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Abstract

Deep Learning (DL) has achieved remarkable results in both academic and
industrial fields over the last few years. However, DL models are often hard to
design and require proper selection of features and tuning of hyper-parameters
to achieve high performance. These selections are tedious for human experts
and require substantial time and resources. A difficulty that encouraged a
growing number of researchers to use Evolutionary Computation (EC) algo-
rithms to optimize Deep Neural Networks (DNN); a research branch called
Evolutionary Deep Learning (EDL).

This thesis is a two-fold exploration within the domains of EDL, and more
broadly Evolutionary Machine Learning (EML). The first goal is to make
EDL/EML algorithms more practical by reducing the high computational cost
associated with EC methods. In particular, we have proposed methods to
alleviate the computation burden using approximate models. We show that
surrogate-models can speed up EC methods by three times without compro-
mising the quality of the final solutions. Our surrogate-assisted approach al-
lows EC methods to scale better for both, expensive learning algorithms and
large datasets with over 100K instances.

Our second objective is to leverage EC methods for advancing our under-
standing of Deep Neural Network (DNN) design. We identify a knowledge
gap in DL algorithms and introduce an EC algorithm precisely designed to
optimize this uncharted aspect of DL design. Our analytical focus revolves
around revealing avant-garde concepts and acquiring novel insights. In our
study of randomness techniques in DNN, we offer insights into the design and
training of more robust and generalizable neural networks. We also propose,
in another study, a novel survival regression loss function discovered based on
evolutionary search.
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1. Introduction

1.1 Introduction

The remarkable success of Deep Learning (DL) has revolutionized several
fields, including computer vision [5H7], natural language processing [8-10],
healthcare [11], video games [12; 13]], and more. The success of DL is often
attributed to the availability of larger datasets and increasingly potent com-
putational resources [14]. This exponential growth in both data volume and
computing capabilities has empowered us to expand the scale of Deep Neural
Networks (DNN). Consequently, the DL algorithms that previously had lim-
ited success e.g., Convolutional Neural Network (CNN) [[15]], and Long Short-
Term Memory (LSTM) [[16]], are now thriving. These algorithms continued
to advance, driven by manual design based on human expertise and intuition.
Innovative ideas e.g., ReLLU [17], dropout [18]], residual connections [6], and
attention mechanisms [7} 9] allowed training deeper, more expressive models
that generalize better to unseen data.

However, as DL algorithms improved, achieving high performance with
them became more complex [[19H21]]. This complexity arises from the need to
make a multitude of design decisions, including choosing the right architec-
ture, fine-tuning hyperparameters, and selecting features. Importantly, these
selections are often task-dependent, in the sense that different learning tasks
give rise to different selections of features [22], architectures [23]], and hyper-
parameters [24]. The search spaces of possible solutions are vast and com-
plex. Therefore, human experts may struggle to navigate this intricate land-
scape manually, and the search for innovative solutions can be overwhelming.

The challenge is becoming more pronounced as the task-dependent na-
ture continues to extend to other design choices of DNN e.g., the activation
functions, as it was shown in [25; [26]] that specialized activation functions dis-
covered specifically for the task consistently outperformed ReLU in several
benchmarks. The same observation seems to apply to the choice of loss func-
tion [27-29] compared to the popular cross-entropy. For all their simplicity
and successes in practice, one cannot argue that ReLLU and cross-entropy are
the ideal activation and loss function choices for every DL task.

The inherent task-dependent nature of many DL design choices opens new
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research possibilities for optimizing other aspects of DNN. Evolutionary Com-
putation (EC) methods prove to be particularly well-suited to solve such op-
timizations in DL, and there are several compelling reasons for this choice.
Firstly, EC methods exhibit effective exploration of complex search spaces
by maintaining a diverse population of solutions, thereby mitigating the risk
of getting trapped in local optima [30]. Moreover, EC methods do not require
derivatives or rely on assumptions of convexity [31]. This quality renders them
especially advantageous for optimization tasks within DL, which frequently
involve non-convex objective functions [32]. Furthermore, EC methods are
capable of handling multi-objective optimization problems [33]]. This capabil-
ity is invaluable in scenarios where there is a need to simultaneously optimize
multiple conflicting objectives, such as enhancing model accuracy while re-
ducing training time. Collectively, these factors position EC methods as a nat-
ural choice for tackling optimization problems characterized by intricate and
challenging search spaces [34;[35]], and there has been a growing trend among
researchers who are increasingly utilizing EC algorithms to optimize DNNSs.
This field is called Evolutionary Deep Learning (EDL) and can be viewed as
a sub-field of Evolutionary Machine Learning (EML), where the goal is to use
EC to optimize a Machine Learning (ML) model M for a given learning task
J. The field of EDL is no longer limited to Neural Architecture Search (NAS)
[23]] and Hyperparameter Optimization (HPO), or doing both NAS and HPO
jointly [36]. Today, the field of EDL extends to evolving new algorithms [37]],
weights [385 [39]], activation functions [25} 26], loss functions [27-29], and
learning rate policies [40].

The work in this thesis serves two main objectives within the fields of
EML/EDL. The first goal is to use EC methods to come up with new knowl-
edge about designing DNNs. For this purpose, we identify a specific knowl-
edge gap within our understanding of DL algorithms and introduce an EC al-
gorithm designed specifically to optimize this previously unexplored aspect of
DL design. Our analysis of the optimization outcomes is centered on the goal
of uncovering innovative designs and acquiring novel insights and perspec-
tives. Within this objective, we carried a work to improve our understanding
of randomness techniques in training DNNs and their complex interactions in
(Paper IV), and to discover novel loss functions for DNN in survival analysis
(Paper V). Also, we have extended this objective by using the EC algorithm
to identify knowledge in the applied field of Electric Vehicles (EVs) in (Paper
II) by designing an algorithm to identify invariant features that generalize to
unseen settings for hybrid buses e.g., new configurations and operating condi-
tions.

Our second objective is focused on making EML/EDL algorithms more
computationally efficient by the reduction of the high computational cost asso-
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ciated with these methods. The goal is to reduce the EC algorithms’ run-time
without trading off the quality of the final solutions. We propose methods
to elevate the computation cost using approximate models based on concepts
derived from the research on progressive sampling and optimization with ap-
proximate fitness function in (Paper I) and (Paper III).

1.2 Challenges

EC algorithms have faced the practical challenge of long run-time when used
for optimizations in ML/DL [335]]. The iterative process of EC involves running
a large number of fitness function evaluations — where each evaluation requires
training an ML model M from a learning algorithm A. The training of M is
needed in optimizations e.g., Feature Selection (FS) or Hyper-parameter Opti-
mizations (HPO), to score the fitness of the candidate feature/hyper-parameter
solutions. The computational cost of the EC algorithm is dependent on the
time complexity of the learning algorithm A. As most of the run-time is spent
on fitness evaluations [22], we may approximate the time complexity of the
EC algorithm O(EC) as:

O(EC) ~1-0(A) (1.1)

where ¢ is the total number of fitness function evaluations, and O(A) is the
time complexity of the learning algorithm A. The long-run time of EC can
be attributed for two reasons according to First, O(A) can lead to long
run-time, in particular for large datasets. Second, the search space is often
high dimensional with very well-performing regions, often requiring a large ¢
to arrive at novel and high-quality solutions.

1.2.1 Expensive model training

The time complexity of many learning algorithms A is dependent on the train-
ing dataset size, and can be expressed as a function of the number of features
n and the number of instances k. For example, the training complexity of De-
cision Trees (DT) is O(nk?) [41], kNN is O(n’k) [42], while nonlinear SVM
is between O(n?) and O(n*) [43]. Consequently, the complexity order of an
EML algorithm where A is DT is O(nk?t), and is O(n*kt) where A is kNN. It
is obvious that EML will not scale for high dimensional datasets, the run-time
in such scenarios could take weeks [44]].

The problem is evident given how data-hungry most ML models are; es-
pecially DL, but also many simpler ML. models, do not converge quickly, and
continue to improve significantly with more labeled data. Progressive sam-
pling (PS) offers a method to examine the connection between sample size and
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Figure 1.1: Learning Curve of the covtype data set using a Decision Tree as a
model, and a Geometric Sampling Schedule S, = {32, 64, 128, ..., 262 144}. The
last point to the right represents training with all the available 348 861 training
set instances.

model accuracy by utilizing batches that gradually increase in size. This rela-
tionship can be visualized through a learning curve that portrays how model
accuracy changes with varying sample sizes. Typically, a well-behaved learn-
ing curve tends to adhere to an inverse power law function [45]. We may
observe from Fig.[I.1|showing the learning curve of the covtype data set from
the UCI ML repositoryE] that the convergence point is not reached, for a simple
DT classifier, even when training on more than 250K instances.

The expensive model training challenge is even worse for EDL as the train-
ing of DL models tends to require more time than conventional ML. The full
training of a ResNet50 network on the ImageNet dataset [46] using a modern
TPU could take days, even weeks. It is not uncommon for EDL papers to re-
port run times in the order of months of GPU time [23; 25]. Therefore, it is
crucial for EDL algorithms to come up with cheaper alternatives than evaluat-
ing candidate solutions by training M.

1.2.2 Large and complex search spaces

The task of using EC to identify novel high-performing solutions with DL is
challenging because of two general characteristics of the search space of such
problems. First, the search space is vast due to the large number of possible
design choices [20]. Second, the promising regions within the search space are
rare, as only very specific design choices lead to high performance [19; 21]]. It
is a search for a tiny-sized needle in a colossal haystack. The identification of

Zhttp://archive.ics.uci.edu/ml



high-performing solutions in such spaces will likely require a large number of
t, often in the order of thousands of evaluations [47]].

Large space of possibilities

The search spaces of possible architectures, features, or hyperparameters are
often complex and immense in size. The size of the search space of e.g., the
HPO problem grows exponentially with more hyperparameters to tune [48]].
Such extensive search space presents a significant challenge in the quest for
finding the best-performing setting, as navigating through it efficiently requires
a large number of evaluations ¢, even for sophisticated optimization techniques
e.g., Bayesian methods [49; [50]. In our work of optimizing randomness in
(Paper V) to optimize all 22 randomness techniques at once requires 10%° eval-
uations, each taking 10 minutes to train, for a total time on the order of 100 000
multiples of the age of the universe. Another example from our work in (Paper
V), where we used a tree-based representation similar to [255 515 52] to repre-
sent survival loss functions, is that the number of possible loss functions is on
the order of 10?!,

The Edge of Chaos

The multitude of design decisions is not the only hurdle to achieving higher
performance with DL. A number of papers have shown that only very spe-
cific choices of hyperparameters lead to good performance with deep net-
works [19; 21]], an observation known in the literature as “Edge of Chaos”.
This difficulty meant that practitioners must identify these specific choices of
weight initialization schemes [53]], adding noise to optimization [54]], architec-
ture selections e.g., batch normalization [S5]], skip/residual connections [6], to
achieve high performance with deep models.

We have observed this characteristic concerning the scarcity of good con-
figuration from the space of possible solutions in our work in (Paper IV). As
we showed, in practice, it is impossible to identify well-performing regions
of the search space at random [24] even with thousands of evaluations. This
failure of random search is a clear indicator that high-performing regions are
rare within the vast space of possible configurations.

1.3 Research questions

The work in this thesis aims to answer two research questions. The first ques-
tion aims to exploit the opportunity of using EC to optimize aspects of DL
design with the goal of generating new generalizable insights and knowledge.
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In the second, we are trying to address the run-time challenge of using EC for
ML/DL:

* RQ1 Can we come up with new knowledge about designing DNN using
EC?

This research question is meant to exploit the opportunity of using EC
to uncover new knowledge about DL. Automatic search methods have
demonstrated a lot of successes in enriching our knowledge of DL by
discovering new loss functions e.g., Baikal Loss [27]], activation func-
tions e.g., Swish [52], layers e.g., novel skip connections in LSTM [14],
and architectures [56]].

Our approach to answer this question is based on designing EC algo-
rithms that optimize previously unexplored DL design choices, to ad-
dress gaps in our understanding of DL algorithms, and to come up with
novel designs/configurations.

* RQ2 How do we reduce the run-time of EML/EDL using approximate
computationally efficient models (surrogates) without compromising the
quality of solutions?

The long run-time of using EC to optimize ML/DL is widely considered
a major challenge for the applicability of these methods. The problem
is recognized in feature selection, where existing EC methods are de-
scribed as "unfit to solve big data tasks" [22]], with the majority of re-
search limited to small datasets e.g., less than 1 000 instances. The same
challenge is also recognized for HPO [57], NAS [23]], and practically,
for any optimization using EC with DL [58]].

The practical solutions to the run-time problem often compromise solu-
tion quality for shorter run-time e.g., filter and hybrid FS. Our objective
is to answer this question by guiding the optimization through surrogate
models that significantly reduce the total run-time while matching — or
even exceeding — the performance realized with a classical EC setting.

1.4 Contributions

Contributions in the fields of EML/EDL could be broadly realized in one of
two forms. The first is new knowledge about DL/ML. A novel scientific
knowledge in the field of DL could be discovered by exploiting the ability of
evolution to uncover unfamiliar, yet useful behavior [S9]. An example of a
creative discovery of EC that was not directly intuitive can be given from our
work in (Paper V). We have examined how to improve the performance of
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DNN by injecting different kinds of randomness into the training process. For
this purpose, we carried out an HPO search to optimize the levels of different
randomness techniques e.g., dropout, or gradient noise. An interesting setting
was found during the search in MNIST datasets with a weight initialization
variance set to zero by our PSO optimizer. The settings achieved 99.66% test
accuracy, reducing the test error by 41.38% in comparison to baseline default
settings. This constant initialization is surprising as it, at first glance, seems to
prevent different neurons from learning different features. However, the weight
symmetry [60] in this setting is broken with activation noise [61]], allowing
training while using a constant zero initialization of the weights. It must be
noted that activation noise was not originally designed with the purpose of
overcoming poor/constant initialization. The injection of noise into the output
of the activation function was originally proposed to solve an entirely different
problem, the saturating behavior of some activation functions like Sigmoid and
Tanh[62]]. In our work, the EC method discovered an alternative benefit.
Below we provide the complete list of contributions that fall under discov-
ering new knowledge in DL achieved in this thesis and the appended papers:

* We show that different optimizers, such as Adam and Gradient Descent
with Momentum, work best with distinct patterns of noise (Paper I'V).

* Our empirical results suggest that data augmentation and weight initial-
ization are the top contributors to performance improvement in CNNs
(Paper 1V).

* QOur results showed superior performance of DropConnect compared to
the much more popular variant Dropout with fully connected layers (Pa-
per IV).

* We propose Gradient Dropout (GD), a method of randomly masking
the gradient of some parameters during backpropagation to improve the
performance of DNNs (Paper IV).

* We propose Loss Noise (LN), a method of injecting noise to loss func-
tion calculations to improve the performance of DNNs (Paper IV).

* We propose MSCEg),, a novel survival regression loss function that per-
forms significantly better than the alternative Mean Squared Censored
Error (MSCE) (Paper V).

* We demonstrate the importance of the non-zero gradient for the censored
cases part of our proposed loss function MSCEg,, (Paper V).



The second type of contributions comes in the form of better EML/EDL
algorithms. We primarily qualify better algorithms as ones that lead to higher
quality final solutions with a cheaper run-time. In our papers, we have pre-
sented the following novel algorithms:

1.5

* The feature selection algorithm SAGA from (Paper I), is shown to iden-

tify a significantly higher accuracy feature subset than ones found with
a wrapper GA, while being three times faster.

The feature selection algorithm GADIF from (Paper II), is shown to
identify invariant features that lead to a better generalization of the ma-
chine learning models to an unseen domain.

The approach proposed in (Paper IV), allows EC algorithms to scale
better for large datasets with over 100K instances, independently from
the used EC as shown with results of CHC and PSO.

The algorithm SAGA,,; proposed in (Paper V) can identify specialized
differentiable loss functions for survival analysis regression that maxi-
mizes the C-Index performance.

The PSO optimizer of randomness we proposed in (Paper V) handled 22
randomness interventions; no previous work from the literature focused
on discussing the compatibility and effectiveness of random techniques
in DL as comprehensively.

Summary of the papers

Paper I: Surrogate-assisted genetic algorithm for wrapper feature
selection

This paper [63]] addresses the challenge of the long run-time of feature
selection. We answer RQ2 by proposing a novel multi-stage feature se-
lection framework that leverages multiple levels of approximations or
surrogates to improve the efficiency and quality of feature selection so-
lutions, especially on large datasets.

We propose the algorithm Surrogate-Assisted Genetic Algorithm (SAGA)
designed based on our framework to guide the evolutionary search in an
efficient manner. During the early exploration phase, SAGA utilizes
surrogates to make informed decisions, switching to the evaluation of
the original function only in the final exploitation phase. We demon-
strate that the upper-bound run-time of SAGA’s surrogate-assisted stage



— w
Sampling Evolutionary
Procedure Partial Dataset Algorithm for z
Generations.

Sample
Size

Sampling Migration
Schedule Strategy

= T

Figure 1.2: A flowchart of the framework of surrogate-assisted evolutionary
search for neural network optimization.

is at worst equal to that of a wrapper Genetic Algorithm (GA) while
scaling better for complex learning algorithms with a high number of
instances. Our empirical results show that SAGA significantly reduces
computation time compared to a baseline wrapper GA while achieving
solutions of significantly higher accuracy. On average, SAGA arrives at
near-optimal solutions approximately three times faster than a wrapper
GA. Importantly, the paper emphasizes the design of an evolution con-
trol approach to prevent surrogates from leading the evolutionary search
toward false optima.

The flowchart in Figure outlines the framework along with the key
components: evolutionary algorithm, sampling procedure, evolution con-
trol, migration strategy, and population reduction.

Paper II: Extracting invariant features for predicting state of health
of batteries in hybrid energy buses

This study [64] focuses on the importance of monitoring the health of
batteries in electric vehicles (EVs), which are a critical and costly com-
ponent of these vehicles. To ensure the reliability of EVs and optimize
their sustainability, it is crucial to track battery deterioration and effi-
ciently utilize remaining battery capacity, especially in the context of
electric buses with varying configurations and operating conditions. The
challenge lies in developing degradation models for each unique com-
bination of settings, considering factors like limited failure data for new
settings, data heterogeneity, scarcity of data for less common configu-
rations, and a lack of comprehensive engineering knowledge. Thus, the
study aims to automate the transfer of machine learning models to new
settings by identifying features that remain consistent across different
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Figure 1.3: An illustration of the GADIF algorithm

scenarios.

We propose a feature selection method, called Genetic Algorithm for
Domain Invariant Features (GADIF), employing a GA to select a set
of invariant features for training machine learning models. These se-
lected features maximize invariance across diverse settings as depicted
in Fig. The proposed GA incorporates a fitness function that con-
siders both task performance and domain shift. We compare the per-
formance of GADIF to classical feature selection methods without any
transfer learning mechanisms, specifically in the context of adapting to
unseen domains. The experimental results demonstrate that using invari-
ant features results in better generalization of machine learning models
to previously unencountered domains. In essence, GADIF helps ensure
the robustness and adaptability of machine learning models when deal-
ing with varying EV settings, ultimately improving our understanding
of electric vehicle technology, in line with RQ1.

Paper III: Fast Genetic Algorithm for feature selection — A quali-
tative approximation approach

This paper [65}66] addresses the challenge of applying EC in real-world
scenarios where evaluating the fitness function can be computationally
expensive. EC often requires numerous fitness function evaluations,
which can be impractical for tasks like machine learning model training.
To mitigate this issue, we propose a two-stage surrogate-assisted evolu-
tionary approach for feature selection, particularly on large datasets, to
answer RQ2.

We introduce the concept of "Approximation Usefulness" to ensure the
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Figure 1.4: A qualitatively useful approximation for combinatorial optimization
is shown in (a). The approximation correctly identifies the maximum of the orig-
inal function, even though the approximation error is large. On the other hand,
the approximation in (b) offers better quantitative approximation (values closer
to the original fitness), but it leads to a false optimum.

correctness of EA computations when using approximations, such as
meta-models or surrogates, for the fitness function. We develop a method
to construct a lightweight qualitative meta-model through active data in-
stance selection. This meta-model is then utilized for feature selection
within the GA-based CHC (Cross-generational elitist selection, Hetero-
geneous recombination, and Cataclysmic mutation) algorithm, resulting
in a variant called CHCpy.

The experimental results demonstrate that CHCpx converges faster to
feature subset solutions with significantly higher accuracy compared to
the original CHC, especially for large datasets containing over 100,000
instances. The approach’s effectiveness is also extended to Swarm In-
telligence (SI), a branch of Evolutionary Computation (EC), where we
introduce a qualitative approximation adaptation of Particle Swarm Op-
timization (PSO).

Fig. shows an example of a valuable qualitative approximation, ac-
cording to Equation(3.3]

» Paper IV: Rolling the Dice for Better Deep Learning Performance:
A Study of Randomness Techniques in Deep Neural Networks

This paper conducts a comprehensive investigation into the effects of
various randomness techniques in DNNs on network performance. In-
jecting randomness during DNN training is known to reduce overfitting
and enhance generalization, but how different randomness methods in-
teract and contribute to performance remains unclear. To address this,
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we categorize randomness techniques into three types: data, network,
and optimization, and propose two new techniques: adding noise to the
loss function and random masking of gradient updates.

Using a Particle Swarm Optimizer (PSO), we explore high performing
configurations for injecting randomness to maximize DNN performance
in computer vision tasks. We evaluate over 30,000 configurations, an-
alyzing the individual and combined effects of randomness techniques
to answer RQ1. The results highlight that randomness in data augmen-
tation and weight initialization significantly improves performance, as
seen in Fig.[I.5] Additionally, different optimizers prefer specific types
of noise patterns.

Paper V: Improving Concordance Index in Regression-based Sur-
vival Analysis: Discovery of Loss Function for Neural Networks

In this paper, we explore the use of evolutionary algorithms to optimize
a survival loss function for neural networks with the goal of improving
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Figure 1.5: Visualization of randomness techniques, by comparing the number
of times each one achieved a positive ERR to its median ERR, i.e., how often
versus how much each technique contributed (across 20 ablation runs, for the
CNN network, all four datasets). Colors indicate the p-value of Student’s 7-test
for the null hypothesis of “technique has median ERR < 0.”
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the C-Index performance. The paper contributes SAGA,,,, an algorithm
designed to optimize a specialized neural network’s differentiable loss
function specifically for maximizing the C-Index. Based on our observa-
tions from the evolutionary search, we propose a new survival regression
loss function called MSCEj,, as observed in Fig.[1.6f MSCEg, outper-
forms the commonly used Mean Squared Censored Error (MSCE) loss
function in the context of survival analysis. We highlight the signifi-
cance of the non-zero gradient for the censored cases component of the
loss function to answer RQ1.

The experimental results presented in the paper demonstrate the effec-
tiveness of the evolutionary-discovered loss functions and the proposed
MSCEg, function. These functions perform generally better than the tra-
ditional MSCE loss function on 19 benchmark datasets, emphasizing the
potential of evolutionary optimization for improving survival analysis in
neural networks.
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Figure 1.6: Our proposed survival loss function MSCEgp.
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2. Background

2.1 EC Model Search in Machine Learning

The common goal of a supervised ML task 7T given a labeled dataset X; =
{(Xi,9i),---, (Xn,yn)} of n samples and k features is to construct a model M
from a learning algorithm A that can generalize to unseen examples. The par-
tial set X" is used to train Mg via optimizing its parameters 6 to minimize
a predefined loss £(X""; My ), while setting aside the set X’¢ as unseen exam-
ples. A validation dataset X** C X" is often kept to estimate £(X"¢;Mg) by
monitoring £ (X"%;Mg) during training.

This process of optimizing the model parameters 0 is known as the train-
ing optimization loop, and is only one part of the ML pipeline that typically
involves: data pre-processing, model search, model training, and model eval-
uation [58]]. In this work, the focus is on EC model search methods, where
the general goal is to find better models by selection of features, tuning hyper-
parameters, and architecture choices. EC Model search optimizations e.g.,
Feature Selection (FS) and Hyper-parameter Optimization (HPO), can be viewed
as bilevel optimizations [67] of two levels, where an EC method is used in the
outer level to optimize features/hyper-parameters and the inner (training) level
optimizes the model parameters 6. In the next subsections, we discuss the
literature on using EC methods for FS and HPO.

2.1.1 Feature Selection

The task of feature selection involves selecting a new feature subspace IR/ from
the original feature space IRF (where I < k). The objective is to train a machine
learning model M with feature subset ¢ while maintaining or improving per-
formance (e.g., accuracy, U) compared to the full feature space IR¥. The task
of finding the optimal feature subset y* can be expressed as the maximization
of the fitness function J:

w* =argmax F(u; A, X7, X" U). 2.1
u

The FS methods using EC are usually grouped into three main types: filter,
hybrid, and wrapper [22]. Filter methods, in contrast to wrapper algorithms,
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offer computational efficiency by relying on metrics like correlation [68]], mu-
tual information [69; [70], ReliefF [71]], Fisher score [72], inconsistency rate
[73; [74], and even ensembles of such metrics [[75] to gauge the suitability of
feature subsets. However, filter methods have a fundamental drawback as they
are agnostic to the underlying ML model M [[76]. In contrast, wrapper methods
assess feature subsets by considering their impact on the performance of the
machine learning algorithm, often yielding superior results [[77};(78]]. An exten-
sive review of 22 diverse filter methods revealed that no single filter method
consistently outperforms all others [79], a result that suggests that choosing
the right filter approach for the learning task is challenging.

Hybrid methods adopt a two-stage strategy by combining both filter and
wrapper approaches. In this hybrid paradigm, the initial step involves ap-
plying a filter to the features, with the primary aim of narrowing down the
search space. Only the top-ranked features are subsequently utilized by the EC
method in the second phase. While this technique has been employed in var-
ious studies [[80H84], it exhibits two significant limitations. Firstly, the reduc-
tion in the search space primarily pertains to the features, making it less bene-
ficial for datasets with a large number of instances. Secondly, low-ranked fea-
tures might possess significance when combined with other features, thereby
leading to the oversight of potential feature interactions.

The final approach to feature selection is the wrapper that relies on the
ML model M to explicitly evaluate the fitness of feature subsets. A number
of ideas were proposed to use a small portion of the training set to train M
for evaluations to reduce the computational cost [42; [85H87]. However, the
trade-off between computational efficiency and accuracy for these approaches
is unclear, since all experiments reported in these papers lack direct compari-
son against a classical wrapper that uses all available data.

In summary, while the wrapper approach is widely regarded as the gold
standard for achieving optimal solution quality in feature selection, its practi-
cal utility is constrained by the substantial computational expenses associated
with its implementation. The real-world feasibility of the wrapper approach is
hindered by the considerable computational resources and time required for its
execution.

2.1.2 Hyper-parameters Optimization

The learning algorithm A often has a number of settings that must be chosen
prior to training known as hyperparameters (A). The objective of a hyper-
parameter search is to identify the set A* that can lead to an optimal model
Mg = My™ performance represented by minimizing £(X"“;Mg). This can be
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formalized as:

A= argrrhinL(X"“;A(X";l)) = argrriin&"(l;f[,X",XV“,L). (2.2)

The objective function F measures the the corresponding £(X"*; My ) of using
a candidate hyperparameters setting A to train M. Equation can be ex-
tended to maximization of a performance measure (metric) such as accuracy
u:

A :argmfx?(k;A,X",Xm,U). (2.3)

The problem of identifying the optimal hyperparameter A* is challeng-
ing, as it is widely acknowledged that different datasets, tasks, and families
of learning algorithms often require specific configurations [24]. Among the
various HPO strategies, Grid Search (GS) has been a popular choice among
practitioners, particularly when dealing with HPO problems that involve a rel-
atively small number of hyperparameters, typically fewer than five [88]]. How-
ever, GS is plagued by the curse of dimensionality, as it becomes quickly im-
practical when dealing with a large number of hyperparameters, such as those
associated with DNNs [20].

An alternative to GS is Random Search (RS), a foundational approach for
HPO problems related to DNNs [24]. RS is often more efficient than GS when
dealing with extensive search spaces, delivering faster results [24} 89]. How-
ever, RS suffers from a fundamental drawback: it samples hyperparameters
independently of past evaluations, which means it fails to fully exploit promis-
ing regions within the search space [90; 91]].

To tackle complex search spaces in HPO problems, various metaheuristics
have been utilized. These include Particle Swarm Optimization (PSO) [92],
Genetic Algorithms (GA) [93]], Bayesian methods [49; 150], and the Iterated
Racing Procedure [94]. Among these, population-based methods like GAs of-
ten outperform GS and RS, especially when handling extensive search spaces [89].
Similarly, PSO has proven effective in exploring the solution space of DNN hy-
perparameters, enabling competitive performance even with minimal network
architectures [93].

17






3. Methods

In this section, we introduce the overall methodology used throughout all pa-
pers. We explain the major processes while highlighting how we approached
them in every single paper. The flowchart in Fig. [3.1] introduces the processes
of our meta-method. We start by designing a representation of candidate solu-
tions and defining the search space. The next step is choosing an appropriate
EC algorithm, and designing a fitness function to guide the search. As surro-
gate models are used to guide the search in most of our studies, we explain
the designed evolution controls. The final step after concluding the iterative
search procedure of EC is the evaluation of the results, with two distinctive
goals, either evaluation of the performance of new algorithms, or revealing
insights into the problem domain.

3.1 Designing search space and solution representation

An important aspect of using EC to optimize ML models is the proper de-
sign of a balanced search space. Whether the goal is to select architectures,
fine-tune hyperparameters, or discover loss functions, a trade-off always exists
between the size of the search space and the quality of solutions within it [52].
A complex search space designed by including a large number of hyperparam-
eters [20] is more likely to contain high-performing configurations. On the
other hand, the size of the space grows exponentially with more hyperparame-
ters to tune [48]]. The same trade-off can be observed for other optimizations as
with loss function search. An overly constrained search space will not contain
novel loss functions, whereas a search space that is too large will be difficult
to effectively search. The choice of how to represent the individual solutions
plays a major role in determining the size of the search space.

» Paper I: Feature subsets are represented as binary strings. The size of
the search space varied for different datasets between 107 - 108 feature

subsets.

* Paper II: Feature subsets are represented as binary strings. The size of
the search space of the EV dataset is 10? feature subsets.
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Figure 3.1: A flowchart of the overall method used to carry model search.

» Paper III: Feature and instance subsets are represented as binary strings.
The size of the search space varied between 10> - 1080 feature subsets
for different datasets.

* Paper IV: Hyper-parameter settings are represented with a mix of con-
tinuous and discrete values. The size of the search space is on the order
of 10%° possible settings.

* Paper V: Loss functions are represented as trees of unary and binary
operators, similar to the representation used by [25;/51;[52]]. The number
of possible loss functions is on the order of 102!,

3.2 Choosing EC algorithm

The choice of an appropriate EC method is not a straightforward decision given
that the "No free lunch theorem" [96]] is applicable to EC. It is widely accepted
that no EC methods are universally superior across a wide range of optimiza-
tion problems [97; 98]]. Also, EC algorithms require setting some parameters
of their own to optimize their performance. We select algorithms with different
exploration/exploitation characteristics based on the objective of the research.
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As the identification of new knowledge in the domain of DL is a major focus,
we choose algorithms/settings with strong exploration performance.

We motivate the choice of a particular EC by first excluding the possibility
of an exhaustive search e.g., GS, due to the size of the search space. Second,
we compare it to a baseline search procedure e.g., RS, to establish the difficulty
of the problem. Afterward, we carry out experiments to identify good selec-
tions of primary settings e.g., population size, or total number of generations.

3.3

Paper I: CHC [30], a GA-based algorithm.
Paper II: Elitist GA with one point crossover and bit-flip mutation.

Paper III: CHC is used for instance selection, while both CHC and PSO
with star topology are used for feature selection.

Paper IV: PSO with star topology.

Paper V: A Genetic Programming (GP) CHC-based Algorithm .

Designing fitness function

The fitness or objective function defines the criteria by which the quality of
potential solutions within the population is assessed.

Paper I:
pw* = argmax F;(u; A, X" X" U). 3.1
m

The objective function JF; accepts a candidate feature subset ¢ and re-
turns the corresponding accuracy U on the validation split X*¢ using the
surrogate model M, u* is the feature subset that leads to maximum val-
idation accuracy according to M.

Paper I1:
T :argml?x?H(,u;A,X",X"a,‘P). (3.2)

The objective function F;; accepts a candidate feature subset ( and re-
turns P the leave-one-domain-out cross-validation performance of model
M trained in a wrapper setting using feature subset i, u* is the feature
subset that lead to maximum leave-one-domain-out cross-validation per-
formance according to M.

e Paper III: |

1" = argmax F;(1;A, X", X", p). (3.3)
1
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The objective function F; accepts a candidate instance subset 1 and re-
turns the corresponding Spearman rank correlation between evaluations
conducted using model M and evaluations performed using the meta-
model M/, 1* is the instance subset that leads to the surrogate model M*
with prefect correlation with the original model M.

* Paper IV:
A* = argmfx?lv(k;fl,X’r,XV“,U). (3.4)

The objective function JF accepts a candidate hyperparameters setting A
and returns the corresponding accuracy U on the validation split X"?,
A* is the hyperparameter setting that leads to a maximum accuracy on
validation split.

* Paper V:
L* :argmgxﬁ"v(L;A,X",XV“,GJ). (3.5)

The objective function F accepts a candidate survival regression loss
function £ and returns the corresponding validation C-index CJ perfor-
mance, £* is the loss function that leads to a maximum C-index perfor-
mance on the validation set.

3.4 Defining evolution control

It has been observed that when a surrogate model M is employed for fitness
evaluations, there is a high probability of the evolutionary algorithm converg-
ing towards a false optimum [99]. A false optimum is a solution that represents
the optimal point according to the approximate model but does not align with
the true optimum of the original fitness function.

Hence, in many instances, it is crucial to combine the approximate model
M’ with the original model M. This concept can be viewed as a matter of
model management or evolution control. Evolution control implies that when
employing evolutionary computation with approximate models, the original
fitness function is employed to assess certain individuals or all individuals in
specific generations. We design evolution control strategies in our work to
ensure that first, the surrogate model M’ will not mislead the optimization to
a false optimum. And second, the computational cost should be reduced as
much as possible.

e Paper I: The best individual found by surrogate M’ is reevaluated using
M, after every fixed number of (z) generations.
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 Paper II: No evolution control is needed, as we have used the original
model M for all fitness evaluations.

* Paper III: All individuals in the population evaluated with M are reeval-
uated using M after every fixed number of (z) generations.

* Paper IV: Only the best individual found in the search by M’ is reeval-
uated using M.

 Paper V: The best individual found by surrogate M is reevaluated using
M, after every fixed number of (z) generations.

3.5 Evaluating results

Our approaches of evaluating the results differ based on whether the objective
of the paper is to answer RQ1 or RQ2. As the main goal of RQ2 is to pro-
duce novel EC algorithms, we compare our proposed algorithms empirically
against SOTA methods and baseline alternatives using benchmark datasets. We
also carry sensitivity analysis for the main algorithm parameters and amortized
analysis to quantify the computational savings of our algorithms.

In papers addressing RQ1, we carry ablation procedures to quantify the
significance of the findings. We also conduct correlation analysis to identify
novel insights and interesting configurations.

e Paper I

— Empirical analysis based on 14 datasets from the UCI ML repos-
itory comparing accuracy and run-time of the SAGA algorithm
against a classical wrapper.

— Amortized analysis of the computational cost showed that the upper-
bound run-time of the SAGA algorithm is, in the worst case, equal
to the wrapper, and it scales better for different choices of inductive
algorithms.

— Sensitivity analysis of the main parameters of SAGA controlling
population reduction and migration strategies.

* Paper II:

— Empirical analysis based on hybrid energy buses datasets, compar-
ing GADIF against a number of wrapper and filter feature selection
methods.

* Paper III:
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— Empirical analysis based on 13 datasets from UCI ML repository
comparing accuracy and run-time of the CHCpy and PSOgx algo-
rithm against classical wrappers CHC and PSO.

— Amortized analysis of the computational cost showed that the cost
of running our algorithm CHCpy is cheaper than CHC, as long as
two algorithms run for at least 13 generations.

— Sensitivity analysis of the main parameters of CHCpy, including
population size and evolution control frequency.

* Paper IV:

— Empirical analysis based on 4 benchmark vision datasets.

— Ablation study to quantify the contributions of different random-
ness techniques in different settings.

— Correlation analysis to identify interesting configurations and in-
teractions between randomness techniques.

* Paper V:

— Empirical analysis based on 19 benchmark survival analysis datasets.

— Ablation study to confirm the importance of the non-zero gradient
for the censored cases.



4. Concluding Remarks

As the dance between EC and ML algorithms continues to evolve, it seems like
both paradigms can greatly benefit from working jointly. The task of designing
intelligent algorithms can be viewed as a bilevel optimization process in this
mixture. In this process, EC methods search for an optimal initial configuration
in the outer optimization, while the inner optimization focuses on analytically
determining or using a gradient-based approach to fine-tune the parameters of
the learning algorithm. Recent studies in the field of evolving parameterized
activation functions and loss functions have demonstrated the advantages of
combining elements from both EC and ML paradigms, resulting in improved
algorithm performance [26} [29].

4.1 Conclusions

In this thesis, we have explored two research directions in EDL. First, we have
proposed novel EC methods that allow estimation of the performance of the
ML model M using a small subset of training instances. Our work extends the
applicability of using EC to optimize M to learning tasks with big datasets.
We have provided theoretical proofs that the run-time of our FS algorithms in
Paper I and in Paper III are, in the worse case, equal to a counterpart FS
wrapper. Empirically, our algorithms were three times faster than a wrapper,
while arriving at feature subset solutions of significantly higher accuracy.
Our ideas are not specific to a certain type of EC e.g., GA, we have tested the
applicability to Swarm Intelligence (SI) with the results of PSO.

Our results show the benefit of using an imperfect (qualitative) approxima-
tion of the fitness evaluations for early explorations in ML optimizations. Our
approximations were successful at quickly identifying interesting regions of
the search space, greatly reducing the number of expensive full-trainings
of M.

We extend the applicability of EC to novel optimization problems in DL,
not previously studied in the literature. Our transfer-learning algorithm in
Paper II penalizes learning from features that are unlikely to generalize to do-
mains with no labeled data. We showcase the task of modeling SOH for a pop-
ulation of hybrid energy buses, where our algorithm identified better feature
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subsets for unseen scenarios/domains e.g., different operations and configura-
tions.

In our study of randomness techniques in training DNNs in Paper IV, we
categorized existing randomness techniques based on type: data, network, and
optimization; and based on purpose: regularization, data size, convergence,
and training time. Our categorization allowed us to identify gaps in the cover-
age of techniques, as we propose two novel techniques: Loss Noise (LN) and
Gradient Dropout (GD). Our empirical results showed that both methods lead
to significant test error reductions in a variety of learning tasks.

The results of our ablation study showed that choosing the weight initial-
ization scale, the starting learning rate, and how much to decay it during train-
ing, are the choices that lead to consistent test error reductions. The role of
image augmentation is also important to improve performance, but the aug-
mentation techniques are dataset-dependent, an augmentation policy must be
optimized for the dataset.

Our results suggest that optimizers demonstrate different training dynam-
ics. Vanilla SGD and Adam both showed the “expected” preference of starting
with a high level of noise while decaying it as the training progressed. Inter-
estingly, we observed that Adam showed a clear preference for steep decay
of the learning rate, This observation contradicts a common intuition in the
DL community that decaying the learning rate is not as necessary for adaptive
optimizers due to their ability to use different step sizes for different parame-
ters. Another surprising result is the one of SGD with Momentum that kept an
almost constant scale of noise throughout training.

The analysis reveals that SGD with Momentum should be the preferred
optimizer for scenarios involving large-batch training and few-shot learning.
Conversely, when the primary goal is achieving the best performance, espe-
cially on challenging datasets, Vanilla SGD outperforms other options. It’s
worth noting, however, that proper hyperparameter selection is critical for
Vanilla SGD due to its sensitivity to factors like initialization, learning rate,
and batch size. Therefore, practitioners aiming for peak performance should
steer clear of using Adam, as our study found its generalization performance to
be significantly poorer compared to the SGD family of optimizers, especially
on more demanding datasets. Nonetheless, one advantage of Adam is its flexi-
bility in working with a wider range of learning rates and weight initialization
values, which can be valuable when computational resources are limited for
fine-tuning these parameters.

Another interesting finding was the superior performance of DropConnect
compared to the more popular variant, Dropout, for fully connected networks.
This finding suggests that DropConnect should be the preferred method for
few-shoot and transfer learning scenarios where a pre-trained feature extractors
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are used.

4.2 A look into the future

It is also important to understand whether the long run-time problem of EDL
will continue to be relevant in the future. We analyze the recent progress and
trends of the three pillars: compute, data and algorithms to answer this ques-
tion.

Our computing power was growing exponentially — even accelerating over
the last decade, but is on the verge of slowing down. Historically, the progress
of our computing power for traditional CPUs followed the Moore’s law [100]
predicting that the number of transistors on a microchip would double every 18
months. However, GPUs appeared to be growing at a faster rate than traditional
CPUs; the Huang’s law [101]] suggests that GPU performance was at least
tripling every two years, a rate much faster than Moore’s law. However, the
growth in the compute is bounded by the practical limits of physics, and is
expected to plateau as quickly as in 2025 [102].

We may observe the growth in our datasets sizes for the vision bench-
mark datasets in Figure 4.1] The hand-written digits dataset MNIST was the
largest labeled image dataset of its time in 1998, with 60K training instances,
almost 10 years later, in 2009, the ImageNet dataset was released with more
than 14M images. Today, the Google dataset JFT-300M [103]] has over 300M
images. Our benchmark datasets sizes has grown in size by more than 4 000
times within the last 20 years, almost doubling every 18 months. A similar
exponential rate of growth is reported in papers from the big data literature
[104; 105)]. As this rate of growth is showing no sign of slowing down, we
could expect the big techs to soon work with datasets of over billion images.

The current direction of advancing DL algorithms is pushing towards more
data-hungry algorithms. A clear example is the Vision Transformers (ViT),
showing superior performance compared to CNN for datasets with more than
a hundred million training samples. A result explained based on the intuition
that the lack of the inductive biases of ViT compared to CNNs is causing the
higher performance. CNNs are designed with certain architectural assump-
tions that introduce bias in how they perceive and process visual information.
An example of such bias is the one toward local features due to their use of con-
volutional filters with fixed receptive fields. ViTs, on the other hand, rely on
the multi-head self-attention mechanism allowing them to capture long-range
dependencies in the data without any pre-defined local receptive fields, as used
in CNNss [7].

As these trends continue, in the near future, we will have larger datasets,
and more data-hungry algorithms, but a slower rate of progress of the com-
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puting power. Extrapolating forward, the need to come up with efficient EC
algorithms, or even training-free alternatives [106] for model evaluations is
crucial to reduce the reliance on increases in computing power [107]].
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Figure 4.1: Computer vision benchmark datasets by size in terms of number of
instances, ordered chronically from left to right based on their year of release.

4.3 Future Work

A number of DNN optimizations discussed in this thesis Paper 2, Paper IV
and Paper V can be carried in a coevolution setting. The use of coevolution
could potentially maximize the benefit of potential interactions between dif-
ferent design decisions. It would be interesting to analyze such interactions
between e.g., loss and activation functions.

The real-world applications of DL rarely consider one measure of success
e.g., accuracy. In our work of optimizing activation functions in Paper 2,
we evaluated candidate activations according to their accuracy. It would be
interesting to carry out the search while considering another competing ob-
jective e.g., energy consumption in a Multi-Objective Optimization (MOO)
setting. The search could potentially identify high-performing yet computa-
tionally cheap functions to use with a simpler model with fewer layers out-
performing an over-parameterized deep DNN with ReLU units, similar ideas
of using activation functions to achieve more computationally efficient DNN
architectures are an active research direction in the literature of trainable acti-
vation functions [108]].
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The Genetic Programming (GP) algorithm we have used to discover loss
and activation functions in Paper 2 and Paper V, can be used to discover
schedules for other design choices in DNN. Many of the hyper-parameters are
held constant throughout the training e.g., label smoothing, and the GP-based
algorithm could be used to test the null hypothesis “holding a constant value
of label smoothing throughout the training is optimal”. Also, we could use it
to identify task-specific schedules for hyper-parameters that generally benefit
from decaying e.g, learning rate or increasing batch size, while not knowing
exactly what schedule to use e.g., exponential or step-function [109].

A possible extension of the work in Paper I and in Paper IV is to use an
approximate model M’ to estimate the performance of model M for the learn-
ing task T, where M’ belong to a different learning algorithm A # A’. A moti-
vation is to choose A’ based on the characteristic of the dataset of T to ensure
that evaluations with M’ require less time than ones with M. As an example,
a DT model would be a good approximation choice for datasets with a large
number of instances, given its linear complexity O(nk?) towards the number of
training instances. kNN is the opposite as it scales linearly with more features
O(n’k), but would struggle with a large number of instances. An important
aspect is to consider the differences in the inductive biases between A and A’.
Intuitively, DT could be a useful approximate model M’ to select features for
model M as Random Forest (RF), as both learning algorithms share similari-
ties in their assumptions. It is unclear whether the same DT approximate model
would be of any use to select feature subsets for a learning task where M is
SVM. The same thinking applies to DL, as Multi-layer Perceptrons (MLPs)
are often used as test-beds for new ideas and techniques. Again, the useful-
ness of an MLP-based M’ to optimize e.g., the image augmentation policy of
ViT-based model M, depends on M’ ability to rank solutions similarly to M.
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