Technical report, IDE0838, June 2008

Signal Processing on Ambric Processor Array:
Baseband processing in radio base stations

Master’s Thesis in Computer Systems Engineering

Chaudhry Majid Ali, Muhammad Qasim

Splitter Part Butterfly Part

N J
OQSKO[
< 74». School of Information Science, Computer and Electrical Engineering
Halmstad University
~li—
Dyt

Signal Processing on Ambric Processor Array:
Baseband processing in radio base stations

Master's Thesis in Computer Systems Engineering

School of Information Science, Computer and EleatriEngineering
Halmstad University
Box 832, S-301 18 Halmstad, Sweden

June 2008

© 2008
Chaudhry Majid Ali and Muhammad Qasim
All Rights Reserved

Description of cover page picture: A composite object computing 8-Point FFT.

Preface

This Master’s thesis is the concluding part of taster's Program in Computer Systems
Engineering Specialization in Embedded Systemsa#nktad University. This project has been
carried out as a co-operation between Halmstadddsity and Ericsson AB. In this project the
Ambric processor developed by Ambric Inc. has besed, we would like to thanks Mike Butts
for supplying development tools and support. We Idcalso like to thanks our supervisors
Professor Bertil Svensson, Zain-ul-Abdin and Pedegétam from Halmstad University and
David Engdal from Ericsson AB for guidance and sarpghroughout this thesis project.

Chaudhry Majid Ali Muhammad Qasim

Halmstad University, June 2008

Abstract

The advanced signal processing systems of todayresgxtreme data throughput and low power
consumption. The only way to accomplish this isige parallel processor architecture.

The aim of this thesis was to evaluate the useddlfel processor architecture in baseband signal
processing. This has been done by implementing ttieenanding algorithms in LTE @xmbric
Am2000 family Massively Parallel Processor Array (MPPA). The Ambric chip is evaluated in
terms of computational performance, efficiency lo¢ tdevelopment tools, algorithm and I/O
mapping.

Implementations of Matrix Multiplication, FFT andldgk Interleaver were performed. The
implementation of algorithms shows that high legélparallelism can be achieved in MPPA
especially on complex algorithms like FFT and Matrnultiplication. Different mappings of the
algorithms are compared to see which best fit theitecture.

List of Figures

Figure 1.
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

Y 0] o T3 o] T o PP 3
A Brick and INTEICONNECESuuuuiiiis oo ettt e e ettt e e e e e e e e eeeaeees 4
e (0 ToL =YY o G AN ol 11 (=T ox ([= 5
Ambric Channel and REQISIEISuuu. e e et e e et e e e e et e e e e e e e e ernn e e eerta s 6
Programming MOELcooouiuiiiiiiiiit e e e e e e e e e e e et e e e e e ea e e e eeaa e e e eeenanaaaeaans 7
Graphical DIiagram VIEW..........uciiiiiiiii i ceeeeee e e e e e e e e et eeaeeens 8
LIl 5= LTIV A= 9
Transmitter and Receiver structure of SC-FDMAooiiiiiiiii e 12
Transmitter and Receiver structure of OFDMAccooiiiiiiiiiiiiiee e 13
System block diagram for mobile data communication...............ccccoeveevieiiiieeveinennnn. 13
Butterfly Computation of radix-2 with decimationHdimecccceeev i, 16
8-point FFT butterfly using the radix-2 decimationrimec.cooevvviiiiiiiieiin e 17
Helical Scan BIOCK INtEHEAVEToommmmeeee et e eeee e e e anaaaes 18
4 composite ObJECES IN TAAAENi e e e e e era e e e 21
YN ool aq] Lo 1Y 1 {= T o] o] (=Yt A 21
Design file for the mMultiplicationcouii i e e 22
Objects communication of design apPPrOaACh 2. e ceviiiieeiiiiiiie e eeeaaee 23
Java code fOBPIITIEr B.....o.ovuiiieiieiii e 24
Twiddle factors assigning at compile timeccovvviiiiii i e 25
Java code fosplitter ODJECT........viiiiii i 25
8-point FFT bit-reversal SOMING.............eceiiii i e e e e e e e e 26
8-Paoint FFT Design APProach L.......coouiiiiiiiii e e s e e eees 27
Astruct code ofsplitter object and binding with java...............oceeeeiiii i, 28
8-Point FFT Design APProach 2........oouiiiiiiiii i e e e e e 29
Java code computing one bUtterflycoummmmeeeeeeniiriii e 29
Design approach for BIoCK INterl@avercviiiiiiiiiieeiiii e e eea e 30

Vi

Table of Contents

1 INTRODUGCTION ...uuitiitttttttititeieeeeeeeeeeeee s eaeteeaaeaaaaaeaaaaaaasas s e aanaaeeebsb e aanssbsbebsbbebeeseeeeeeeees 1
2 AMBRIC MP P A ... it e e e e ——————— ettt it taaaaaaaeaaaas 3
2.1 CHIP ARCHITECTURE ..ttt tttttttete et eeeeeaaeesaasas e ettt ettt e et e eeaaaaaaaaeaaaeaaaaaananeens 3

2.2 BRICS AND INTERCONNECTS.tttttttttteeeteeeetetetaeaeaaeaeaeasaaaaaaaaseaaaaaasaasaasasassansnsnnssenrenesseeseees 4
2.3 PROCESSORARCHITECTURE. ...1tttttttittteteeeeeetetetaeaeeaeaaaeasaaaaaaaasaeaaaaasaasaasasassansnsnnsnesbenesseeseees 5
2.4 AMBRIC REGISTERS ANDCHANNELSuututttttttetnenereeeeeeeeeeeteaaeeaaaaaaaeaaaeasasaeaasaesennsnnannannnns 5
2.5 STRUCTURAL OBJECTPROGRAMMING MODELcvvvviiiiiiiiieiieiieeeeeeeeaeeaesseasasaaeananeseaseananannns 6
2.6 APPLICATION STRUCTUREuttttttttrererertetttsteeaaeaaaaaaaaaaaaaaaasaeaaaeaaessasssnnanansasnssssssssssssesens 7.
2.7 DEVELOPMENT TOOLS ...t iiiiteie ettt e e e ee e et e et e e e eaeaaaaaeaeaeaeaaaaaaasasaananaaanns 7
3 LONG TERM EVOLUTION. ...cittttttiitiitiie ettt 11
3.1 TECHNOLOGY OVERVIEW. .. .iiiiuitniiiititttstteseeeeeeeeeeeesteeaesseeeeeeeaesaaeaaaaeaaaaaaeanaananannnnnn 11
3.1.1 Targets and ODJECHVES.......c.uuuiiiiieiie s e e e e e e e ettt e e e e et e e e aaaa e e e eeren e eaeennes 11
o 0 O O I (=T (U 1 (=] 1=] 11
3.2 SYSTEM ARCHITECTURE ... uututtttitttieseeseeeeeeeereeeseeaaeaaeaaaaaasesseaaeaeaeasassesnasaanansassnsnsssssssnns 11
3.2.1 Single-carrier FDMA (SC-FDMA)... ..ottt eenaa e 12
3.2.2 Orthogonal frequency-division multiplexing (OFDM) ac........ooviviiiiiiiiieiiiici e 12
R T T =1 o Tt Q1 (=T 4 [= = 1Y/ T o PP 13
4 ALGORITHM OVERVIEW ..ottt ettt 15
4.1 MATRIX MULTIPLICATION ..ttttttttttttteteeeeeeeeaaaaaaasasaas e s s sssssssnessssssseeenaeneaaaaeaaens 15.
4.2 FAST FOURIERTRANSFORMS(FFT) .uuuiiiiiiiii et eeeee et e e e e et e e e enaa s 15
N R = = Uo [D12 | e R UUSURRR 16
4.2.2 Complexity analysis of radiX-2 FFTcooiuieiii i eeeee e 16
4.3 BLOCK INTERLEAVER.1ttttttttetettieteeteeeeeeeaeaeaeeasaasasaeaaasessesssan s assnsssssssssssssesaeeeeeeeennennes 17
4.3. 1 MaAtriX INTEIIEAVET ...t ettt e e e e et bbb e e e e e e e 17
4.3.2 Matrix Helical SCan INtErIEAVET e 17
5 IMPLEMENTATION ...uuititititititeiieeeteteteteeeeeamteeeeeeeaeeaeaaaeaseaeassassasaaasssnensesessmnnnnsssssssssessneneeeees 19
5.1 APPLICATION PROGRAMMING INTERFACE(API) ... e e e e 19
L0 O = 0= o I o Yo 1o | P 19
L0 0 =11 o = V2 o T 19
LN G T =11 o = T VA o1 1= 20
5.2 ALGORITHM IMPLEMENTATION ..ttiitiieeetateeseeeaae ettt e et et e e e e e e e aeeaeeeeas 20
5.3 MATRIX MULTIPLICATION .. ttttttttt et tee e e e e e e e e e e e s sttt e e e e e e e e e eee s 20.
LR Tt R =2 T [= o] o (0 >] o 0t S 21
LT T B =TT T [g JE= o] o] (o = Vo] o 2 23
5.4 FAST FOURIER TRANSFORMctttttttttieeeteeettetetasaeaeeaaaeaaaaaaaaaaaeaasaaasaasaasasaasannnsnnssenrssesseesees 24
L ot R =T T [g JR= o] o] (0 = Vo] o 1 S 26
LN N B =T T g JE= o] o] (0 = Tod o N2 28
55 BLOCK INTERLEAVER. ... ttttttttttttteteeteeeeeeeaeaeaeeassasasaeaaasassesssas s assssnssssssssessesseeeseeeeeneenes 30
5.5. 1 MALriX INTEIIEAVET ...ttt ettt ettt e e e e e bbb e e e e e e e e 31
LTI o = [Tor= T o= o DO USRS 31
L YN U AN I @] N ST 33
6.1 RESULTS FROMMATRIX MULTIPLICATIONtititiitittseeeeeeeeeeeeeeeeeeeessaeseesessessrsessaeaaaaaaeens 34
6.2 RESULTS FROMIEFT ..ttt ettt ettt e e e e e e e e e e e e e s e anen e e 35

Vii

6.3 RESULTS FROMBLOCK INTERLEAVER .. .cuutitiititiitie et eeaeeatseeieeanseessaeesaessnseensesnnaeansesnnaenn 36

A T ST 01 01571 (@ 1 PRSI 39
7.1 PO 39
7.2 MATRIX MULTIPLICATION ..ttt ettt ettt e e e e e e e e e e st e e e e e e aeeeee s 40.
7.3 BLOCK INTERLEAVER. ... tttttttttteetitteeeeeeeeeeaeaeaaeassssasaeaaasessssssss s asnssssssesssssssesseeeseeeeenennes 41
7.4 DEVELOPMENT TOOLS ...t eiiiit ittt ettt ettt e e eeee e eseeeeeeeeeaaaaaaeaeaeaeaaaaaaasaseanannaann 42
7.5 LIMITATIONS IN DEVELOPMENT TOOLS. ..ctttttiiiiiteiaeeeeeeeeeeee e e e s et 42
7.6 SUMMARY .eeiiiite ittt ee e ettt e e oo e e e et se ettt ettt et e e e et et e e e e e e e e e e e aaaaaeaeaaeaeaaaaaaaaaan 43
7.7 FUTURE WORK ...ttt et teeeeeaeeeeaeaaaaaaaaseasaaaaaaasseassssaasssssssssssessesneseseeseennnnseneeeeeeees 43

8 REFERENCESottt reeer ettt et et e e e e e e e e e e e e e e e e e e e s e e aeae e e e e e aseasanaanannannnnne 45

9 APPENDIX - SOURCE CODEccciiiiiiiii ittt ettt e e e e nnnnenees 47
0.1 APPENDIXA .ottt ettt ettt m———— ettt et e et et e e aaeaeaaaaataaaaaaaaaaaaaann 47

S I T = o 1 o T | PP 47
S IR Y1 0= Y2 oo [P 49
S I T Y1 0= 1Y = 11T PP 49
0.2 APPENDIX B ottt e aaaaaas 50
9.2.1 Source code for Matrix Multiplication Design Appoha2cevvevveiiiniieeviiiie e 50
0.3 APPENDIXC .otttttiiiiiiiie ettt ettt et e e et e e e e e e e e e ettt et et ettataeaaeaeaaaaaaaaaaaaaaaaaaaann 56
9.3.1 Source code for FFT Design approach 2...... e« eeeeerniieeeeiiineeeeesiineassanieeeensnnns 56
0.4 APPENDIXD oottt et e et et e e e e e e e aaaaaaaaaaaaaaaaaaaann 65
9.4.1 Source code for Helical Scan INterl@aver ... ioiiiii e e eee e 65

viii

Introduction

1 Introduction

Modern communication is growing and system demardso increase. All modern
communication systems are using digital signal @ssmg techniques. Digital signal processing
is the analysis, interpretation, and manipulatiérsignals. Signal processing is used in a lot of
fields like sound, images, biological signals, rasignals and many others. Processing of such
signals includes filtering, storage and reconstonct separation of information from noise,
compression, and feature extraction. Benefits gfitali signal processing include increased
throughput, reduced bit error rate, and greatdiilgtaover temperature and process variation.

Baseband signal specification plays a key role bothselecting the appropriate system
architecture and determining the necessary compuogtspeed of all involved algorithms. In the
Fourier Domain, a baseband signal is a signaldbatipies the frequency range from OHz up to a
certain cutoff. It is called the baseband becalusedupies the lowest range of the spectrum.

Academic world and industry are already looking rfegans to improve the system performance
further. Challenges of baseband signal processsngoiprovide high bandwidth, spectrum

efficiency, higher data rate, reduced device coripylereduced latency, peak data throughput
and flexible channel bandwidth. Some other impdriasues in the field of baseband signal
processing are regularity, power consumption aritehyalife. Regularity means that the system
should provide fast response time because a slogggonse time can prevent to adopt new
technology. To target these challenges new stasdae needed to be introduced in the field of
communication.

Long Term Evolution (LTE) is one of these most r@cgtandards and it continues to evolve to
meet operator requirements to face future challenfieshould address all these targets in a
timely and economical manner. LTE is designed tovigle peak data rate, high degree of
mobility and wide coverage, it must also supportalde transmission bandwidths.

The algorithms which are used in signal processing very complex. They require high
computational power, so the need for parallel pgsicey has always existed in signal processing
systems. Many Digital Signal Processing (DSP) systeave been developed which incorporated
some form of parallelism in order to achieve a megllevel of performance.

Traditionally embedded computing tasks have beendled by DSPs as well as Field
Programmable Gate Arrays (FPGAS). These provide gwod alternatives to embedded
microprocessors in terms of power, speed and coraiglity. However, they are still only two
regions in a large multi-dimensional space. FPGAs/ide low-level fine-grained parallelism
with a degree of performance achievable throughtiptellevels of parallelism. DSPs have
higher clock speeds and have lower power requirésnbnt lack the configurability of an FPGA.
Still, there are regions in the design space thathe explored that fit between DSPs and FPGAs.
These are Coarse-Grained Reconfigurable Arrays @RRCGRAs have several advantages
over traditional DSP and FPGA approaches [14].

Signal Processing on Ambric Processor Array

First, most strive for ease of application develepm such as a high-level language (HLL)
approach for their tools. For example, rather tbamstructing a design in a hardware description
language such as VHDL or Verilog, several of thésgcribed platforms use HLLs such as C or
C++ [14].

Second, CGRAs are able to achieve higher perforenamcl lower power per operation when
compared to FPGAs and DSPs. CGRAs accomplishtirasigh higher levels of raw parallelism
as compared to DSPs and more efficient use ofosiliger operation as compared to FPGAs.
CGRA systems are multi-core systems that fit imo different categories: processor-centric
arrays or clusters, and hardware-centric mediurmgdaprocessor arrays (MGPA). Processor-
centric arrays or clusters are made up of indiMiquacessors connected via programmable
interconnect such as MIT's RAW, Clearspeed’s CSXd8M'’'s Cell Broadband Engine and
Ambric’'s Am2000 reconfigurable processing array AR PL4].

Over the recent years, several parallel processialgitectures have been introduced in order to
fulfil high computational application needs, in ra@nd more efficient way. The capabilities of
the available technologies such as Ambric are lavel which can support such a parallelism.
This thesis attempts to highlight the relevancearfllel processing developments to accomplish
signal processing requirements.

This thesis will examine the use of parallel preoesarchitecture in baseband signal processing.
This has been done by implementing three demaragagyithms in LTE on Ambric Am2000
family Massively Parallel Processor Array (MPPAThe Ambric chip is evaluated in terms of
computational performance, efficiency of the depeient tools, algorithm and I/O mapping and
analyzed that whether energy consumption can kedttmperformance needs.

Implementations of matrix multiplication, FFT andodk interleaver were performed. The
implementation of algorithms shows that high legélparallelism can be achieved in MPPA
especially on complex algorithms like FFT and Mainultiplication.

The thesis report is organized in several chapfersdric Am2000 MPPA is presented in Chapter
2. The LTE standard for mobile communication isspréged in Chapter 3. Selected algorithms
overview from LTE is presented in Chapter 4. Pcattwork done within this thesis, including
API implementation and detailed description of #igorithm implementation and mapping on
the Ambric architecture, is presented in Chapterte results from the implemented algorithms
are presented in terms of cycle counts, countsafgssor stalls, and speedup for different sizes
of input data,; this is done in Chapter 6. A summemy interpretation of the results achieved in
the simulation, as well as experience gained froorkimg with new processor architecture
(Ambric) is presented in Chapter 7, and at the thede are appendices with relevant pieces of
code.

Ambric MPPA

2 Ambric MPPA

Ambric first focused on the right programming modeld then they invented new hardware
architecture and circuit designs to facilitate tfpggramming model, providing massively
parallel embedded computing. Ambric chip belongshe category of MPPA and provides a
practical implementation of MIMD programming model.

2.1 Chip Architecture

Ambric chip contains a 5x9 array of brics. Bricghim Ambric chip and their interconnection are
shown in Figure 1. Ambric chip has 4 GPIO (genertaipose input and output) for reading and
writing input and output streams, two DDR2 SDRAM#le-data rate 2 synchronous dynamic
RAM) interfaces to external memories, a Flash fater for the run-time configuration, a PCle
(Peripheral Component Interconnect express) todroRC.

An Ambric chip uses two types of processors StragnRISC with DSP extension (SRD) and
Streaming RISC (SR), as shown in Figure 2. A clustdour processors is a compute unit. The
main functionality of SR processor is the admimistm of channel traffic, producing complex
address streams and other service tasks which stendy demonstrate high throughput for
SRDs.

GPIO GPIO

PCle

Flash

DDR2

Figure 1: Ambric chip

Signal Processing on Ambric Processor Array

SR processor is a 32 bit streaming RISC controtgssing unit. SRD is high performance
processor. It is a 32-bit streaming RISC contracpssing unit with digital signal processing
extensions. This processor is used for mathembtid@manding processing. It has confined
memory for 32 bit instruction and can execute farttode from RAM unit directly.

2.2 Brics and Interconnects

Brics and Interconnects is another part of the Amiship architecture. A bric is the basic
building-block that is replicated to make a coraclk bric has two compute units (CU) and two
RAM units (RU), totalling 8 CPUs and 13 KB of SRARUSs and CUs are pooled on top stage
in a physical structure block called a bric. Ambgbip is consisting of array of brics.
Computational power can be determined by the nurabérics present in system. The array of
brics are ajbining control units and gdining RAM units.

Brics are connected through channels. The physcahitecture is highly scalable. These
channels are word wide and run at up to 10 Gigglgitssecond. Figure 2 shows how CUs, RUS,
and their interconnects are placed in a single bric

Figure 2: A Brick and Interconnects

Ambric core contains 45 brics arranged in arrag-lflashion. It has in total 336 SR and SRD
processors, 7.1 Mega bits of distributed SRAM amthing on 350 MHz. If all processors work
collectively then they are able to perform 1.2itil operations per second. This performance is
supported by the interconnect's 792 Gbps bisedb@amdwidth, 26 Gbps of off-chip DDR2
memory, PCI Express at an effective 8 Gbps each aay up to 13 Gbps of parallel general-
purpose 1/0. [2]

Ambric MPPA

2.3 Processor Architecture

Ambric processor architecture is designed to perfatata processing and control through
channels. The processor architecture is depictdéigare 3. The read and write operation in
memory is performed through channels, similarhytringions are also passed through channels
which make channel communication a prominent featfitAmbric architecture.

ALU RAM

Channels\>
C Registers)

Processor

Figure 3: Processor Architecture

Ambric processor is very lightweight 32-bit streamiRISC CPUs. In this architecture RAM is
mostly used for buffering rather than a global mgm8ince Ambric uses hundreds of processors
to perform computing in parallel, it is very impamt to have simple, efficient and fast
implementation of instruction set to take advantafg@struction-level parallelism.

In this architecture, every data path is a sellyonizing Ambric channel, which makes
pipeline control easy. Memory locations are comgdost general registers instead of Ambric
registers, since they can be read and overwrittanygime.

2.4 Ambric Registers and Channels

A chain of Ambric registers is called Ambric chahas shown in Figure 4. These channels are
fully scalable and encapsulated for passing cordarml data between objects. In the place of
ordinary synchronous registers, Ambric registers ased throughout the chip. The stages of
channel are fully local, there is no wire longearttone stage. If we change the length of wire
then there is no effect on the functionality butvitl affect latency only. If the channel length
increases then latency increases and if channgihetecreases then latency also decreases.

Ambric register has data in and data out. It alae two control signals known aslid and
accept. These control signals make the Ambric registéi-ssachronized and asynchronous.
When a register can accept input it assertadtept signal upstream and when it has output
available it asserts itglid signal downstream. When both signals are true then teamsfs taken
place independently without any negotiation or asikdledgment.

Signal Processing on Ambric Processor Array

Ambric Register

Valid $ '

Accept €—

[l

Data q ﬁl

!

b i

Figure 4: Ambric Channel and Registers

Processors are interconnected in hardware througibris channels. Every processor runs
independently. It only responds to the own localrstels which is why local changes have local
effects. We can change clock speed for each procesparately at runtime because it is a
globally asynchronous and locally synchronous &echire.

2.5 Structural Object Programming Model

The structural object programming model (SOPM) dbses how Ambric chip is programmed.
Figure 5 shows the basic elements and their streiatuthe programming model.

The Ambric chip consists of an array of hundreds3@fbit RISC processors that can be
programmed with ordinary software, and hundreddistfibuted memories. These are known as
Objects because they follow the strict encapsulatide. Objects do not depend on each other.
They run independently on their own hardware. $tmat objects have no implicitly shared
memory so there is no side effect to other objects.

The channels act as FIFO buffers. Channels are tdsedthe communication. Objects
communicate through a parallel structure of haréwarannels. Data and control tokens send
through channels. Objects are synchronized throbgtdware channels at each end, not
scheduled at compile time but dynamically usedessiad at run time.

Inter-processor communication and synchronizatienc@mbined in these channels. Sending a
word through a channel is both a communication syrtthronization event. Ambric channels

synchronize transparently and locally, so that igppbn can achieve high performance without
complex global synchronization.

Design re-use is practical and robust in this sgs@&hannels provide a common hardware level
interface for all objects. It is easy for the olgeto be assembled into higher-level composite
objects, the same way as the leaf objects sinactbare encapsulated and only interact through
channels.

6

Ambric MPPA

\ Composit Object

Asynchronous Ambric y
Channel

Leaf / Primitive
Object

(& /

Figure 5: Programming Model

Programming is a combination of familiar techniquégplication developers develop block
diagrams to express object-level parallelism. Fashierarchical structure of composite and
primitive objects is defined, connected by chanrtbiat carry structured data and control
messages. Then ordinary sequential software isanrib implement the primitive objects [1].

2.6 Application Structure

Here we shall describe briefly about applicatiorudure in aDesigner. Ambric developer’s
environment provides two types of programming laaggs, one iastruct and the other igjava.
Theajava is a subset of java language and is used to progigects in terms of java classes, or
objects can also be written in assembly languadeaile/dstruct language is used to create the
design of application in terms of interfaces androtels, then these interfaces are connected each
other with the help of channels. In this way, amion design and actual algorithm
implementation will remain separate. Tagruct also provides a programming construct called
binding through which java classes are bounded whth interfaces. Each object will run
independently on a single processor.

2.7 Development Tools

We have discussed programming model earlier. k& gbiction we will provide an overview of
aDesigner, an integrated development environmé&ussigner is based on Eclipse IDE, an open
development platform developed by Eclipse foundati®bjects can be written in standard
assembly or subset of Java language or loaded Ifbvaries. We can define the structure in text
based structural language or graphical block dragraFigure 6 shows the graphical block
diagram and Figure 7 shows text based structungliage views from aDesigner.

Signal Processing on Ambric Processor Array

Java - TriggerExampleDesign.design - Ambric aDesigner

Fil= Edit Mavigate Search Project Run Layouk Graph wwindow Help
: L'=<> = 20y (E s 3{_. ForzEs o e B Y %% Debug iS},J Java |
E@ o = Source.astruct | = Rl.astruck | 5 =i "
i
[o
'-:,- e — cO:out[D], initwal
~
! TriggerExample i __ fifo_r_out =]
lrg src < —channelt:out, in[1] |
= Eﬁ a_ctans eZ2:toR1. fromSre = cS:out, in i
cl:toll, fromSre
11 _ fifo_12_out
eFtel2, fromL1 cdiout, in channeld:out, i
B
% | >
Source | Elaborated | P& Stats | PA Timer Bandwidth | PA Asim 155 |
| | Problems | 1avadoc | Declaration | E Console. 23 -\MF'rogress: L :--:..5 L‘ﬁ = = 1]
L= t : : ! - ! - =

Figure 6: Graphical Diagram View

Real-time hardware debugging uses the vacant oresnemories and channels. There is also
available a dedicated debug network. Programmersisa standard debug features like halt, step
in, restart a processor and can view channel valodsvents.

The aDesigner IDE also provides behavioural sinouléaSim) and functional simulator. The
behavioural simulator, aSim, is used to simulateekecution and debugging applications on a
workstation without having a chip [1].

Functional simulator is used to run and perforntiahisoftware debugging. Ambric developer
board creates a configuration file for the applaratdeployment. A host can configure the chip
on runtime or it may be configured by itself frotash just like FPGA configuration.

Ambric MPPA

Java - TriggerExampleDesign. design - Ambric aDesigner

File Edit MNawigate Search Project Run Window Help
T TN G R
IEEE- -0 Q-

B "*’Tr‘i-;_u ErExamplebe..,. X

e design TriggerExamplelDesign |

L T %5 Debug &2 1ava |

! ¢
i

= Source.askruck ! =l R1.askruck | 5 = E\I

Root rookt;

et

3

linterface Source {
inbound initWVal:

coutbound tolLl, toR1;

E’r Trigge-r-Example 7__

| s s
= i 3
- ﬁ actins hinding SourceBinding implements Source |
E- (X L1

II] o implementatcion "3curce. jawa':
: g |
i

[3] Rr1.g

‘binding CompositBinding implements Root
Source Src;
Ll 1i: L2 1=2;
3555 M = B
Wio io = {numSources=1l, hnumSinks=2}:
channel cO={jioc.oucf[0], sSsro.initValy, cl={src.tolLl, 11.f
cZ=s{src.toRl, rl.from3rc}, c3={11.tolZ,; lZ.frDmT_.
cd={12.out,; dio.in[0]}, oS5S={rl.out, dio.infl]}: |
25 b . T il >
Source | Elaborated | Pa Stats | PA Timer Bandwidth | Pa asir 155 | N

BB E

5l '-.Probl_ems'

rogress
== = |+ L

Javadoc | Declaration El console £2 - F

Figure 7. Text Base View

Signal Processing on Ambric Processor Array

10

Long Term Evolution

3 Long Term Evolution

Long Term Evolution (LTE) is emerging technologyieh would be commercially available in
2010 [6]. Much more could be written on this tediogy, but topics which are directly related to
this thesis are discussed here. This chapter vallide an overview of LTE by summarizing the
requirements, objectives and system architecture.

3.1 Technology Overview

With advancement in mobile technology, broadbarngkeisoming a reality. It is estimated that by
2012, around 1.8 billion people will have broadbardl two-thirds of them will be mobile
broadband consumers. To meet these requirementsee@ to have a technology which can
provide high bandwidth with low cost and reducedide complexity. To achieve this goal,
scientist and researchers are working on a tecggalamed LTE. It is a project of 3GPP and its
current organizational partners are ARIB, CCSA, ERSIS, TTA, and TTC. [4]

3.1.1 Targets and Objectives

Long Term Evolution is designed to provide high dhaiath, high spectrum efficiency, higher
data rate, reduced device complexity, reduced ¢gtgreak data throughput and flexible channel
bandwidth.

3.1.2 LTE Requirements

LTE is designed to provide peak data rate, highrekegf mobility and wide coverage. It should
support up to 200 active users in a cell with lass 5 ms user-plane latency. System should be
optimized for 0 to 15 km/h but it should supportt@5.20 km/h with high performance.

Another requirement of LTE is to provide uplink geate of 50 Mbps and downlink peak rate of
at least 100Mbit/s. Furthermore, Radio Access NektWBAN) round-trip times (RTT) should be
less than 10ms.

LTE must also support the variable transmissiondbadths, including 1.25 MHz, 2.5 MHz, 5

MHz, 10 MHz, 15 MHz, and 20 MHz. Each transmisdi@mdwidth corresponds to a fast Fourier
transform (FFT) size of 128, 256, 512, 1024, 1%88&] 2048 points, respectively [5].

3.2 System Architecture

LTE has two main components that are uplink andrdiok. Together with advanced antenna
technologies, it uses Orthogonal Frequency Diviswitiplexing (OFDM) and Single Carrier

11

Signal Processing on Ambric Processor Array

Frequency Division Multiple Access (SC-FDMA) as rdio access technology for downlink
and uplink respectively. A brief overview of thes@ multiplexing technologies is provided in
the next section.

3.2.1 Single-carrier FDMA (SC-FDMA)

SCFDMA is a modified form of OFDMA. Using this teuljue high data rate uplink
communication could be achieved in future cellidgstems. This technique provides similar
throughput performance and essentially the sameathveomplexity as OFDMA. It provides
peak-to-lower average power ratio (PAPR) as comptre OFDMA. Like any other
communication systems, there are complex tradéetiszeen design parameters and performance
in an SC-FDMA system. Figure 8 depicts block diagaf SC-FDMA transmitter and receiver
structures.

N-Point Sub-Carrier N-Point j/
— 2 Mapping T 1DFT 4+ Add CP/PS [+—> DAC/RF §
N-Point L, | Sub-Carrier ||, N-Point L Remove |[L _j/
< | IDFT DeMapping [* | DFT |§] cpps |} | ADC/RF

Figure 8: Transmitter and Receiver structure of SC-FDMA

3.2.2 Orthogonal frequency-division multiplexing (OFDM)

This multiplexing technique is used as digital ma#trrier modulation method. To carry data, it
uses a large number of closely-spaced orthogormatatriers. Several parallel data streams or
channels are created from that data. This subetaare then modulated at a low symbol rate
using conventional modulation schemes such as Quadr Amplitude Modulation (QAM) or
Phase Shift Keying (PSK), maintaining total dati@sasimilar to the conventional single-carrier
modulation schemes in the same bandwidth. Figulegcts OFDMA transmitter and receiver
structures.

This is very much similar to SC-FDMA. The differencs the presence of Discrete Fourier
Transform (DFT) in the SC-FDMA transmitter and theverse Discrete Fourier Transform
(IDFT) in the SC-FDMA receiver. That is why SC-FDMi& sometimes referred to as DFT
spread OFDMA.

12

Long Term Evolution

N SUMb;;?;:éef +y MFont L3 AddcPPS |3 DAC/RF j/ §
L, | Sub-Carrier M-Point | |, Remove |/ _j/
&—— Detect | DeMapping [DFT 1 cprs | ADC / RF

Figure 9: Transmitter and Receiver structure of OFDMA

3.2.3 Block Interleaving

Interleaving is used to make a burst error intaloan errors. These errors can be corrected by
error correcting codes. In mobile communicationreted suffers from noise and a fading due to
multi path propagation. Burst errors occur in traitked data due to fading. Block interleaving is
used in OFDMA [7].

e Y N

— Input Signal |[+—> Encoder [+ Interleaver |+—> Modulator \/

Output De- L | De- __*/

< Signal Decoder |1 |nterleaver || Modulator

. /

~
,l

Figure 10: System block diagram for mobile data communication

Interleaver is used at the transmit end of charstelwn in Figure 10, the inverse of the
interleaver must be used at the receiver end twvezdhe original signal. The inverse interleaver
is referred to de-interleave. Block interleavingl &@FT is further discussed in Chapter 4.

In this chapter, Long Term Evolution technologydiscussed. System architecture is examined
and brief overview of multiplexing techniques i®C-FDMA and OFDMA are provided. An
overview of block interleaving is also provided. @malyzing LTE, it is observed that DFT is the
most important component of the system which isroomin both transmitter as well as receiver
structures.

13

Signal Processing on Ambric Processor Array

14

Algorithm Overview

4 Algorithm Overview

This chapter will describe an overview of the sedcalgorithms which we are going to
implement on the Ambric architecture in the nexpter.

4.1 Matrix Multiplication

Matrix multiplication is one of the most fundamdmtperations in numerical linear algebra, a bit
more challenging algorithm. Its importance is mégdi by the number of other problem (e.g.
computing determinants, solving system of equatatyix inversion, QR decomposition, etc).

By the definition of matrix multiplication, the nuvar of columns in matrix A is equals the

number of rows in B, this range of numbers is calis inner dimension. Finally, the number of
rows in A is equal to the number of rows in theufst matrix C and the number of columns in
B is equal to the number of columns in C, this mognumbers is called as outer dimension [8].
Therefore the inner dimension of the matrices rbastatisfied.

Cnxp:Anxm,Bmxp (41)
The product C of two matrices A and B is defined as

Ci'j = Z Ai,k Bkyj (42)

4.2 Fast Fourier Transforms (FFT)

FFT is an optimized and fastest way to calcula¢geDIiscrete Fourier Transform (DFT). It is used
to convert the samples in time domain signal tgudesncy domain signal. FFT is optimized to
remove the extra calculation in DFT. Number of gkas to be transformed should be an exact
power of two. Mathematically, the Fourier transfazam be performed without the demand of the
number of samples, but the speeding up of the itigoto an FFT adds this demand [12].

There are two approaches for the calculation of.FPBile is the decimation-in-frequency and the
other is decimation-in-time. Both approaches rexjuthe same number of complex
multiplications and additions. The key differencetvizeen the two is that decimation-in-time
takes bit-reversed input and generates normal-codgout, whereas decimation-in-frequency
takes normal-order input and generates bit-reveosgout [9]. The manipulation of inputs and

15

Signal Processing on Ambric Processor Array

outputs is carried out by so-called butterfly seagéhe use of each butterfly stage involves
multiplying an input by a complex twiddle factorostm in Figure 11.

4.2.1 Radix-2 FFT

The most common method for computing the FFT is fhaix-n algorithms. The radix-2
algorithm is illustrated in Figure 12. It is applide only to sequences of length N=nm, where m
is a positive integer. The most important advantaféhis method is a regular and efficient
computational scheme.

The basic computation in the radix-2 decimatiortiime algorithm is the butterfly 1, graphically
described in Figure 11. It is applied in log2 (Mnhsecutive steps, N/2 times in each step giving
the algorithm a complexity of O (N log2 N).

Figure 12 shows the 8-point FFT computation segeiefit) using the radix-2 decimation-in-time
algorithm. Observe the shuffled order of the inpamples, the order is found by reversing the
binary representation of a normally ordered segeieBquivalently, the order can be reached by
the log2 (N), 1shuffels of the original linear seque. One may also rearrange the structure of the
calculation depicted in Figure 12, so the inputussage is in order producing a shuffled output
[13].

O N

=) A=a+bW(N,K)

W(N,K)

B =a-bW(NK)
\ /

Figure 11: Butterfly Computation of radix-2 with decimation-in -time

4.2.2 Complexity analysis of radix-2 FFT

Obtaining the butterfly as the basic unit of congpioh then there is one complex multiplication
and two additions involved in each butterfly. WINI2 butterflies in each of log2 N steps for a N-
point FFT then will be a total of 2N log2 N real iplications and 3N log2 N real additions, e.g.
5N log2 N floating point operations. In all is tbemputation in O(N log2N) [13].

16

Algorithm Overview

b vy

Figure 12: 8-point FFT butterfly using the radix-2 decimation4n-time

4.3 Block Interleaver

There are various techniques used for the bloaklgdving and we have selected two of them,
one is matrix interleaver and the other is helmedn interleaver. Now we will describe these
technigues one by one.

4.3.1 Matrix Interleaver

In matrix interleaver, the information stream istten row by row in a matrix of “n” rows and
“m” columns and read out column by column. The oulusize n is called the depth and the row
size m is the span. Such an interleaver is conipldedfined by n and m and is thus refereed to as
M(n,m) matrix interleaver. At the De-Interleavenfarmation is written column-wise and read
out row-wise. The capability of burst error scattgrfor the matrix interleaver depends on the
values of n and m [11].

4.3.2 Matrix Helical Scan Interleaver

The Matrix Helical Scan Interleaver performs blaaterleaving by filling a matrix with the input
data row by row and then sending the matrix data relical fashion. The number of row and
number of column parameters are the dimensionseofniatrix.

Helical fashion means that the block selects outipitds by selecting elements along diagonals of
the matrix shown in Figure 13. The block traverdegjonals so that the row index and column

17

Signal Processing on Ambric Processor Array

index both increases. Each diagonal after the dingt begins one row below the first element of
the previous diagonal.

1 2 3 4

1,6,11,16, .
[1:20] R [5’10’15’20’ cH)eltlsai Forsrrfgtr
201 19 [10 |11 12| __| 9141940, | PPY
13,18,3,8,
13 114 | 15 | 16 17,2,7,12]

17 {18 | 19 | 20

Figure 13: Helical Scan Block Interleaver

18

Implementation

5 Implementation

We have chosen three algorithms for the implemiemtand evaluation of Ambric architecture.
We already have presented an overview of theseritdges in Chapter 4. This chapter will
describe the practical work done within the thesisluding API implementation and detailed
description of the algorithm implementation and piag on the Ambric architecture. In later
discussion whenever we will refer to a processarlgect, it means an object running on a single
processor so we will use these terms alternatively.

5.1 Application Programming Interface (API)

In implementation we need some functionality likeetl point, binary log and binary power, so
first we will discuss about the actual implemematof these functions. We have discussed about
fixed point in Chapter 3, now we will describe mait®ut its implementation.

5.1.1 Fixed point

The arithmetic operations like addition and sulitoacof fixed point numbers can be performed

with normal integer addition and subtraction opamsat But care must be taken in the case of
multiplication because when we multiply two fixedipt numbers of length WL then the result

would be 2WL. In Ambirc architecture the lengthaofvord is 32-bit. So we can decide any fix-

point format within 32-bit of word length. For imstce, we have Q8.24 fix-point format where QI

is 8-bits including one sign bit and QF is 24-bAsabric architecture supports the multiplication

of two 32-bit numbers and store the 64-bit resulthie accumulator register from where we can
read lo 32-bit and hi 32-bit values of the resafiarately.

After multiplication our result will be store inghaccumulator but we can not read and store 64-
bit number inajava. So hi part of the accumulator contains the resfuthultiplication in Q16.16
format. In order to convert this number back to238&ormat we have to shift this number 8-bits
left so lower 8 bits of the answer would alwaysdpepty. To get more precise answer we can
read lo part of the accumulator and move its migsiificant 8-bits to the left of our answer.

5.1.2 Binary log

Binary logarithm is often used in mathematical gkdtions so we also have implemented it on
Ambric. It is used in butterfly calculation of FFTn 32-bit integer range, the integer binary log
can be computed by rounding down or rounding up. Maee implemented this function by
assuming the floor value. The two techniques aosvahin the following equation;

Floor (Log2 (N)) = Ceiling (Log2 (N+1))-1 (5.1)
Where N>=1

19

Signal Processing on Ambric Processor Array

We have implemented the algorithm by using onlyharetic right and arithmetic left shift
operators as we do not have support for floatirngtpmperation.

5.1.3 Binary power

Taking binary power is very simple, each bit in @avlength represents 2N. For instance, in 8 bit
word the first bit represent 20=1, second bit repnts 21=2, third bit represents 22=4 and so on.
We can take power of two by shifting 1 to left Més.

Powerof 2=1<<N (5.2)
ForN>=0

5.2 Algorithm Implementation

For each algorithm, we have made two differentgiesso that we can evaluate the Ambric chip
and development tools better. This will make useaol think how can we design and map
application efficiently onto the Ambric architectur

For optimal utilization of parallel processing chpigies, data stream pass to it should also be
parallel in its structure. Ambric chip provides pribur input and output ports. So we can not
read more than four input streams from the chip.riio an algorithm on more than four
processors we have to distribute a single streapatallel processing elements. Also an object
can have maximum five input ports and six outputgaccording to the SRD’s instruction set.

Mostly SR processors are used for streaming and fRDessors are used for math intensive
operations. So we can distribute our input and wustreams through SR processors with the
help of splitter objects. These objects take single input streasndaplicate it, and send two or
more streams on output, although this procedurketakie some time to reach input to the objects
actually performing some useful work. But this tirman be included in setup time of the
application. Finally, we cajoin the output stream in the similar way.

5.3 Matrix Multiplication

We have done matrix multiplication in two differemays. The designs differ mainly by the flow
of data stream. This will also tell us about howea@ provide parallel data streams to different
objects efficiently.

20

Implementation

5.3.1 Design approach 1

This design reads matrices in two parallel streanmd passes the data to other objects in serial
order. Simultaneously this data is provided to abgects performing multiplication and finally
the result is joined to output stream. Figure léwshour objects connected in a ladder
performing multiplication along with data flow. Haobject in this design is a composite object
which consists of twasplitters “A” and “B”, one multiplier “M” and one join “J” object
illustrated in Figure 15.

C N

Resultant
- - . .
Matrix A
e |) |) [)

A /

Figure 14: 4 composite objects in ladder

Solitter A reads matrix A and send its first row to msltiplier M and then passes the remaining
matrix to the next composite object. So eatitiplier object gets one row of matrix A and stores

it for further use. For instancewultiplier M of composite object CO has first row, C1 hasosec
row and so on.

Solitter B reads columns of matrix B one by one and pasaebl column to itsnultiplier M
moreover it sends to the next composite objectnTih&vill read second column and apply the
same phenomenon on it. So in this way, eadhiplier M object will get all columns one by one.

S Composit Object

Output Stream

Leaf Object

Input Stream

Figure 15: A composite object

21

Signal Processing on Ambric Processor Array

In the first iteration of the algorithm, eachultiplier M will multiply its corresponding row of
matrix A with column of matrix B and sends out tlesult to their respectij@in object. Thgoin
objects will collect all elements and send out ooluone of resultant matrix C. In next iteration,
eachmultiplier will multiply their respective rows with secondlemn and send out the second
column of resultant matrix C and so on. Each comgabject in this design will calculate one
row of the resultant matrix.

int dim = 8; // dimension of matrix
CompositChi col[din]

for (i=0; i<dim; i++){
co[i] wname = "Element™+i; /F thiz name will he displayed on the elaborated
col[i] .dim = dim;
co[i] .rows = dim - 1i;
co[i] .id = i41:

if{(i4+1) == dim) |
co[i] . last = true;
}oelse |

co[i] .« last = false;

H
for (i=0; i<dim; i4++)4

if{i == 0){
channel ©l = {ioc.out[0], co[i] .splicInd};
chanthel c2 = {io.out[l], co[i] .splitInE}:
channel o3 = {col[i] .join0Out, io.in[0]};

+ else |

channel ©d = {co[i-1] .splitfucd, co[i] .splitInd};
channel ¢S = {co[i-1] .splicOucE, col[i] .splicInk}:
channel o6 = {col[i] WjoinOut, co[i-1].joinlIn}:

if | (i+41) == dim) {
% for the last 3plitter and Join objects we don't need to create chani
* 20 mark theze input ports a2 un-used, now we can't read/write on theg
gt
attribute Unused() on co[i] .splitCuth;
attribute Tnused() on co[i] .splitOuthE;
attribute UThused() on col[i] .JjoinIn:

Figure 16: Design file for the multiplication

For the multiplication of 4x4 matrices we need 405processors and 12 SR processors. So for
NxN matrix multiplication we need N SRDs and 3N SRgyeneral the formula becomes;

Total no of processors = 4N (5.3)

22

Implementation

This design is scalable; it means we can use #8gd for NxN multiplication within the range
of total number of processors illustrated in Figd® By changing only one compile time
parameter we can scale this design for NxXN mud#tion.

5.3.2 Design approach 2

This design is similar to the approach 1; the mdjtierence is in theplitter part. This design is
more efficient and requires less number of obj#ictstrated in Figure 17.

Input streams provided toultiplier objects are more parallelized in this design ti@nprevious
design approach. Theplitter B will read one row and distribute elements of rmamultiplier
objects one by one. If there are four elements liavathensplitter B will send first element to
multiplier MO and second to M1 and so on. Eaalitiplier object will get one column of matrix
B. In this way, we do not need to take transposéhefresultant matrix; it is demonstrated in
Figure 18. In the meantimsplitter A reads one row of matrix A and provides this rtmwall
multiplier objects at the same time, then second row tawatiplier objects and so on.

Matrix A —

— Matrix C

Matrix B —_—

Join Part

Splitter Part

Multiplier Part

. /

Figure 17: Objects communication of design approach 2

Every multiplier object stores the column of matrix B for furtheewand gets rows of matrix A
one by one, and multiplies them in parallel. Fipglbin objects get rows of resultant matrix C
and sends them to output stream. This design egjtotal 7 processors which include only 3 SR
and 4 SRD processors for the 4x4 matrix multipiarat

23

Signal Processing on Ambric Processor Array

public void run(Inputitream<Integer> inE,
output3tream<Integer> outBl,
output3tream<Integer> outB:zZ,
output3tream<Integer> outB3,
output3treasm<Integer> outB4) |

e
* read matrix B row-wise but distribute it coloumh-wise
* so that each Mulitplier object will hawve corresponding of
* e.gr Mulitiplier 1 will have colowmn#l and Mulitiplier 2
L
for(int i=0; i<dim; i++) |
outEBl.writelInt (inE.readInt ()]
ouLB2 .writelnt (inB.readInt (1)
outE3 . writeInt (inE.readInt ()]
outEd . writelInt (inE.readInt ()]

Figure 18: Java code forsplitter B

5.4 Fast Fourier Transform

FFT is implemented with radix-2 described in Chagtehere we will discuss about its design
and mapping on Ambric architecture. We have alggemented two designs for FFT which we
will describe in next section. Here we will discusgout some commonalities used in both
designs.

Each design approach has two different versions,isr8-point and the other is 16-point FFT.

We will discuss only 8-point FFT because both \arsihave similar design principal. It is a

better approach to provide pre-calculated twiddledrs to the application rather than computing
them on run-time, in this way we can get some gpeeWe can store twiddle factors in several

ways, in lookup table or in external memories.dh @lso be provided to processors on run-time
through input streams but it will consume more veses. We can also pass twiddle factors to the
objects at compile time througistruct language and this approach is better.

In design approach 1, each object stores the teitatitors in lookup tables. We can not pass
them throughastruct language at compile time because we can not pesg af properties to
java objects or assembly code. But in design agbr@aeach object will need only one value of
twiddle factor. So twiddle factors are providedotgects once through statstruct design and
then stored them in memory permanently, it is showfigure 19.

24

Implementation

ff values for acage 4 cwiddle factors
int a4Cos[] = {16777216, 15300126, 1iG63eG3, 6420363, O, -6420363, -11663683
int s43in[] = {0, -6420363, -11863683, -15500126, -16777216, -155001%Z6, -118

for (1=0; 1dn?£t_unﬂldes; i4+4) |
/I objects for scage 1
f£ti4[1] .nawe = "FFT Zindout™+i;
fft24[i] .propPoints=nFoints;
fitd4[1] .propCosial = slcos;
fft24[i] .propdintal = al3in;
i objects for stage 4
fER42[1] nawe = "FFT dinZout"+i;
fit4d[1i] .propPoints=nPoints;
ffe42[1] .proplosVal = 34Cos[1]):
fet42[i] .propdinVal = ad43in[i];

Figure 19: Twiddle factors assigning at compile time

public Splitter (int propM) {
thi=s.N = propl:

public void run(Input3tream<Integer:> inReal,
Input3tream<Integer:> inlig,
output3tream<Integer> outReall,
oJutputStreamwm<Integer> outImgl,
output3tream<Integer> outRealzZ,
outputitream<Integer> outlmg2) |

fAf distribute points in even and odd order for hit-rewversal
for(int i=0; i<N; i+=2) {
4 send even point to left output stream

outBeall.writeInt(inFeal.readInti()l 1:
cutImgl.writeInt| inlImg.readInti()):

4 send odd point to left output stream
outPRealiZ.writeInt | inReal.readInti)):
outImge .writelnt| inlmg.readInti()l 1:

Figure 20: Java code forsplitter object

25

Signal Processing on Ambric Processor Array

We have used decimation-in-time method for the @m@ntation of radix-2. We have used this
technique because it uses bit-reversal mechanissh dnd then it performs the butterfly
computations. Why we have used this mechanism? \Wipern stream is distributed, at that time
we can take bit-reversal sorting on the input [oint

We do not need to reserve one or more processoteddit-reversal sorting, so in this way we
have saved some execution time. Figure 20 elalthie mechanisntplitter objects sort out
the even and odd elements of the input stream.nDudistribution of input stream easplitter

object will send even points to its left object auil points to its right object. The final stagdl wi
have completely separate even and odd pointsdipgcted in Figure 21.

' : D
Even 4P &Q

Odd 4P
@ Even 2P

Odd 2P Q

Figure 21: 8-point FFT bit-reversal sorting

.

This splitter stream technique is also common in our both desighementations. Now we will
discuss more about the two design approaches.

5.4.1 Design approach 1

Figure 22 depict object mapping of the design apgnoand their communication through
channels for 8 point FFT. Each circle represenésdhject running on Ambric processor and
arrow represents the flow of algorithm. Input stneeonsists of both real and imaginary part of
the time domain signal. It means we are readiny aed imaginary part of the signal in two
different parallel streams. It is illustrated irg&ie 23.

26

Implementation

e N

Stage 3

t—» Real Signal
> Imaginary
Signal

Real Signal—|
Imaginary—
Signal

Splitter Part Butterfly Part

Figure 22: 8-Point FFT Design Approach 1

This algorithm can be divided into two parts; fipstrt is thesplitter where algorithm splits out
the input stream along with performing the bit-na sorting and the second part is performing
the butterfly calculations along wifbining the 8-points in all three stages and sends tloetime
output stream. Theplitter part of the algorithm read chunks of 8-points fromput stream and
sends to the butterfly calculation part of algartiwhere each object in stage 1 gets 2-points and
perform butterfly calculation on them, in stageaZle object perform butterfly calculation on 4-
points and similarly stage 3 compute 8-point bélitem a single object.

For this algorithm we need 3 SR and 7 SRD procsedstalling 10 processors while for 16-point
FFT we need 7 SR and 15 SRD processors totallingr@@essors. In general this design will
need /2 -1) SR processors andN-{) SRD processors. So for N-point FFT the formula
becomes;

N
Total Processors EE _1j +(N _]) (5.4)

Each stage in the butterfly calculation part ofoalthm contains half number of objects than the
previous one. For this reason objects in each tiyttstage have more work load than the
previous one. For instance, in stage 1 four prassgserform the butterfly computation on only
two points while in stage 2 two objects perform bhterfly computation on four points so that
they need more execution time to complete the taion. Although we can utilize channel
buffers but they have very limited memory so whentmuous streaming is passed through the
design then processors suffers from stall condstafter certain interval of time.

27

Signal Processing on Ambric Processor Array

interface Iplitter {

inkbound inReal:; /¢ input port for real sSignal
inbound inlImg: // input port for imaginary signal

outbound outBReall, outImgl:
outkbound outRealsZ, outImgl;

property int propPoints; // total no of point in FFT
property int propl; ff no of points to read from previous splitter
H

binding 3plitterBinding implements 3plitter |
implementation "Splitter. java':
arttribute Compilerdptions (target3R = true] oh 3plitterBinding:

Figure 23: Astruct code ofsplitter object and binding with java

This is one of the main reasons behind creating tlasign that we can evaluate the most
interesting and powerful feature of the Ambric a@etture that each object can run
independently on its own speed or different promesssan run on different frequencies. Figure 22
specifies that processors in each stage runs @ereafit frequencies according to the application
requirements. Processor in stage 3 run on itdriedjuency “1f” and processors in stage 2 run on
half of the frequency “%f" and processors in stdgeun on the quarter frequency “¥4f”. The
speed of the object is directly proportional to theck frequency of the processor. So we can
utilize this feature in the design by scaling theck frequency of processors on each stage.

5.4.2 Design approach 2

This design is enhanced and more efficient than désign approach one. It is also more
parallelized version and somewhat more flexiblenttize other one. Theplitter part of this
design is the same as the design approach 1. Thareadditional part of the algorithm which
will join the output stream at the end of butterfly calcoies.

In this design each object only computes 2-poittiteilly calculation so all objects will have the
same work load. As all objects have same work kmagrocessor stalls are reduced in this design.
This design does not require any change in thekdi@rjuency to scale the execution speed of
objects. Figure 24 demonstrate 3 stages of 8-fdiiit where each object gets 2 point from input
stream and multiplies them.

28

Implementation

Real Signal —| | p» Real Signal
Imaginary — .
] Imaginar,
Signal Signal y

Join Part

Objects performing butterfly

(& /

Figure 24: 8-Point FFT Design Approach 2

This design is efficient from the design approaclhetause each object only computes one
butterfly. In this design we do not have loop oeaths because each object only multiplies two
points. The java code is shown in Figure 25.

for(i=0; i<N; i+=2){ // read real and imaginary =signal

®[i] .real = inReall.readInti():
¥[1i] .img = inImgl.readInt () :
®x[i+1] .xeal = inReal?Z.readInt():

x[i+1] . img = inImgs.readInt():;
¥

f4 Butterfly calculation using fixed point numerics

int TR = fp.subtract (fp.wultiply 32 (x[1] .real, co3), fp.wultiply 32 (x[1] Ldmdg, Sind):
int TI = fp.add{fp.malciply 32 (x[1] .real, =in), fp.wulciply 32 (x[1] LAmg, ©oa)1:

®x[1] .xeal = fp.subtracti(x[0].xreal, TRI:

®x[1] .img = fp.subtract(x[0] . img, TI):

#x[0].real = fr.add(x[0] .rezl, TRI:

®x[0] .img = fp.add(=[0].img, TI);:

for (i=0; i<MN: i+=2) |
outBReall.writelnt (x[1] . real):
outImgl.writeInt (x[1i] . img) ;
outRealz.writelInt (x[1i+1] . rezl);
outItngs . writeInt (x[i+1] . img) :

Figure 25: Java code computing one butterfly

29

Signal Processing on Ambric Processor Array

This design requires more number of processors8fmint FFT we need 18 objects {ditter,
3join and 12 objects for butterfly computation) andX6rpoint FFT we need 46 total objects. So
for N-point FFT 20/m -1) number of SR processors aming log2N) SRD processors and the
formula become;

N N
]+ Sxlog{N
Total Processors{m j (m 92()j (5.5)

Wherem is the number of points calculating on each obgect should be in the power ofR.is
the total number of points in the FFT and k{4) represents number of stages in the FFT.

When we increase number of points in FFT algorithen number of processors also increases
gradually. But we have limited number of processorshe Ambric chip that is 336; half of them
are SR. Note that we can not use SR processotdanultiplication. So we can only implement
this design for maximum of 32-point FFT. But if weant to use it for calculating larger point
FFT then we can increase valuawfSo in this way, we can use this design to calelday point
FFT more efficiently.

5.5 Block Interleaver

We have implemented two types of Block Interleavdatrix Interleaver and Helical Scan
Interleaver. Structure of the design, illustratadrigure 26, is same for both techniques and is
much similar to matrix multiplication design. Ortlgchnique used on the multiple processors is
different and single data stream is used for ima output.

- N

H = Output Matrix
Input Matrix ——» G @

. /

Figure 26: Design approach for Block Interleaver

30

Implementation

5.5.1 Matrix Interleaver

This design is much similar to the matrix multiglion approach 2; the major difference is in the
splitter part shown in Figure 26.

In this design only onsplitter is required Splitter will read one row and send elements of row to
their respectivénterleaver objects. If there are four elements in a row thariter will send first
element tdanterleaver 0 and second timterleaver 1 and so on. In this way eautterleaver object
will get one column of input matrix. Firshterleaver O starts sending first column to output
stream immediately while others have to wait uthtd antecedennterleaver has sent its data to
output. So othernterleaver objects have to store inputs except first aluen object gets first
column frominterleaver 0 and after sending it to output stream it wilt gecond column from
interleaver 1. Afterwards this method will be applied to ather columns.

5.5.2 Helical Scan

Helical scan interleaver is again similar to thetiitalnterleaver depicted in Figure 26. The only
difference is in the sorting of the data. Helicears interleaver reads matrix data diagonally; a
detailed discussion on the algorithm is given inagler 4. Here we will discuss its
implementation technique.

All interleaver objects will get their corresponding row numbéoyes and sort them diagonally.
For instanceinterleaver 0 will get first row,interleaver 1 will get second row and so on. After
sorting, eachinterleaver object will send data towardsin objects.Join object will get first
element from allinterleaver objects and make first row of output matrix, themgets second
element of eaclnterleaver and sends it to output stream and so on. To gatribw of output
matrix join object has to wait until whole input matrix loaded theinterleaver objects. The
reason is that the last element of first row opotitmatrix is the last element of input matrix.

31

Signal Processing on Ambric Processor Array

32

Evaluation

6 Evaluation

The main objective of this thesis is to evaluatethbr parallel (Ambric) processor architecture is
useful in the baseband signal processing. In thépier we will investigate the efficiency of the
development tools, algorithm and 1/0O mapping.

The results from the implemented algorithms arsgmted in terms of cycle counts and processor
stalls for different sizes of input data. Wheneaeprocessor is waiting for an input or output
(waiting for other processor to get input fromig)known as stall. The total number of cycle
counts is equal to the number of instructions etextplus the number of processor stalls.

Total Cycle Counts = Instructions + Stalls (6.1)

This information is extracted from the aSim simaiatn the simulator we can make both interval

and window measurements. Intervals have a periogiasaored in processor clock cycles.

Windows have a start address and an optional stdgess. The simulator returns cycle counts of
processor execution and stalls for each intervalindow. On processors, intervals and windows
measure the number of instructions executed, cyeksn, and stalls caused by instruction
execution or memory accesses. Since the intervalswandows on a single processor use the
same time unit, the processor cycles, they carolrelated.

In each algorithm, there are some processors rgnimirsequence while some processors are
running in parallel. For the processors which anenng in parallel we have picked the one
which has the maximum number of cycle counts, &ed tve add up cycle counts of processors
which are running in sequence. For instance, irirnatultiplication design approach &litter

A and B is running in parallel so we picked gptitter which has maximum cycle count value.
All multiplier objects are running in parallel so we have agaikeol up one processor from them
and there is only ongoin processor. Finally, we have added cycle countdheke three
processors and find out the total number of cyolents of the whole algorithm.

We will also evaluate the implemented algorithmstenms of speedup values. We can not
analyze the performance of algorithms in termsroétbecause the aSim simulator only returns
cycle counts, processor stalls and number of iogtns executed. We will calculate the speed up
by total number of cycles taken by each algorithmd these cycle counts also include processor
stalls, while processor stalls can be increasedeoreased depending on the implementation of
the algorithm. So we can not evaluate the speeaf afgorithms exactly, but a rough estimation
could be made. Because of the processor stallgpaisng difference in speed up values will be
noticed. The original formula for the calculatioihspeedup is given below;

Speed up = (Time taken by 1 processor/ Time take processors) (6.2)

In this formula we have used the total cycle coumgtead of time.

33

Signal Processing on Ambric Processor Array

6.1 Results from Matrix Multiplication

In Chapter 5 we have discussed two types of algoritnappings for the matrix multiplication.
This section compares the two techniques.

The results from three different approaches forrthtiplication of matrices are given in Table

1. After calculating the cycle counts on the singhabric processor and on multiple processors
we observe that design approach 1 results in & @gtint that is approximately half of the single
processor implementation while design approachsRlt® in three times fewer cycles than the
design approach 1.

In design approach 2 the stalls on the processerseduced. The difference between these two
results is because of the input and output streamogided. The I/O provided to the design
approach 2 is mapped more efficiently. Table 1 shthat design approach 2 is much faster than
the approach 1 and it takes less number of proresso obviously it will also consume less
power.

In design approach 1 tisplitter objects are connected in a sequence and readirdpath in serial
order, because of it the application gets more ggsar stalls. The 1/0O stream provided to the
approach 2 is more parallelized; a detailed disonss available in section 5.3. Both designs use
same number of SRD processors for the computatgprdeprocessors for the matrix size of 4x4
and 8 processors for 8x8 matrix size while bothgiesuse different number of SR processors
for splitting and joining of the data stream.

Matrix Multiplication | Total Cycle count Total Stalls

Matrix Size: 4x4 8x8 4x4 8x8
Sequential 4208 27051 2298 15820
implementation

Design Approach 1 2783 9640 612 2303
Design Approach 2 832 3398 324 1509

Table 1: Results for Matrix Multiplication

Matrix No of processors Speed up
Multiplication Ax4 8x8 4x4 8x8
Sequential 1 1 1 1
implementation

Design Approach 1| 16 32 1.512 2.806
Design Approach 2| 7 17 5.058 7.960

Table 2: Speed up table for Matrix Multiplication

34

Evaluation

Table 2 shows the speedup along with number ofgssmrs used from the matrix multiplication
design approaches. The design approach 2 is apmaitedy 3.3 times faster than the approach 1
for the 4x4 matrix size and for 8x8 matrix size #pproach 2 is approximately 3 times faster, in
spite of the fact that it uses only about half asmynprocessors.

6.2 Results from FFT

In this section we will compare the two algorithmappings of FFT, called design approach 1 and
2. The design approach 1 is one of the parallehmdions of FFT. Table 3 shows that design
approach 1 takes more cycle counts than the spigleessor implementation. If we compare total
stall counts of design approach 1 with the singlec@ssor implementation, then we came to
know that its total cycle counts are increased uthe number of stall counts. The reason is
already described in the Section 5.4.1. If we sttaefrequency of processors in each stage then
processors in each stage can be compatible with @her in terms of input and output points,
this will reduce the number of stalls on each pssoe and hence total cycle counts will also be
reduced but the time will not decrease.

FFT Total Cycle count Total Stalls

8-Point 16-Point 8-Point 16-Point
Sequential 5066 11472 1581 3578
implementation
Design Approach 1 5195 15368 2985 7995
Design Approach 2 1085 1828 394 594

Table 3: Results for the 8-Point and 16-Point FFT

Table 4 illustrates the speedup along with numib@racessors from the FFT design approaches.
The speedup value of design approach 1 is lesstlisequential implementation for 8-point
FFT and it slows down for the 16-point FFT. Theigesapproach 2 is approximately 5 times
faster than the design approach 1 for 8-point Frd @pproach 2 is approximately 8 times faster
than the approach 1 for 16-point FFT. The Tabldi@ws that the design approach 1 is getting
slower for larger point FFTs while the design ajgio 2 is getting speedup over larger point
FFTs.

The design approach 2 takes fewer cycle countsstatld than the approach 1. Although it uses
more processors for butterfly computation, but ikeg speedup with respect to the design
approach 1. For instance, the design approach Baugde processors than the approach 1 for 8-
point FFT but it gives 4 times speedup, So it reggpliess energy consumption as compared to the
approach 1.

35

Signal Processing on Ambric Processor Array

FFT No of processors Speed up
8-Point 16-Point 8-Point 16-Point
Sequential 1 1 1 1
implementation
Design Approach 1| 10 22 0.975 0.748
Design Approach 2| 18 46 4.669 6.275
Table 4: Speed up table for FFT

6.3 Results from Block Interleaver

This section compares the two techniques of blotkrleaver with each other and with the

sequential implementation.

The performance analysis of sequential and paiatiglementation of matrix interleaver is given
in Table 5. The parallel version of matrix intesteafor 4x4 matrix takes almost one third cycle
counts and for 8x8 matrix it is almost half of #exjuential implementation, same is the case with
helical scan interleaver. As the order of matriceseases the total number of cycle counts and
number of stalls also increases. The results fralel'5 and 6 shows that the matrix interleaver

technique is performing better than the helicahsoterleaver.

Matrix Interleaver Total cycle count Total stalls

4x4 8x8 4x4 8x8
Sequential 893 3157 454 1622
implementation
Parallel implementation | 382 1784 51 208

Table 5: Results for Matrix Interleaver
Helical Scan Interleaver | Total cycle count Total stalls
4x4 8x8 4x4 8x8
Sequential implementation 1215 3738 518 1864
Parallel implementation 427 1922 24 351

Table 6:

Results for Helical Scan Interleaver

36

Evaluation

Speedup and number of processors used are givEabile 7. Matrix interleaver gets 2.3 times
speedup for the 4x4 matrix over the sequential @mgntation then it slows down to 1.7 times
for 8x8 matrix. Helical scan interleaver gets Ares speedup for 4x4 matrix and then it also
slows down to 1.9 times for 8x8 matrix. Helical scget speedup of 0.5 over the matrix
interleaver for 4x4 matrixes and then it deceletat@.2 times for the 8x8 matrix.

Block Interleaver | No of processors Speed up

4x4 8x8 4x4 8x8
Sequential 1 1 1 1
implementation
Matrix Interleaver | 6 14 2.337 1.769
Helical Scan 6 14 2.845 1.945
Interleaver

Table 7: Speed up table of Block Interleaver

37

Signal Processing on Ambric Processor Array

38

Discussion

7 Discussion

A summary and interpretation of the results achdewvethe simulation, as well as experience
gained from working with new processor architecf@mbric) is presented in this section.

Tailored algorithms for the parallel architectusee needed to achieve maximum performance.
As a first step in introducing new processor aetttiire on the market a high level development
environment and a library of optimized algorithnes/é to be supported. It would be helpful to

reduce the learning period and the development time

7.1 FFT

The comparison of FFT implementation made in thissis on the Ambric provides a deeper
understanding of the Ambric architecture. In FFT hawve focused on the algorithm mapping,
processor computation and communication betweeactshjAfter evaluation we have observed
that approach 2 is more efficient than approachskd on the fact that each object only computes
one butterfly. In this design we did not have layerheads because each object only multiplies
two points. So the design approach 2 takes feweleayunts and stalls than the other one. It
takes more processors but a significant speedaghieved.

FFT design approach 1 is not suitable for the cdatpn of larger FFTs. When the number of
butterfly stages is increased in the design thafirsgrthe frequency of processors could not be
practical, as processors in each stage have hakf ad than the next stage and we have to run
processors on the half frequency than the nexestag

The maximum frequency at which the Ambric proces®an operate is MaxClock and the value
of MaxClock is 350 MHz. The frequency is controlldry writing the clock generator

configuration register. The clock generator registan be written at any time. Ambric

architecture provides eight different options fazalsng the clock frequency of Ambric

processors, illustrated in Table 8. This informatis extracted from the Am2045DataBook
manual provided by the Ambric Inc.

Register Value| Frequency
MaxClock
MaxClock/2
MaxClock/4
MaxClock/8
MaxClock/16
MaxClock/32
MaxClock/64
MaxClock/128

NO|O|RAWNFIO

Table 8: Clock generator register fields

39

Signal Processing on Ambric Processor Array

According to Table 8, we can not use design apfrdador FFT which has more than eight
stages because we do not have the option to dekedtequency for ninth stage. Within eight
option we can use this design for maximum 256-pBHT. It is not useful to utilize this design

approach for larger FFTs. We can use design apprbdor smaller FFTs and where we require
less power consumption.

Although FFT design approach 2 uses more processmr&e can reduce number of processors
by increasing number of points multiplying on egbcessors. The FFT design approach 2 is
computing 8-point FFT but we can use the same ddsigl6-Point FFT. So by using the limited
number of processors we can use this techniquariger FFTSs.

We can also get code reusabilityajiava or assembly language code. As in design approach 2
have created only three java classes a Splittdsjraand an FFT. Eadplitter processor runs the
same code for the distribution of input points,re@cocessor uses the same java code for the
butterfly computation and processors which areipgrthe output stream also run the same java
code. If some processor requires different inforomathat can be provide to processor through
java properties at the creation time of objects.

As gjava is a subset of java language, we can not useatarfieatures of java language. There is
no standard APl support available in current versid development tools (version 1.0) for
programmingajava language. As the Ambric architecture does not srtipfoating point and
development tools does not provide any functiopdbt the fixed point calculation, we have to
implement fixed point API by ourselves. Becausé¢hag our implementation takes more time. In
order to reduce the development time some builtirctionality should be provided along with
development tools such as complex numbers, fixaéat,dog, power etc.

Ambric architecture provides the interesting feattimat different processors can run on different
frequencies, but the current version of developntents (version 1.0) did not support this

feature. Hopefully this feature will be provided mext versions of aDesigner. So we can not
implement this feature. If we could reduce processalls by implementing this feature, then

design approach 1 could also become efficient tthen serial implementation. The design

approach 1 also uses less number of processorshiapproach 2 so it will consume less power
than the approach 2.

From these two implementations we have learnt titatengineers should have to concentrate
seriously on reducing processor stalls when desggttie algorithms for the Ambric architecture
in order to decrease the computation time and greygsumption.

7.2 Matrix Multiplication

In matrix multiplication algorithms we have targetine algorithm scalability, /O mapping and
reduced power consumption on the Ambric architectWe have evaluated different approaches
of matrix multiplication and observed that due hbe &lgorithm mapping in design approach 2
total cycle counts and processors stalls are relduge design approach 2 is more suitable for
Ambric architecture.

40

Discussion

The difference between these two results is becaiude input and output streams provided. The
design approach 1 requires eigpltitter objects to provide data streams to fowttiplier objects
while design approach 2 requires only twgditter objects to provide data streams to four
multiplier objects. The design approach 1 reads input maticevo parallel streams and passes
the data to other objects in serial order whil@pproach 2 input streams providedmoltiplier
objects are more parallelized. So the /O provitiedhe design approach 2 is mapped more
efficiently.

The algorithm design of approach 1 is scalableurhsa way that we can add more composite
objects by changing only one compile time paramdter instance, if we change the order of
matrix from 4 to 8 then this design will start miplying 8x8 matrices. We can use this design
where the order of matrices is not fixed and chdregently.

We can also build reusable desigragiruct design language. This reusability is given byldas
and composite interfaces. As in design approadcich eomposite object (represented by the CO,
C1 and so on) is used again and again for calaglathe row of the resultant matrix. But creating
the reusable design as a whole is a very diffitagk, to create a separate algorithm for the
application design is very time consuming proceldse astruct language is used to create
application design only. It is not a full fledgetbgramming language and provides only limited
features so creating a reusable design will be kiargl and time consuming.

As design approach 2 always requires less numberagessors and less time than the design
approach 1, it will certainly consume less energy.

7.3 Block Interleaver

We also have seen from the evaluations that apiglicalike block interleaver are not suitable for
this kind of architectures. In case of larger ntatsithe communication among processors will be
increased very much than the computational powsrinfblock interleaver when size of matrix
increases the total cycle counts and number ofsstitdo increases and the result will be very
close to the serial implementation due to increéasdannel communication between objects.

The design of both approaches is the same and muofbprocessors used is equal, only
technique used on the interleaver objects is differAs Matrix Interleaver requires less cycle
counts and it will also requires less time to m#ies burst error into random error than the other
technique, this algorithm mapping is energy effitiélhe design of Block Interleaver shown in
Figure 26 is more suitable for the Matrix Interleabecause it takes less cycle counts than the
Helical Scan Interleaver.

41

Signal Processing on Ambric Processor Array

7.4 Development Tools

A behavioural simulator, aSim, can execute and gelpplications on a workstation without the
chip. Java is compiled into assembly code by tahedsird Java compiler, and SR/SRD instruction
set simulators execute assembly code. The simpisbioation of objects written in normal
software code, combined in a hierarchy of bloclgchan structures, makes high-performance
design development much easier and cheaper.

The aSim simulator models the parallel object ettenuand channel behaviour. A simulated
annealing placer maps primitive objects to resaime the target chip, and a PathFinder router
assigns the structure’s channels to specific hamlwehannels in the interconnect. Most
applications are compiled in less than one minlike. most densely packed cases still compile in
less than five minutes. As with software developmtre design, debug, edit and rerun cycle is
nearly interactive.

The object-based modularity of tisgructural object programming model facilitates the design
reuse. For instance, in FFT design approach 2 we beeated only one object for the butterfly
computation and we are re-using it again and agadmd in Matrix Multiplication design
approach 1, one composite object (CO) is createdttae same code of this composite object is
running on each processor. In this way, divide emauer technique will be very useful as there
is no scheduling, no sharing and no multithreadAsy channels are self-synchronized it means
no interconnect scheduling is required. The intecessor communication and synchronization
is simple. Sending and receiving a word throughhanael is so simple, just like reading or
writing a processor register. This kind of devehgmt is much easier and cheaper and achieves
long-term scalability, performance and power adages of massive parallelism.

7.5 Limitations in Development Tools

There are some limitations in the current versibdevelopment tools (version 1.0) exist at the
time of working on this thesis; these are highlgghin this section.

Sometimes it is required to create an array of @mogs to pass the information to objects at
compile time, but we can not pass array of propertjava objects. For instance, in FFT design
approach 1 it is required to pass more than onddiwifactor value to objects which are
computing more than one butterfly but we could pexs array of properties &ava or assembly
code. If array of property is provided then we store twiddle factors within objects at compile
time and some communication overhead could be esduc

We can not create an array of input or output platshe leaf objects; with this restriction we
can not create easily a generalized applicatiorgde3o understand this, consider a scenario: If
we want to connect input or output ports at compitee within loop, or we want to decide at
compile time whether one object is communicatinthwine or more objects then we can not do
it currently in aDesigner. For example, in FFT dasapproach 2, each butterfly stage has four
objects and the arrangement of communication chanselifferent among these stages. So we

42

Discussion

have created channels statically among these sbjdut orientation of channels can not be
decided at runtime.

Theastruct language is used to design applications but tisene mechanism for debugging this
design. In case of complex application design reuired to have a debugger. For example, the
astruct language provides a generate method with thedfeNthich we can create in some way a
scalable application design. We can use conditigtaiements and other programming loops
within the generate method. We have created a scalable design fomtieix multiplication
design approach 1. At the time of development vee fsome problems but can not debug this
design, while manual debugging is very time consgmi

7.6 Summary

The aim of this thesis was to evaluate whether iwmalysparallel processor architecture is
suitable for the baseband signal processing irorhdse stations. In the evaluation of different
algorithms it is analyzed that high performance t@nachieved by efficiently mapping the
algorithms on the Ambric architecture. The Ambrigpcis evaluated in terms of computational
performance, efficiency of the development toolgpathm and I/O mapping. Implementations
of Matrix Multiplication, FFT and Block Interleavevere performed. Different mappings of the
algorithms are compared to see which best fit theitecture.

7.7 Future work

Future work with this processor architecture wolbdl interesting to implement algorithms on

larger processor clusters to be able to studyrtreedcaling of the architecture. It would be better
to analyze the performance of the algorithms imgleted in this thesis on the actual hardware
device so that we can evaluate the hardware taoigided by the Ambric such as hardware

debugger and on device performance analysis tools.

43

Signal Processing on Ambric Processor Array

44

References

8 References

1. M. Butts, A. M. Jones, P. Wasson, Beaverton, Oregdistructural Object Programming
Model, Architecture, Chip and Tools for Reconfigaliea Computing” 2007 International
Symposium on Field-Programmable Custom ComputingHifees.

2. “Ambric Technology Backgrounder” <http://www.amhgom/technology/technology-
overview.php> Date 02-05-2008.

3. M. Butts. “Synchronization through Communication anMassively Parallel Processor
Array”. IEEE Micro, vol. 27 no. 5, pp. 32-40, Séfict. 2007.

4. White Paper Ericsson “Long Term Evolution (LTE): antroduction” October
2007. <http://lwww.ericsson.com/technology/whitepafiee_overview.pdf> Date 02-05-
2008.

5. “AN 480: 1536-Point FFT for 3GPP Long Term Evolutip ver.1.0 October 2007
<www.altera.com/literature/an/an480.pdf> Date 022088.

6. M. Rumney, “3GPP LTE: Introducing Single-Carrier MB”, Agilent Technologies,
<http://cp.literature.agilent.com/litweb/pdf/59889BEN.pdf > Date 02-05-2008.

7. V. D. Nguyen, H. P. Kuchenbecker, "Block interleayi for soft decisioln Viterbi
decoding in OFDM systems” University of Hannovemstitut fur Allgemeine
achrichtentechnik.

8. A. Moravanszky, NovodeX AG, “Dense Matrix Algebran othe GPU”
<http://www.shaderx2.com/shaderx.PDF > Date 02-0882

9. S. Jenkins “MIMO/OFDM Implement OFDMA, MIMO for WilX, LTE” picoChip
<http://www.eetasia.com/ARTICLES/2008MAR/PDF/EEODOBMAR17_RFD_NETD
_TA.pdf?SOURCES=DOWNLOAD> Date 02-05-2008.

10.J. G. Proakis, D. G. Manolakis, "Digital Signal &essing, principles, algorithms and
applications, 2nd ed.", Macmillan Publishing Comp&i92.

11.M. A. Kousa, “PERFORMANCE OF TURBO CODES WITH MATRI
INTERLEAVERS” Department of Electrical Engineeringing Fahd University of
Petroleum and Minerals Dhahran, Saudi Arabia. Gatob 2003.
<http://www.kfupm.edu.sa/publications/ajse/Arti¢E&2B_07P.pdf> Date 02-05-2008.

12.B. Bylin and R. Karlsson, “Extreme processor fotreme processing”, Technical Report
at Halmstad University, IDE0503, January 2005.

45

Signal Processing on Ambric Processor Array

13.P. Soderstam, “STAP Signal Processing AlgorithmsRamg and Torus SIMD Arrays”,
Master thesis at Chalmers University of Technoldgyril 1998.

14.J. L. Tripp, J. Frigo, P. Graham, “A Survey of Mullore Coarse-Grained Reconfigurable
Arrays for Embedded Applications”, Los Alamos Natb Labs
<http://www.ll.mit.edu/HPEC/agendas/proc07/Day3/08pp_Abstract.pdf> Date 02-05-
2008.

46

Appendix - Source Code

9 Appendix - Source Code

This section contains the most important partdhefgource code produced in this thesis project.
Each implementation is divided into two parts; #sguct code is used for the designing of the
overall structure of the application and #java code is used for the actual implementation of the
computational kernels. We have provided source dodenly one design approach from all
implemented algorithms.

Appendix A contains the API implementation, Append contains the implementation of
Matrix Multiplication design approach 2, Appendixc@ntains the implementation of FFT design
approach 2 and Appendix D contains the implemeartadf Block Interleaver design approach 2.

9.1 Appendix A

9.1.1 Fixed point

/***

*

File: FixedPoint.java

*
*
* Description: This class deals with the operation on fixed point

* nunbers. The format of Fi xed point nunmbers considered in this class
* is B.24 (8-bits for signed integral part and 24-bits hold

* fractional part) within 32-bit signed integer

* word length(W.) = Q(including 1 signed bit) + QF

* The range of Q => -128 to 127

* The range of QF => 1/(2”24) => 0.000000059604644775390625

**/
public class FixedPoint {
private int nblnt; // no of bits in integral part

private int nbFrac; // no of bits in fractional part
private Math math = new Mat h();

*

/
Constructor creates FixedPoint object and it takes two
paranmeters to specify fixed point nunber formate eg;, @.24
wher e nbl nt=8 and nbFrac=24

nblnt - no of bits in integral part
nbFrac - no of bits in fractional part

LI I I

~

publ i c Fi xedPoi nt(int nblnt, int nbFrac){
this.nblnt = nblnt;
this.nbFrac = nbFrac;

47

Signal Processing on Ambric Processor Array

}
/

* %

* add function adds two signed fixed point nunbers and
* returns their sum

* @arama - Fixed point nunber of the fornmate (8. 24

* @aramb - Fixed point nunber of the formate 8. 24

* @eturn - Fixed point number of the formate @. 24

*/

public int add(int a, int b){

/

/1 add and store the result in aacumnul ator

mat h. addacc(a, b, Marker.FlI RST_LAST);

/1l read accunulator for result and returns it.
return math. rdacc_sun{ Marker. LAST);

* %

* subtract function subtracts two signed fixed point nunbers,
* the 2nd paranmeter from 1st one and returns their difference
* @arama - Fixed point nunber of the formate (8. 24

* @aramb - Fixed point nunber of the formate (8. 24

* @eturn - Fixed point number of the formate @. 24

*/

public int subtract(int a, int b){

}
/

p

/'l subtract and store the result in aacumrul at or
mat h. subacc(a, b, Marker.FlI RST_LAST);

/1l read accunulator for result and returns it.
return math. rdacc_sun{ Marker. LAST);

* %

* mul tiply_32 function nmultiplies two signed fixed point 32-bit
* nunbers and returns the result.

*

* @arama - Fixed point nunber of the formate (8. 24

* @aramb - Fixed point nunber of the formate (8. 24

* @eturn - Fixed point nunmber of the formate @. 24

*/

ublic int nmultiply_32(int a, int b){
math. nult _32_32(a, b, Marker.LAST);
/'l reads high and | ow part of accumnul at or
int 1o = math. rdacc_I| o(Mar ker. MORE) ;
int hi = math.rdacc_hi (Marker.LAST);
hi = ((hi << nblnt) | (lo >>> nbFrac));
return hi;

48

Appendix - Source Code

9.1.2 Binary log

/**

* log2(n) conputes the |og base 2 of any number by assumi ng the
* floor value

* @aramn - input nunber to cal culate | og base 2
* @eturn - returns the floor value of log2 of n
*/

public int log2(int n) {
int pos = O;

if (n >= 1<<16) { n >>= 16; pos += 16; }
if (n>=1<<8) { n >>= 8; pos += 8; }
if (n>=1<< 4) { n >>= 4; pos += 4; }
if (n>=1<< 2) { n >>= 2; pos += 2; }
if (n>= 1<< 1) { pos += 1; }

return ((n == 0) ? (-1) : pos);

9.1.3 Binary Power

/**

* power OF2(n) cal cul ates the power of two (27n)

*

* @aramn - input to find power of two
* @eturn - returns the value of 27n
*/

public int powerO 2(int n) {
if(n<0]] n> 31
return -1;
if(n == 0)
return 1;
return 2 << (n-1);

49

Signal Processing on Ambric Processor Array

9.2 Appendix B

Source code for the Matrix Multiplication is proeid in this section. We only have provided the
source code for the 4x4 matrix multiplication ok approach 2 because the code logic is quite
similar for the 8x8 matrix multiplication.

9.2.1 Source code for Matrix Multiplication Design Approach 2

The design of the application is presented here.

/**

*

* File: DesignApproach2. design

*

* Description: design file for the matrix nultiplication approach 2

*

**/

desi gn Desi gnApproach2 {
Top top;
}
interface Top {}
bi ndi ng TopBi ndi ng i npl enents Top {
voi d generate(){
Vio io = {nunBSources=2, nunti nks=1};

int i;
int dim=4; // dinension of matrix

Multiplier miL = {propDim= din};

ml. nane = "nul 1";

Multiplier m2 = {propDi m= din};
n2. nane = "nul 2";

Mul tiplier nB = {propDi m= din};
nB. nane = "nul 3";

Multiplier mi = {propDi m= din};
nmd. nane = "nul 4";

SplitterA sa = {propDim = din};
sa.nanme = "splitA";

SplitterB sb = {propDim = din};
sb.nanme = "splitB";

Joi nd join;
join.name = "nyJoi n";

channel cO
channel c1

io.out[0], sa.inA};

=
= {io.out[1], sb.inB};

50

Appendix - Source Code

channel c2 = {sa.outAl, mil.inA};
channel c¢3 = {sa.outA2, nR.inA};
channel c4 = {sa.out A3, nB.inA};
channel c5 = {sa.outAd, mi.inA};
channel c¢6 = {sb.outBl, mnil.inB};
channel c7 = {sb.outB2, nR.inB};
channel ¢8 = {sb.outB3, nB8.inB};
channel c9 = {sb.outB4, mi.inB};

channel c¢10
channel cl11
channel c12
channel c¢13

{rl.out, join.in_1};
{nR2.out, join.in_2};
{nB.out, join.in_3};
{mi.out, join.in_4};

channel cl14 {join.out, io0.in[0]};

/**

*

File: SplitterA astruct

*
*
* Description: a leaf interface for SplitterA and this interface
* has one input and four output stream
*
*

***/

nterface SplitterA {

i nbound i nA;
out bound out A1, out A2, outA3, outA4;

property int propDim // dinension of matrix

}
bi nding SplitterABi nding inplenments SplitterA {

i npl ementation "SplitterA java";
attribute ConpilerOptions(targetSR = true) on SplitterABinding

/**

*

File: SplitterB. astruct

*
*
* Description: a leaf interface for SplitterB and this interface
* has one input and four output stream

*

*

***/

51

Signal Processing on Ambric Processor Array

interface SplitterB {

i nbound i nB;
out bound out B1, outB2, outB3, outB4;

property int propDim // dinmension of matrix

}
bi nding SplitterBBi nding inplenments SplitterB {

i mpl enentation "SplitterB.java";
attribute CompilerOptions(targetSR = true) on SplitterBBinding;

/**
*

File: Join4.astruct

*
*
* Description: a leaf interface for Join4 and this interface
* joins the four input streaminto one output stream
*
*

***/

nterface Joind {
inbound in_1, in_2, in_3, in_4;
out bound out;

}

bi ndi ng Joi nBi ndi ng i npl ements Joi n4 {

i npl enmentati on "Join4.java";
attribute CompilerOptions(targetSR = true) on Joi nBi ndi ng;

The source code for the java is presented in ttiosebelow.

/**
*

File: SplitterA java

*
*
* Description: java object for SplitterA It read each row
* of matrix A and broadcast it to all Miltiplier object
*
*

***/
public class SplitterA {
private int dim

public SplitterA(int propb m{
dim= propb m

52

Appendix - Source Code

}

public void run(lnput Streanxlnteger> inA
Qut put St r eanx! nt eger > out Al,
Qut put St r eanx! nt eger > out A2,
Qut put St r eanx! nt eger > out A3,
Qut put St reanxl nt eger > out A4) {

int val;
for(int i=0; i<dim i++) {
for(int j=0; j<dim j++) {

val = inA readlnt();
outAl.witelnt(val);
out A2. witelnt(val);
outA3.witelnt(val);
outAd.witelnt(val);

/**

*

* File: SplitterB.java

*

* Description: java object for SplitterB.

* read matrix B rowwi se but distribute it col ourm-w se

* so that each Miulitplier object will have corresponding
* coloum nunber e.g; Miulitiplier 1 will have col ourm#1

* and Mulitiplier 2 will have col oumm#2 and so on

*
**/

public class SplitterB {
private int dim

public SplitterB(int propD m{
di m = propDim
}

public void run(lnput Streanxlnt eger> inB,
Cut put St r eanx! nt eger > out B1,
Qut put St r eanxl nt eger > out B2,
Cut put St r eanx! nt eger > out B3,
Qut put St reanxl nt eger> out B4) {

for(int i=0; i<dim i++) {
outBl.witelnt(inB.readlnt());
outB2.witelnt(inB.readlnt());
());
()

out B3. writelnt(inB.readlnt
outB4. writelnt(inB.readlnt

53

Signal Processing on Ambric Processor Array

/**

*

File: Join4.java

*
*
* Description: java object for Join
*
*

***/

public class Join4d {

public Join4(){
}

public void run(lnput Streanxlnteger> in_1,
| nput St reanxl nteger> in_2,
| nput St reanx! nteger> in_3,
I nput St reanx! nt eger> i n_4,
Qut put St reanxl nt eger> out) {

out.witelnt(in_1l.readlnt())
out.witelnt(in_2.readlnt());
out.witelnt(in_3.readlnt());
out.witelnt(in_4.readlnt())

/**

*

* File: Multiplier.java

*

* Description: java object for the matrix nultiplication

*
**/
public class Multiplier {

private int dim
private int[] col;

public Multiplier(int propD m{
di m = propDim
col new int[dim;

}

public void run(lnput Streanxlnteger>i nA,
| nput St r eanx!| nt eger >i nB
CQut put St reanxl nt eger> out) {

int i,j;
int val = 0;

for(i=0; i<dim i++){
val = 0;

54

Appendix - Source Code

for(j=0; j<dim j++){

if(i == 0) {
col[j] = inB.readlnt();
}

val += col[j] * inAreadlnt();

}

out.witelnt(val);

55

Signal Processing on Ambric Processor Array

9.3 Appendix C

Source code for the FFT is provided in this sectidie have only provided the source code for
the 8-point FFT of design approach 2.

9.3.1 Source code for FFT Design approach 2

First, the design of application is presented here.

/**

*

Fil e: FFT8Desi gn. desi gn

*
*
* Description: design file for the design approach two.
* Each fft object will conpute only one butterfly

*

*

***/

desi gn FFT8Desi gn {
Root root;
}

interface Root {}

bi ndi ng Root Bi ndi ng i npl enents Root {
void generate() {

int N=8; /1l total no of points
i nt nStages 3;// total no of butterfly stages 27(N)
int nPoints 2;// no of points cal culated on each FFT object

Vio io = {nunSources=2, nunfti nks=2};

/* each FFT object conputes 2 points.

* For this design we need {N nPoints * 1og2(N)} FFT objects,
* {NnPoints - 1} Splitters and {N nPoints - 1} Join

*/

int i,Kk;

int nSplitJoin = (N nPoints-1);

/1 no of fft objects to connect with splitter or join

int nFft_onsides = N nPoints;

/1 no of inner fft objects in desgin
int nFft = nStages* (N nPoints)-N;

/'l stage 1 objects
FFT_2i ndout fft24[nFft_onsi des];
/'l stage 4 objects
FFT_4i n2out fft42[nFft_onsi des];

56

Appendix - Source Code

/'l stage 2 and 3 objects
FFT fft[nFft];

Splitter s[nSplitJoin];
Join j[nSplitJoin];

/'l stage 1 twiddle factors
int slCos = 16777216;

int s1Sin = 0;
/'l stage 2 twiddle factors - first value is for even
/1 points and second is for odd

int s2Cos[] = {16777216, O0};

int s2Sin[] = {0, -16777216};

/1 stage 3 twiddle factors
int s3Cos[] = {16777216, 11863683, O, -11863683};
int s3Sin[] = {0, -11863683, -16777216, -11863683};

for(i=0; i<nFft_onsides; i++) {

/'l objects for stage 1
fft24[i].nanme = "FFT_2i ndout " +i
fft24[i]. propPoi nt s=nPoi nt s;
fft24[i].propCosVal = slCos;
fft24[i].propSinvVal = sl1Sin;

/'l objects for stage 4

fftd42[i].name = "FFT_4i n2out " +i

fft42[i]. propPoi nt s=nPoi nt s;

fftd42[i].propCosVal = s3Cos[i];

fft42[i].propSinval = s3Sin[i];
}

int index=0;
for(i=0; i<nFft; i++) {

fft[i].name = "FFT" +i
fft[i].propPoi nts=nPoi nts;
fft[i].propCosVal = s2Cos[i ndex];
fft[i].propSinVal = s2Sin[index];
i ndex=i ndex+1;

i f(index==2)
i ndex=0;

}

for(i=0; i<nSplitJoin; i++) {
s[i].nane = "split"+i
s[i]. propPoi nt s=N
j[i].name = "join"+i;
j[i].propPoints=N

}

s[0] . propN = N,

s[1] . propN = N 2;

s[2].propN = N 2;

57

Signal Processing on Ambric Processor Array

j[0].propN = N 4;
j[1] . propN = N 4;
j[2].propN = N 2;

/'l connect Vio object with first splitter and | ast join objects

channel ¢10 = {io.out[0], s[O].inReal};

channel c11 = {io.out[1], s[O].inlnog};

channel c¢c12 = {j[nSplitJoin-1].outReal, i0.in[0]};
channel ¢13 = {j[nSplitJoin-1].outlng, io.in[1]};
/'l connecting splitters

channel c14 = {s[0].outReal 1, s[1].inReal};
channel c¢15 = {s[0].outlngl, s[1].inlng};

channel c16 = {s[0].outReal 2, s[2].inReal};
channel c¢17 = {s[0].outlng2, s[2].inlng};

/'l connecting joins

channel c114 = {j[0].outReal, j[2].inReal 1};
channel ¢115 = {j[0].outlng, j[2].inlngl};
channel ¢116 = {j[1].outReal, j[2].inReal 2};
channel ¢117 = {j[1].outlng, j[2].inlng2};

/'l connect splitters with FFT_2i n4out

k = 1;

for(i=0; i<N nPoints; i=i+2){
channel ¢27 = {s[k].outReall, fft24[i].inReal};
channel ¢28 = {s[k].outlngl, fft24[i].inlng};
channel c¢29 = {s[k].outReal 2, fft24[i+1].inReal};
channel ¢30 = {s[k].outlng2, fft24[i+1].inlng};
/'l butterfly between stage 1 and 2
channel ¢31 = {fft24[i].outReal 1, fft[i].inReal 1};
channel ¢32 = {fft24[i].outlngl, fft[i].inlngl};
channel ¢33 = {fft24[i].outReal 2, fft[i+1].inReal 2};
channel ¢34 = {fft24[i].outlng2, fft[i+1].inlng2};
channel ¢35 = {fft24[i+1].outReal 1, fft[i+1].inReal 1};
channel ¢36 = {fft24[i+1].outlngl, fft[i+1].inlngl};
channel ¢37 = {fft24[i+1].outReal 2, fft[i].inReal 2};
channel ¢38 = {fft24[i+1].outlng2, fft[i].inlng2};
k=k+1;

}

/1 connect join with FFT_4i n2out

k = 0;

for(i=0; i<NnPoints; i=i+2){
channel ¢39 = {fft42[i].outReal, j[Kk].inReal 1};
channel c40 = {fft42[i].outlng, j[k].inlngl};
channel c41 = {fft42[i+1].outReal, j[k].inReal 2};
channel c42 = {fft42[i+1].outlng, j[K].inlng2};
k=k+1;

}

/'l connect FFT_4in2out with FFT between stage 2 and 3

channel c43 = {fft[0].outReal 1, fft42[0].inReal 1};

58

Appendix - Source Code

channel c44
channel c45
channel c46

{fft[0].outlngl, fft42[0].inlngl};
{fft[0].outReal 2, fft42[2].inReal 2};
{fft[0].outlng2, fft42[2].inlng2};

channel c47
channel c48
channel c49
channel c¢50

{fft[1].outReal 1, fft42[1].inReal 1};
{fft[1].outlngl, fftd42[1].inlngl};
{fft[1].outReal 2, fft42[3].inReal 2};
{fft[1].outlng2, fft42[3].inlng2};

channel c¢51
channel ¢52
channel ¢53
channel c¢54

{fft[2].outReal 1, fft42[2].inReal 1};
{fft[2].outlngl, fft42[2].inlngl};
{fft[2].outReal 2, fft42[0].inReal 2};
{fft[2].outlng2, fft42[0].inlng2};

channel c¢55
channel c¢56
channel c¢c57
channel ¢58

{fft[3].outReal 1, fft42[3].inReal 1};
{fft[3].outlngl, fft42[3].inlngl};
{fft[3].outReal 2, fft42[1].inReal 2};
{fft[3].outlng2, fft42[1].inlng2};

/**

*

File: Splitter.astruct

*
*
* Description: Splitter interface and it contains two input
* ports and four output ports
*
*

***/

interface Splitter {

/1 input port for real signa
i nbound i nReal ;

/'l input port for imaginary signal
i nbound i nl ng;

out bound out Real 1, out | ngyl;
out bound out Real 2, outl ng2;

/1 total no of point in FFT
property int propPoints;

/'l no of points to read from previous splitter
property int propN
}

bi nding SplitterBinding i nplements Splitter {

i npl ementation "Splitter.java";
attribute ConpilerOptions(targetSR = true) on SplitterBinding;

}

package comfft;

59

Signal Processing on Ambric Processor Array

/**

*

File: Join.astruct

*
*
* Description: Join interface and it contains four input
* ports and two output ports
*
*

***/

interface Join {

/1 input ports for real and inaginary signa
i nbound i nReal 1, inlngl;
i nbound i nReal 2, inlng2;

/'l output ports for real and imaginary signa
out bound out Real , outl ny;

/1 total no of points in FFT
property int propPoints;

/'l no of points to read from previous join
property int propN
}

bi ndi ng Joi nBi ndi ng i npl enents Join {

i mpl enentati on "Join.java";
attribute CompilerOptions(targetSR = true) on Joi nBi ndi ng;

/**

*

Fil e: FFT. astruct

*

*

* Description: FFT interface, it reads two points fromtwo

* different channels and wites two points to two different channels
*
*

***/

interface FFT {

i nbound inReal 1, inlnyl;
i nbound i nReal 2, inlng2;
out bound out Real 1, outl ngl;
out bound out Real 2, outl ng2;

property int propPoints;
property int propCosVal
property int propSinVal

60

Appendix - Source Code

bi ndi ng FFTBi ndi ng i npl ements FFT {

i npl enentati on "FFT. | ava"

/**

*

File: FFT_4in2out.astruct

*
*
* Description: this interface reads two points fromtwo

* different channels and wites two points on one channels
*

*

***/

nterface FFT_4in2out {
i nbound inReal 1, inlnyl;
i nbound i nReal 2, inlny2;
out bound out Real , out | ng;
property int propPoints;
property int propCosVal
property int propSinVal
}
bi ndi ng FFT_4i n2out Bi ndi ng i npl ements FFT_4i n2out {

i mpl enent ati on "FFT_4i n2out . java";

/**

*

File: FFT_2indout. astruct

*

*

* Description: this interface reads two points from one

* channels and wites two points to two di fferent channels
*
*

***/

nterface FFT_2i ndout {

i nbound i nReal , inlny;
out bound out Real 1, outl ngl;
out bound out Real 2, outl ng2;

property int propPoints;
property int propCosVal
property int propSinVal

61

Signal Processing on Ambric Processor Array

bi ndi ng FFT_2i ndout Bi ndi ng i npl enents FFT_2i n4out {

i npl enent ati on "FFT_2i ndout . java";

The source code for the java is presented in ttigosebelow.

/**

*

File: Splitter.java

*
*
* Description: this java object distribute points in even
* and odd order for bit-reversal sorting

*

*

***/

public class Splitter {

/'l no of points to read from previous splitter object
private int N;

public Splitter(int propN){
this.N = propN;
}

public void run(lnput Streanxlnteger> inReal,
| nput St r eanxl! nt eger > i nl ng,
Qut put St r eanxl nt eger > out Real 1,
Cut put St r eanxI nt eger > out | ngl,
Qut put St r eanxl nt eger > out Real 2,
Qut put St r eanxl| nt eger > out I ng2) {

for(int i=0; i<N;, i+=2) {
/'l send even point to |left output stream
outReal 1. writelnt(inReal.readlnt());
outlmgl.witelnt(inlng.readlnt());
/'l send odd point to |eft output stream
out Real 2. writelnt(inReal.readlnt());
outlnmg2.witelnt(inlng.readlnt());

/**
*
* File: Join.java
*

*

Description: this java object conbines total no of points

62

Appendix - Source Code

* and finally wite to output

*

**/

public class Join {

/1 no of points to read from previous splitter object
private int N;

public Join(int propN){
this. N = propN,
}

public void run(Ilnput Streanxlnteger> inReal 1,
| nput St reanx! nt eger > i nl ngl,
| nput St r eanxl! nt eger > i nReal 2,
I nput St reanxI nt eger > i nl ng2,
Qut put St r eanxl nt eger > out Real ,
Qut put St r eanxl nt eger> outl nmg) {

for(int i=0; i<N, i++) {
outReal .witelnt(inReal l.readlnt());
outlmg.witelnt(inlngl.readlnt());

for(int i=0; i<N, i++) {

outReal .writelnt(inReal2.readlnt());
outlng.witelnt(inlng2.readlnt());

/**

*

File: FFT.java

*

*

* Description: this java object associated with FFT. astruct
* interface. This object perforns one butterfly conputation
*
*

***/

public class FFT {
private int N; /'l no of points

/1 array of conplex nunbers
private Conplex[] x;

/1 twi ddle factors
private final int cos;
private final int sin;

/1l for fixed point calculations
private FixedPoint fp = new Fi xedPoi nt (8, 24);

63

Signal Processing on Ambric Processor Array

public FFT(int propPoints, int propCosVal, int propSinVal){

N = propPoi nts;
x = new Conpl ex[N ;
cos pr opCosVal
sin pr opSi nVal

public void run(Ilnput Streanxlnteger> inReal 1,

I nput St reanxl nt eger> inlngl,

I nput St r eanxl nt eger > i nReal 2,

| nput St r eanxl nt eger > i nl ng2,

Qut put St reanxl nt eger > out Real 1,
Cut put St reanxI nt eger > out | ngl,
Qut put St reanx! nt eger > out Real 2,
Qut put St reanxl nt eger > out | ng2) {

int i;

for(i=0; i<N, i+=2){ // read real and inmaginary signa

x[i].real = inReall.readlnt();
x[i].img = inlngl.readlnt();
x[i+1].real = inReal 2.readlnt();

x[i+1].inmg = inlnmg2.readlnt();
}

/1 Butterfly calculation using fixed point numerics
int TR = fp.subtract(fp.multiply 32(x[1].real, cos),

fp.multiply_32(x[1].ing

int Tl = fp.add(fp.multiply _32(x[1].real, sin),

fp.multiply_32(x[1].ing

x[1] .real = fp.subtract(x[0].real, TR
x[1].img = fp.subtract (x[0].ing, TI);
x[0].real = fp.add(x[0].real, TR
x[0].ing = fp.add(x[0].ing, TI);

for(i=0; i<N, i+=2) {
outReal L.writelnt(x[i].real);
outlmgl.writelnt(x[i].ing);
outReal 2. writelnt(x[i+1].real);
outlnmg2. writelnt(x[i+1].ing);

sin));

cos));

64

Appendix - Source Code

9.4 Appendix D

Source code for the Block Interleaver is providedhis section. We have only provided the
source code for the Helical Scan Interleaver feritiput size of 4x4.

9.4.1 Source code for Helical Scan Interleaver

First, the design of application is presented here.

/**

*

File: Helical4.design

*
*
* Description: design file for the Helical Scan Interl eaver
* for the input size of 4x4 matrix

*

*

***/

design Helical 4 {
Top top;
}
interface Top {}
bi ndi ng TopBi ndi ng i npl enments Top {
voi d generate(){
Vio io = {nunBSources=1, nunti nks=1};

int row=6; // no of rows for input matrix

I nterl eaver ml
mL. name = "Bl 1";

{propld 0, propRows = row};

Interleaver n2 = {propld = 1, propRows = row};
n2. name = "BI 2";

Interleaver nB = {propld = 2, propRows = row};
nB. name = "BI 3";

Interleaver md = {propld = 3, propRows = row};
m4. nane = "Bl 4",

SplitterA sa = {propRows = row};

sa.nanme = "splitA"

Joind join = {propRows = row};
join.name = "join";

channel cO0 = {io.out[0], sa.inA}
channel c2
channel c¢3
channel c4

{sa.outAl, mil.in};
{sa.out A2, nR.in};
{sa.out A3, nB.in};

65

Signal Processing on Ambric Processor Array

channel c5 = {sa.outAd4, mi.in};

channel c10
channel c11
channel c12
channel c13

{nl.out, join.in_1};
{nR2.out, join.in_2};
{nB.out, join.in_3};
{mi.out, join.in_4};

channel cl14 {join.out, io0.in[0]};

/**

*

File: SplitterA astruct

*
*
* Description: this splitter interface reads a single input
* streamand divides it into four output streamns

*

*

***/

nterface SplitterA {

i nbound i nA;
out bound out Al, out A2, out A3, out A4;

property int propRows;
}

bi nding SplitterABi nding inplenments SplitterA {

i mpl enentation "SplitterA java";
attribute ConpilerOptions(targetSR = true) on SplitterABinding

/**

*

File: Join4. astruct

*
*
* Description: this join interface joins the four input
* streanms into a single output stream
*
*

***/

nterface Joind {

inbound in_1, in_2, in_3, in_4;
out bound out ;

property int propRows;

66

Appendix - Source Code

bi ndi ng Joi nBi ndi ng i nmpl ements Joi n4 {

i npl enmentati on "Joi n4. java";
attribute ConpilerOptions(targetSR = true) on Joi nBi ndi ng;

/**

*

File: Interl eaver. astruct

*
*
* Description: this interface reads single input stream
* re-order it and sends to output.
*
*

***/

nterface Interleaver {

i nbound i n;
out bound out;

property int propld;
property int propRows;

}
bi ndi ng Bl nterleaver inplenents Interleaver {

i mpl enentation "Interleaver.java";
attribute CompilerOptions(targetSR = true) on Blnterleaver;

The source code for the java is presented in ttiosebelow.

/**

*
File: SplitterA java
Description: this java object reads rows of matrix one by

*
*
*
* one and distribute elenents of each row to the
* corresponding interl eaver

*

*

***/
public class SplitterA {
private int nRows;

public SplitterA(int propRows){
nRows = propRows;
}

67

Signal Processing on Ambric Processor Array

public void run(lnput Streanxlnteger> inA
Qut put St r eanx! nt eger > out Al,
Qut put St r eanx! nt eger > out A2,
Qut put St r eanxl nt eger > out A3,
Cut put St reanxI nt eger > out A4) {

for(int i=0; i<nRows; i++) {
out Al. writelnt(inA readlnt(
out A2. wri telnt(inA. readlnt(
out A3. wri telnt(inA readlnt(
out A4. writelnt(inA readlnt(

)
)
)
)

)
)
)
)

/**

*

File: Join4.java

*
*
* Description: this java object collects the data fromthe
* interleaver objects

*
*

***/

public class Join4d {
private int nRows;

public Join4(int propRows){
nRows = pr opRows;
}

public void run(lnput Streanxlnteger> in_1,
I nput St reanxl nt eger> in_2,
I nput St reanx! nt eger> i n_3,
I nput St reanx! nt eger> i n_4,
CQut put St reanx! nt eger> out) {

for(int i=0; i<nRows; i++) {
out.witelnt(in_1.readlnt());
out.witelnt(in_2.readlnt());
)
()

out.witelnt(in_3.readlnt
out.witelnt(in_4.readlnt

/**

*

* File: Interleaver.java

68

Appendix - Source Code

*

* Description: this java object perforns the re-ordering
* on single row of the input matrix in a helical fashion.
*
*

***/

public class Interleaver {

private int nRows;
private int id;
private int n{];

public Interleaver(int propld, int propRows){
id = propld;
nRows = propRows;
m = new i nt [nRows] ;

}
public void run(lnputStreanxlnteger>in, QutputStreanklnteger> out)
{
int i,j;
for(i=0; i<nRows; i++){
nmMi] =in.readlnt();
}
i =id;
for(j=0; j<nRows; j++){
out.witelnt(nfi]);
i ++;
i f(i==nRows)
i =0;
}
}
}

69

