, e.g., GPS or Galileo. It is sufficient for a node to receive the UTC infor-
mation through a management frame sent in the 802.11p network. The 802.11p standard is 
derived from the original standard of IEEE 802.11 that was released already in 1997. 802.11p 
will use parts from the original standard together with the MAC amendment 802.11e for QoS 
support and the physical (PHY) layer supplement of 802.11a, as seen in Figure 2.  

 
Figure 2. An overview of which part of the IEEE 802.11 that the 802.11p will use. 

 
The WAVE protocols including 802.11p are specifically designed for the allocated frequency 
band in the US at 5.850-5.925 GHz called the intelligent transportation systems radio service 
(ITS-RS). This 75 MHz band will be divided into one CCH and six SCH. The IEEE 802.11a, 
uses orthogonal frequency division multiplexing (OFDM), where the basic idea is to divide 
the available frequency spectrum into narrower subchannels. The high-rate data stream is split 
into a number of lower-rate data streams transmitted simultaneously over a number of subcar-
riers. The 802.11p will use 10 MHz wide channels as compared to 802.11a using 20 MHz and 
will therefore have half the transfer rates of 802.11a namely 3, 4.5, 6, 9, 12, 18, 24 and 27 
Mbps. The different transfer rates are obtained by changing modulation and coding rates.  
 

Medium Access Control within 802.11p 
 
The MAC layer of 802.11p (16) will use the enhanced distributed channel access (EDCA) 
procedure derived from the IEEE 802.11e QoS amendment. This mechanism is based on the 
basic CSMA with collisions avoidance (CSMA/CA), which is also known as the distributed 
coordination function (DCF) in 802.11. In the DCF mode all stations must compete for access 
to the channel (best effort system). When a station wants to send a packet, it starts by listening 
to the channel, an activity referred to as the physical carrier sense part of the protocol. If the 
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channel is free for a certain time, known as the distributed interframe spacing (DIFS) time, the 
station will start sending immediately. The 802.11 standard also specifies a virtual carrier 
sense mechanism called the network allocation vector (NAV) which is a value that indicates 
the amount of time before the channel will become free again. Every packet sent in the net-
work contains information about the duration (i.e., the NAV time) of its transmission and all 
stations must update their NAV values according to the traffic in the network. The NAV value 
hence indicates whether the medium is busy even when the channel appears to be free as 
sensed by the physical carrier sense. These two carrier sense mechanisms constitute the colli-
sion avoidance part in the protocol. If a station senses that the medium is busy, either virtually 
or physically, it must randomize a backoff time before a transmission can be initiated anew. 
The backoff time is based on a specific slot time multiplied by a random number, which is 
uniformly distributed in the interval [0, CW] where CW stands for contention window. CW is 
doubled for every attempt to retransmit a particular packet from its initial value, CWmin, up to 
its maximum value CWmax. Increasing CW is useful during high utilization periods, when sev-
eral stations want to access the channel. With a large value of CW there will be a greater 
spread of the randomized backoff times for the stations and thus collisions will decrease. Af-
ter a successful packet transmission the CW will be set to its initial value again. The random-
ized backoff time is decremented only when the channel is free and once it reaches zero the 
station starts sending immediately.  
 
The MAC method of 802.11 further uses a stop-and-wait protocol where the sender waits for 
an acknowledgement (ACK) from the recipient, Figure 3, and if the transmitted packet disap-
pears for some reason, the sender must perform a backoff and try to resend the same packet.   

 
Figure 3. A packet exchange in IEEE 802.11. SIFS stands for short interframe space. 

 
A backoff procedure can be invoked for two reasons; (i) a station wanting to send senses a 
physical or virtual carrier during its mandatory DIFS listening period or (ii) a station has man-
aged to send its packet but never received an ACK packet in return. A station that is in backoff 
mode is not allowed to decrement the backoff value while the channel is busy, which includes 
the DIFS period that follows a transmission (Figure 3). However, once a backoff value 
reaches zero the station can start to send immediately. 
 
The EDCA MAC method introduces improved features such as prioritized access to the chan-
nel by means of several queues with different DIFS values, although DIFS are instead called 
arbitration interframe space (AIFS) in EDCA. There are four queues which represent different 
levels of priority (called access categories/ACs in 802.11e); background, best effort, video 
and voice traffic, where voice has the highest priority, Table 1.  
 

Others  

Destination  

Source  

DIFS  

Packet 

DIFS  

ACK 

SIFS  

Defer access and  
no backoff is decremented Decrement backoff 



 -7-

Table 1. The parameters from the 802.11e used in the 802.11p. 
Designation AC in 802.11e AIFSN CWmin CWmax 

Background AC_BK 7 aCWmin aCWmax 

Best effort AC_BE 3 aCWmin aCWmax 

Video AC_VI 2 aCWmin/2 aCWmax 

Voice AC_VO 2 aCWmin/4 aCWmax/2 
 
Every terminal in an 802.11p network contains these four queues and the queue with the 
highest priority will wait the shortest time (the shortest AIFS) before its transmission can start. 
This way, different priorities are enforced and stations having lower priority traffic will lose 
the race for the channel when competing with a station having higher priority traffic. How-
ever, collisions between packets of the same priority can still occur and these are handled with 
a backoff procedure. In WAVE, the different queues have different CWs such that high prior-
ity traffic will have shorter backoff times than low priority traffic. Each queue contends for 
the channel in the same way as with the basic access method DCF with the difference of how 
long they will listen before starting to send (the AIFS). The AIFS for an AC/queue is calcu-
lated as follows AIFS[AC] = AIFSN[AC] × aSlotTime + SIFS. The default values of the 
AIFSN are found in Table 1. When the PHY of 802.11p is used, the AIFS for voice packets 
will be 34 µs which should be compared to 41 µs for a DIFS in the 802.11a standard. When a 
collision occurs within the station, the queue with the highest priority will win the contention 
and therefore access the channel. The other colliding queue must then randomize a backoff 
time and try anew.  
 
 

SIMULATION STUDY OF THE MAC METHOD IN 802.11P  
 
We have developed a simulator in a computer using Matlab and our scenario is a highway 
with three lanes in each direction where the vehicles arrive according to a Poisson process as 
is customary for many traffic systems. The scenario chosen can be assumed to be the most 
stressful situation for the MAC scheme since here the highest relative vehicular speeds are 
found. The inter-arrival times between the vehicles in each lane are modeled as independent 
identically distributed exponential random variables with a mean of 3 seconds (consistent 
with the 3-second-rule applied in Sweden, which recommends drivers to maintain a 3 second 
space to the vehicle in front). The speed of each vehicle is a random variable with a Gaussian 
distribution with mean values different for each lane; 23 m/s (~83 km/h), 30 m/s (~108 km/h) 
and 37 m/s (~133 km/h), and a standard deviation of 1 m/s. The speeds were chosen with the 
Swedish highway speed regulations in mind, i.e., trucks are allowed to have a maximum 
speed of 90 km/h, cars 120 km/h at certain places otherwise 110 km/h, cars with a trailer 70 
km/h, etc. The vehicles regularly broadcast data messages containing information about their 
speed, position, direction etc., according to a predetermined rate of 10 Hz (one new packet 
every 100 ms) and there is no other data traffic. The messages are broadcast messages and 
therefore no one will send an ACK in response.  
 
All vehicles use the MAC method of 802.11p as described above, and each vehicle must lis-
ten before sending during an AIFS and backoff if the channel is, or becomes, busy during the 
AIFS. Since all the data traffic is of the same priority, i.e., everyone broadcasts position mes-
sages, only the highest priority is used. In a real implementation where data traffic from dif-
ferent applications must share the same communication channel, these position messages 
would probably have a lower priority than messages containing, e.g., collision avoidance data. 
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If we had chosen a lower priority in our simulation scenario this would have had the implica-
tion that fewer messages would fit into the same time frame and thus the network load would 
increase and the simulation results would show a reduced performance. Note that the only 
time a backoff procedure is invoked is when a physical or virtual carrier is detected during the 
AIFS. Consequently, the case with a missing ACK, as described above, will not appear since 
all traffic is broadcasted and there is no specific intended recipient. Instead all nodes within 
sensing range are recipients. With this in mind, the transmitter will never make more than two 
attempts to access the channel in order to try to send a packet. If a carrier is detected in the 
first access attempt, the transmitter randomizes a backoff time. The transmitter is then only 
allowed to decrement the backoff time when the channel is detected as free and an AIFS pe-
riod has passed, see Figure 3. When the backoff counter has reached zero, the vehicle will 
send immediately. In Table 2, all parameters used in the simulation are listed. 

Table 2. IEEE 802.11p parameters used in the simulation. 
Parameter Value 

Slot time 9 µs 

SIFS 16 µs 

AC in 802.11e AC_VO (Voice) 

AIFSN 2 

AIFS for voice 34 µs 

CWmin aCWmin/4 = 16/4, { }0,1, 2,3CW ∈⇒  

CWmax Will never be used due to broadcast 

Transfer rate 3 Mbps 

 
All vehicles have the same data traffic type to send, and therefore all transmitters will have 
the same AIFS value of 34 µs. The contention window will never be doubled since only one 
failed channel access attempt is made. The backoff time is a random number resulting from a 
multiplication between the slot time and a discrete random number uniformly distributed in 
the interval [0, 3] and stations will only randomize between four different values in this simu-
lation; 0, 9, 18, and 27 µs, respectively.  
 
The channel model is a simple circular sensing range model, Figure 4. We assume that every 
node within the assumed sensing area receives the message perfectly (i.e., without errors). 
Note that a node could be exposed to a second transmission by a so-called hidden terminal, 
Figure 4, where transmitters Tx1 and Tx2 are sending at the same time because they cannot 
hear each other, and the receivers Rx1, Rx2, Rx3 and Rx4, will experience collisions of the two 
ongoing transmissions. However, since the focus of this simulation is to determine the delay 
before a transmitter will get a channel access, the hidden terminal problem is not considered.   
 
To avoid the edge effects in the simulation, statistics are only collected from the middle part 
of the highway and only when the highway has been filled with traffic. The nodes will start to 
transmit as soon as they enter the highway at an initial random delay between 0-100 ms. The 
simulation has been carried out with three different packet lengths; 100, 300, and 500 bytes 
and three different sensing ranges, 300, 500, and 1000 meters. The chosen sensing ranges 
have its origin in the project authorization request (PAR), i.e., the project proposal, for IEEE 
802.11p (17), which states that communication ranges of up to 1000 m should be supported 
by the standard. Even though 802.11p has support for up to eight different transfer rates, a 
transfer rate of 3 Mbps without link adaptation has been used. This is due to the fact that this 
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is a broadcast system that requires high reliability and we want as many nodes as possible to 
hear each transmission correctly. The lowest transfer rate has the most robust modulation 
scheme together with the lowest coding rate and is therefore a reasonable choice.  
 

 
Figure 4. Simulation set-up 

 
Figure 5 depicts the cumulative distribution functions (CDF) for the channel access delay for 
different sensing ranges and 300 byte packets. The channel access delay is defined as the time 
it takes from when a packet arrives at the MAC layer in a node to when the channel is ac-
cessed, i.e., the delay between channel request to channel usage. Hence, the CDF curves show 
the probability that channel is accessed within a certain delay. For example, it can be con-
cluded from Figure 5 that, for a 1000 m long sensing range, the channel access delay will be 
less than 20 ms with a probability of about 90%. The delay is never less than 34 µs because of 
the AIFS value, and it will never exceed 100 ms because when a new packet arrives at the 
MAC layer from the application layer, the old one that is still waiting for channel access will 
be thrown away, i.e., the packet is dropped.  
 
For each sensing range, the CDF includes all channel access attempts made by all vehicles, 
i.e., around 15-18 million access attempts. The average number of possible recipients for the 
different sensing ranges are as follows; 300 m ~ 34-36 nodes, 500 m ~ 58-60 nodes, and 1000 
m ~116-118 nodes. Consequently, this is also the average number of nodes that will compete 
for channel access. When the CDF reaches 1, this means that no node has been forced to drop 
any packets, i.e., all packets generated at each node were sent. In Figure 5 it is shown that ap-
proximately 5% of the packets were dropped for a sensing range of 1000 meters. Theoreti-
cally, 117 nodes could fit into a system having 300 byte long packets if the transmissions 
were perfectly scheduled (100 ms divided by the transmission time for a 300 byte long packet 
plus the AIFS). This explains why nodes start to drop packets when the sensing range reaches 
1000 m. 
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Figure 5. The CDF of the channel access delay for 300 byte packets and different sensing 

ranges. 
 
In Figure 6, the CDF for the channel access delay for 500 byte packets is shown for different 
sensing ranges. Here, it can be seen that also vehicles having a sensing range of 500 meter 
starts dropping packets.  

 
 

Figure 6. The CDF of the channel access delay for 500 byte packets and different sensing 
ranges. 
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When the packet length is increased, every node keeps the channel busy for a longer time pe-
riod and with a greater sensing range more nodes are blocked, i.e., they must defer their own 
channel access due to an occupied channel. In Figure 6, stations having a sensing range of 
1000 meter will drop around 45% of their packets. A packet drop could also be interpreted as 
a node that never succeeded to decrement its backoff value to zero. Since the nodes only ran-
domize between the backoff values; 0, 9, 18, and 27 µs, the channel was never free for these 
times during the 100 ms period before a new packet arrived at the MAC layer.. Note that the 
theoretical number of nodes that fits into a sensing range of 1000 meter when sending 500 
byte long packets is 72 (100 ms divided by the transmission time for a 500 byte long packet 
plus the AIFS). This is the reason for packet drops occurring when the sensing range is in-
creased from 500 meter to 1000 meter. Simulations with shorter packets than 300 byte were 
also conducted, but they did not suffer from any packet drops and are therefore not shown 
here. 
 

CONCLUSION 
 
We have classified future traffic safety systems as being critical real-time systems thus requir-
ing a deterministic MAC method, i.e., a MAC method for which the time from channel access 
request to actual channel access has a finite upper bound. Conflict-free MAC methods (e.g., 
TDMA, and FDMA) are inherently deterministic, but usually require a centralized network 
structure for distributing the channel resources among the nodes. These methods are unsuit-
able for VANETs. Many emerging traffic safety systems will require low latency and thereby 
need direct V2V communication, and the only standard currently supporting this is the up-
coming IEEE 802.11p. The 802.11p standard will use contention-based CSMA as MAC 
method, implying that there is no upper bound on the delay before channel access (i.e., non-
deterministic) which makes it unsuitable for critical real-time communication. The 802.11p 
will use the 802.11e QoS amendment, but this will only decrease the average delay for high 
priority packets when the data traffic types are mixed and contain traffic from all ACs. How-
ever, if the nodes in the network all have the same type of traffic, the QoS amendment is of no 
use. We will still have the problem with unbounded delays when the network load increases.  
 
Our initial simulation results of the MAC method for IEEE 802.11p show increasing delays 
for longer packets and greater sensing ranges. Moreover, the probability of dropping packets 
is alarmingly high for certain simulation points, e.g., for a sensing range of 1000 meters 
(which is supported by the upcoming 802.11p stated in its project proposal, i.e., the PAR). 
The question is what range is needed by a typical application and what do we need to know 
about other vehicles in the vicinity? This must be studied in more detail, in order to determine 
how severe the consequences are. For example, if packets are dropped in bursts for a certain 
node; this implies that a vehicle could be invisible to all other vehicles in the vicinity. It can 
be concluded that even though IEEE 802.11 works well in our offices and homes, more de-
tailed studies of the 802.11p standard are needed before time critical applications at vehicular 
speeds can be considered. Since the MAC protocol does not have an upper bound on when 
access to the channel occur it is unsuitable for critical real-time communication especially in a 
highly dynamic environment as required by future vehicle safety applications.  
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