EL ROLLATOR

ELECTRIC WALKING FRAME

Gruppmedlemmar: Abdullah Sediqi
Bruno Jaric

Examiner: Leif Nordin
Tutor: Jonas Rundquist

Utvecklingsingenjörprogrammet, Examensarbete (Uppsats C-nivå) 22.5 högskolepoäng
Innovation Engineering Program (Thesis, Bachelor Level) 22.5 Credits (22.5 ECTS)

2008
Sammanfattning

Vårt examensprojekt har varit att utveckla dagens befintliga rollatorer och göra de mer spännande och användarvänliga för morgondagens användare.

Vid användning av en rollator idag så underlättar den för personer med rörelsesvårigheter i olika grader. Det underlättar deras levnadsvillkor och får dom att kunna ha ett mer rörelsefriare liv där dom kan sköta de dagliga sysslorna utan hjälp från samhället eller nära och kära.

Med vår produkt får vi fram en rollator som inte bara kan underlätta användaren att ta sig ut och ta sig fram ute. Vi hjälper användaren att kunna ta sig fram där de oftast hade haft problem att ta sig fram. Exempel är vid brantare delar där det kan vara svårt att komma upp eller ner och även vid sämre underlag p.g.a. kanske dåligt väder. Vårt elektriskt motordrivna hjul vi har fäst på rollatorn underlättar just vid sådana här situationer.

Vi har installerat hjulet så att det är höj och sänkbart för att kunna ha alternativet att kunna köra rollatorn på det vanliga sättet och sedan sänka det vid svårare partier.

Planer på vidareutveckling och tillverkning av vår prototyp finns i åtanke.

Abdullah Sediqi
Bruno Jaric
Abstract

Our examination project has been to develop today’s existing walking frames and make them more exiting and user friendly for tomorrow’s users.

The use of a walking frame today makes it easier for a person with a movement difficulty in different extent. It makes it easier with their living condition and the user get a more movement easier life where they can take care of the daily chores without any help from the society or the family members.

With our product we get a product that not only makes it easier for the user to get out and get forward. We help the user to get forward where they often would have difficulties to get forward. An example is where its more steeper parts where it could be more difficult to get up or down and even with more difficult foundation due to bad weather. Our electrical motor driven wheel we have attached to the walking frame makes it easier at exactly this kind of situations. We have installed the wheel so it could either level up or down to have the option to walk around in the regular way.

Plans on further development and manufacture of our prototype are in remembrance.
Förord

Vi har genomfört vårt examensprojekt på 22,5hp som ett eget projekt och inte haft samarbete med något företag. Projektet är ett nyproduktutvecklingsprojekt där vi har sett till behovet att lösa ett problem som de äldre kan erfara.

Vi vill även tacka alla andra som ställt upp och hjälpt oss under projektets gång.

Halmstad Maj 2008-05-26

__________________________ __________________________
Bruno Jaric Abdullah Sediqi
Innehållsförteckning

1 Inledning .. 1
 1.1 Syfte & Projektmål ... 1
 1.2 Projektet ... 1
2 Projektbeskrivning .. 2
 2.1 Bakgrund ... 2
 2.2 Avgränsningar .. 2
 2.3 Problem .. 2
 2.4 Metod ... 2
 2.5 Genomförande ... 3
 2.6 Tidplan & Budget ... 3
3 Marknadsanalys .. 4
 3.1 Marknadsundersökning ... 4
 3.2 Användare .. 4
 3.3 Marknadskanaler .. 4
4 Konceptframtagnings & Tester ... 5
 4.1 Idégenerering .. 5
 4.2 Lösningsförslag ... 5
 4.3 Huvudlösning .. 6
 4.4 Använtartester .. 7
5 Detaljplanering .. 8
 5.1 Teknikval .. 8
 5.1.1 Motor ... 8
 5.1.2 Hissen .. 8
 5.1.3 Batteri ... 8
 5.1.4 Övriga komponenter .. 8
 5.2 Beräkning .. 9
 5.3 Konstruktionsarbete ... 10
6 Resultat .. 12
7 Affärsplan ... 13
 7.1 Marknadsmål & Marknadsföring .. 13
 7.2 SWOT- analys .. 13
 7.3 Produkttolkyl ... 14
8 Nutid/Framtid ... 15
9 Slutsats .. 16
10 Källor & Referenser ... 17
11 Bilagor .. 18
1 INLEDNING
1.1 Syfte & Projektmål

Det stora projektmålet har varit att vi skulle ha en färdig och fungerande prototyp som skulle uppfylla de krav vi hade ställt. Vi ville ha en elmotor fäst på rollatorn, de ursprungliga köregenskaperna skall inte påverkas, det ska vara lätt att starta och stänga av motorn och batteriet skulle räcka i två till tre timmar. Alla kraven blev uppfyllda och vi fick en väl fungerande prototyp till det datum vi hade satt.

1.2 Projektet

Vi har inget samarbete med något företag utan vi har valt att göra detta som ett eget projekt. Men vi har varit i kontakt med en rad olika företag för att få lite feedback och se vad de tycker om våra tankar och idéer. Dolomite, ett av företagen som vi kom i kontakt med, var även vänliga nog att sponsra oss med en rollator.
2 PROJEKTBESKRIVNING

2.1 Bakgrund

Vi ville göra ett annorlunda men stimulerande projekt som skulle hjälpa de med rörelsesvårigheter. I början av vårt projekt så inriktade vi oss enbart mot de som har en rollator som ett hjälpmedel. Tanken var att vi ville göra en prototyp som gör det enklare men även lite roligare att sköta sina vardagliga sysslor.

2.2 Avgränsningar

Idén med projektet var att vi enbart skulle jobba med ett hjälpmedel för de som har en rollator. Vi ville att rollatorn man köper skall ha en permanent fastsatt höj och sänkbar elmotor. Det skall ej vara en avtagbar anordning som man kan fästa på andra rollatorer p.g.a. att storlek och designen varierar så kraftigt att vår elmotor inte kommer fungera efter bästa förmåga. Men efterhand som projektet har framskridit så har andra användningsområden kommit fram, se mer av detta i avsnitt 8 nutid/framtid.

2.3 Problem

Problemet med användandet av dagens rollatorer är just att det kan behövas lite extra kraft att behöva ta sig upp för lite brantare lutningar, men även kunna styra hastigheten på väg ner för dessa lutningar. Vid sämre väder så kan framkomligheten försämras avsevärt och det kan innebära att användaren väljer att stanna hemma.

2.4 Metod

Vårt projekt fick sin start när vi fick se en äldre dam kämpa sig fram på en brant sluttning, rollatorn var tungt lastad med matvaror. Vi fick då idéen att man kunde fästa en hjälpmotor på rollatorn för att underlätta hanteringen.

2.5 Genomförande

Vi valde även att åka ut till hjälpmedelcentralen för att ställa lite frågor om vad de hade för planer om kommande rollatorer och även vad de tyckte om våra förslag.

När vi nu har samlat in information och har en klar bild av vad vi ska göra genom skisser och ritningar så började vårt arbete att samla in allt material som behövdes. Vi behövde först och främst en elmotor för att driva hjulet och vi beställde en vindrutetorkarmotor från Allmotion. Genom Biltema fick vi hjälp att ordna med de elektriska kopplingarna som behövdes till vår motor.

2.6 Tidsplan & Budget

Vi upprättade ett Gantt- schema (se bilaga A-B) för att kunna planera projektet under den tidsrymd som fanns att tillgå, så projektets olika milstolpar skulle uppnås i rätt tid. Tidsplanen följdes relativt bra i början av projektet men ju längre projektet framskreds så märkte vi att vi ej kunde hålla de deadlines vi hade satt. Vi märkte att designprocessen var svår att planera och resultatet från en aktivitet gav planen för nästa aktivitet. En ordentlig detaljplan var därför svår att upprätta p.g.a. dess låga planerbarhet.
3 MARKNADSANALYS

3.1 Marknadsundersökning

Under vårt möte med Curt Elander på Dolomite AB frågade vi om deras kunder och fick reda på att knappt 15 % av deras försäljning var till kunder i Sverige. Resterande 85 % var till kunder i utlandet bland annat i Tyskland och Japan. När det gäller priser på en rollator hade Dolomite rollatorer från 800-3000 kr beroende på kvalitet och tillbehör som ingick i de olika prisklasserna. I våra vidare undersökningar gällande pris på rollatorer bekräftades det som vi fick reda på Dolomite.

Det som väckte vårt intresse var att till och med Lidl sålde rollatorer för 899 kr under en viss tid. Vidare undersökningar visade att marknaden är väldigt utsprid och att det finns många privata företag och återförsäljare på marknaden.

3.2 Användare

Enligt en undersökning som har gjorts av SCB- Statistiska Centralbyrån i 2005 visar att 240 000 personer använder rollator i Sverige. Närmare 70 % av användarna är över 80 år. 40 % kvinnor och ca 20 % män av alla dem som är över 80 år använder rollator. Denna kunskap är värdefull för att förstå vikten av rollator för äldres aktivitet och hälsa. Se bilaga C för mer statistik om rollator användare.

3.3 Marknadskanaler

4 KONCEPTFRAMTAGNING & TESTER

4.1 Idégenerering

Idégenerering i vårt projekt har varit en återkommande process som har följt oss från början till slut där vi har ständigt jobbat med nya idéer och lösningar gällande allt som berör vårt projekt.

Hela arbetet började med en brainstorming där några förslag på hur produkten skulle se ut kom upp. Dessutom gjordes en benchmarking för att se om det fanns liknande produkter. Många av de idéer har undersökts och testats med enkla metoder, och om det har visat sig att de inte fungerade har vi gjort en ny brainstorming där nya idéer har kommit upp och till slut kom vi fram till huvudlösningen som vi valde att jobba med.

De metoder som vi har jobbat med under idégenereringsperioder har varit enkla skisser och modeller av olika material för att lätt kunna se om idéerna var realistiska och om de uppfyllde ställda kraven. Till slut valdes de lösningar som kunde uppfylla våra krav och som inte var onödigt komplicerade.

4.2 Lösningsförslag

Under projektets gång har vi haft några idéer på hur vi skulle kunna komma på en produkt som uppfyller våra krav. Arbetet med de olika lösningsförslagen pågick under en längre tid för vi hade en del kreativa men väldigt annorlunda idéer hur vi skulle driva rollatorn.

En idé som vi funderade över ganska länge var att driva bakre hjulen med hjälp av en motor. Men för att kunna det behövde vi antingen två motorer som skulle driva bakre hjulen eller en motor och en axel som gick mellan bakre hjulen. För att kunna driva två motorer behövde vi starkare batteri som väger mycket mer än det som vi har nu. Dessutom skulle tillverkningskostnaden stiga.
Att använda en axel mellan bakre hjulen skulle medföra hinder för användaren att stå nära rollatorn som är rekommenderat av tillverkarna (Dolomite AB). Därför har den här idén fallit bort.

Vi var även inne på att användaren skulle kunna stå på rollatorn när dom skall använda motorn. Detta var något som vi hade tänkt oss bland de första idéerna men till slut valde vi att inte göra detta efter en del samtal från olika tillverkare och säljställen. Det ansågs vara för avancerat och det fanns en liten riskfaktor att användaren kunde skada sig.

4.3 Huvudlösning

Under projektets gång har utseendet på den lösningen som vi valde att jobba med har ändrats men lösningen uppfyller de krav som vi hade ställt i början av projektet. Prototypen som vi har tagit fram ser ut enligt följande:

Switcherna som driver motorn och hissen sitter på varsin sida av hantagen. Båda motorn och hissen drivs av en 12V MC-batteri som är båda prisvärd och lätt att ladda om.

4.4 Användartester

De användartester som har gjorts är oss själva men även klasskompisar har testat och kommit med synpunkter på förbättringar. I och med att prototyp framtagningen tog mycket tid fanns det tyvärr inte tid för mer användartester.
5 DETALJPLANERING

5.1 Teknikval

5.1.1 Motor

Motorn som vi använder oss av är en DC motor med inbyggda växlar, motorn kallas även för vindrutetorkarmotorn för den är väldigt vanlig inom bilindustrin som just en vindrutetorkarmotor. Detta är en DC motor och det innebär att den ej är frigående när den är avstängd och det var just för detta som vi installerade Picodrive PZ 2 som vi även kallar ”hissen”.

5.1.2 Hissen

5.1.3 Batteri

5.1.4 Övriga komponenter

Det finns två switchar på rollatorn, en som höjer och sänker hjulet och motorn. Den andra switchen gör så att hjulet snurrar. Just denna switch måste man hålla nertryckt för att hålla hjulet i snurrning, detta är en säkerhetsåtgärd från vår sida så att inte rollatorn fortsätter sin väg om användaren vill släppa taget. Ett så kallat ”dead mans grip”.

Abdullah Sediqi
Bruno Jaric
5.2 Beräkning

En del beräkningar var tvungna att göras för att veta vilken hastighet vi behövde på hjulet. Vi behövde ta reda på utväxlingen från motorn till hjulet och vi gjorde en liten sammanfattning på våra uträkningar enligt följande:

Räkna ut effekten med en gånghastighet på 2m/s: \(E = v \times N \)
\(E = 2 \text{m/s} \times 2 \text{N} = 4 \text{W} \)

Utväxlingen mellan motor och hjul beräknar vi till att det blir en effektförlust på ca 10ggr varav vi får resultatet: \(4 \text{W} \times 10 \text{ggr} = 40 \text{W} \)

Från motorn och vägen genom utväxlingen fram till hjulet bestämde vi det till att motorn var "lilla hjulet" och själva hjulet var "stor hjulet".

Viktigt att få reda på kraften mellan lilla hjul o stora hjul.

Om vi uppskattar att det stora hjulet har omkrets 4dm, radie 1dm. Det lilla hjulet 10ggr mindre. Hastigheten 2m/s.

Varvtal, stora= 2m/s/0,4omkr. = 5varv/s. Lilla hjulet 10ggr= 50varv/s

\[P = M \times w(\omega) \]
\[w(\omega) = 2\pi m(\text{varvtal}) \]
\[M = 2 \times 0,04 = 0,08 \text{Nm} \]
\[P = M \times 2\pi 50 \]
\[P=0.08 \times 2\pi 50= 25 \text{W} \]

Vi får fram att det krävs en effekt på \(25 \text{W} \) med ett varvtal på \(50 \text{varv/s} \).

Motorn vi bestämde oss för att köpa hade en effekt på \(40 \text{W} \) och ett varvtal på \(50 \).
5.3 Konstruktionsarbete

Hela vårt arbete innebar ett antal timmar ute i verkstaden där vi skulle få ihop våra planer och idéer för att få igång en fungerande prototyp. Efter att ha införskaffat oss all nödvändig material som behövdes så började monteringsarbetet.

Här följer en komprimerad beskrivning av det praktiska konstruktionsstadiet. Detta beskrivs stegvis men arbetet skedde lite mer parallellt än vad beskrivningen kan ge intryck av.

Steg 1

Vi började med att föra in hjulet och utväxlaren (motorn är fäst i utväxlaren) i en stålaxel. I ändarna av stålaxeln byggde vi en kvadratisk stålram. Runt stålaxeln kan hjulet snurra fritt.

Steg 2

Efter att vi har fäst hjul, motor och utväxlare till en fast och stabil konstruktion så kom nästa steg till att fästa allt till hissen.

Stålramen svetsades fast i ena änden av hissen och hissens överdel svetsades fast i rollatorn.

Steg 3

Även mitten delen av hissen fäste vi fast i rollatorn för att den skulle bli mer stabil och inte så svajig. Detta gjorde vi med en stålrem och fyra stycken M6 skruvar och muttrar.

Steg 4

Steg 5

Sladdar och switchar följde med motor och hiss så det fäste vi på bästa möjliga sätt efter rollatorn upp till handtagen så att man kan höja och sänka hjulet på ett enkelt sätt, detsamma gäller on och off för motorn.

Steg 6

Resultatet blev en stabil och robust prototyp som smälter väl in i rollatorns designer och former.
6 Resultat

Tanken med detta är att det finns många olika sorters rollatorer när det gäller form, höjd och design. Det skulle vara svårt att göra en universall produkt som skulle passa alla modeller. Att sälja denna som en el rollator gör denna mer säker och pålitlig att använda där den är ordentligt fastsatt och även känns mer exklusiv än de andra rollatorerna som finns ute på marknaden.

Placeringen av hjulet är väl genomtänkt för att få ut den bästa kraften från motorn för att dra rollatorn framåt. Centralt placerat men ändå finns det utrymme för fötterna när man är ute och går med rollatorn.

Vi känner att vi är mycket nöjda med vår prototyp och allt arbete vi har lagt ner på att få en fin och fungerande rollator har lönat sig. Efter alla olika lösningsförslag vi hade i början av projektet så fick vi fram det bästa resultatet och designen. (se bilaga M-N)
7 AFFÄRSPLAN
7.1 Marknadsmål & Marknadsföring

Marknadsmålet för vår produkt är alla som använder rollatorer men framför allt alla som kommer att göra det i framtiden. Genom en effektiv marknadsföring skall användarna upplysas om fördelar som vår produkt tillför. Tanken är att vår produkt skall vara fastsatt i rollatorn vid tillverkningen, marknadsföringen av hela rollatorn ska ske av det företag som tillverkar rollatorn.

När vi kontaktade hjälpmedelcentralen för att veta hur det går till att få en rollator av dem fick vi bland annat veta att endast sätet att få en rollator av dem är att ha en remiss från en sjukgymnast eller en läkare. När det gäller vår produkt sa de att det kan vara svårt att få den genom hjälpmedelcentralen eftersom den klassas som en extra utrustning som inte är nödvändigt för att kunna använda en rollator men om en läkare ger remis så finns även den möjligheten.

Eftersom det verkar vara svårt att få en rollator med vår produkt gratis av hjälpmedelcentralen antar vi att bara 10 % av dem 240000 människor som använder rollator köper vår produkt. Därmed har vi en marknad på 24000 potentiella köpare i Sverige.

7.2 SWOT-analys

Vi valde att göra en SWOT-analys för att se vilka styrkor och svagheter vår produkt har. Genom en SWOT så kan man även se vilka möjligheter som produkten har och på detta sätt så får vi fram nya användningsområden som produkten kan användas inom. Hoten mot vår produkt visar vi även i vår analys.

Strength (styrkor)
- Extra kraft
- Spännande
- Nytänkande
- Vanlig gång
- Användarvänlig
- Mer rörelsefrihet
- Pris

Weakness (svagheter)
- Dagens användare är teknikrädda
- Ej kunnat testas ordentligt
- Hjulet ej frigående och måste höjas för vanlig gång

Opportunity (möjligheter)
- Framtida generationer
- Marknaden
- Nya användningsområden
- Banbrytande

Threats (hot)
- Liknande produkter kommer upp på marknaden
- Användare kan vara skeptiska till tekniken.

Abdullah Sediqi
Bruno Jaric
7.3 Produktkalkyl

Det är svårt att uppskatta hur mycket vår produkt kommer att kosta att tillverka dels för att vi inte har fått svar från vissa tillverkare och det har även varit svårt att veta vart alla delar har tillverkats. Priset på alla delar i vår prototyp är på 2180kr plus en rollator som har priset 800kr, total summan: 2980kr

Men efter att ha gjort research, genom uppskattning och diskussion med fackmän inom området har vi lagt följande produktkalkyl för vår produkt. Det är en uppskattning på tillverkning av 24.000st el rollatorer.

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Styckpris för 24.000st</th>
<th>Styckpris för en</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hissen</td>
<td>140kr</td>
<td>800kr</td>
</tr>
<tr>
<td>Motor</td>
<td>120kr</td>
<td>700kr</td>
</tr>
<tr>
<td>Hjul</td>
<td>5kr</td>
<td>30kr</td>
</tr>
<tr>
<td>Metallstänger</td>
<td>40kr</td>
<td>150kr</td>
</tr>
<tr>
<td>Batteri</td>
<td>35kr</td>
<td>200kr</td>
</tr>
<tr>
<td>Elsladdar och switcher</td>
<td>25kr</td>
<td>150kr</td>
</tr>
<tr>
<td>Kåpor, skruvar m.m.</td>
<td>25kr</td>
<td>150kr</td>
</tr>
</tbody>
</table>

Lägger vi sedan på fraktkostnader m.m. så hamnar priset till slut på 1000-1500kr per rollator. Prislappen som rollatorn hade fått ute i butik skulle vara mellan 2500-3000kr. Detta för att vi säljer en mer avancerad och exklusiv produkt och tar ett pris därefter.
8 **NUTID/FRAMTID**

Vår vision för vår produkt är självklart att få ut den på marknaden och få folk att använda den. Det är lite svårt att övertyga de äldre att använda tekniska produkter eftersom de har en annan syn på den biten just nu men vår produkt är en framtidsprodukt för kommande generationer som inte är lika teknik rädda.

Abdullah Sediqi

Bruno Jaric
9 SLUTSATS

Vi har lyckats utveckla en produkt som underlättar vardagen för de med rörelsesvårigheter och göra det mer trivsammare att ta sig ut med sin rollator. Vid partier där det blir svårare att ta sig fram p.g.a. dåligt underlag eller vid lutningar så blir användandet av rollatorn ett nöje istället för något tungt och jobbigt.

Det har varit ett spännande och intressant projekt som vi har jobbat med och slutresultatet har tillfredsställt våra förväntningar. Vi hoppas att vår prototyp skall hitta sin väg ut på marknaden och underlätta användandet av rollatorer.
10 KÄLLOR & REFERENSER

Litteratur/elektroniska källor

www.hjalpnu.se

www.volaris.se

www.allmotion.se

Företag/personer

Dolomite AB, Curt Elander utvecklingschef

KomTek, Kristian Lyberg

Biltema

Allmotion
11 BILAGOR

Bilaga A 0
Bilaga B 1
Bilaga C 2
Bilaga D 3
Bilaga E 4
Bilaga F 5
Bilaga G 6
Bilaga H 7
Bilaga I 8
Bilaga J 9
Bilaga K 10
Bilaga L 11
Bilaga M 12
Bilaga N 13