
http://www.diva-portal.org

This is the published version of a paper published in Neurocomputing.

Citation for the original published paper (version of record):

Vettoruzzo, A., Bouguelia, M-R., Rögnvaldsson, T. (2024)
Meta-learning for efficient unsupervised domain adaptation
Neurocomputing, 574: 127264
https://doi.org/10.1016/j.neucom.2024.127264

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-52450

Neurocomputing 574 (2024) 127264

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Meta-learning for efficient unsupervised domain adaptation
Anna Vettoruzzo ∗, Mohamed-Rafik Bouguelia, Thorsteinn Rögnvaldsson
Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden

A R T I C L E I N F O

Communicated by R. Yang

Keywords:
Domain adaptation
Meta-learning
Unsupervised learning
Distribution shift

A B S T R A C T

The standard machine learning assumption that training and test data are drawn from the same probability
distribution does not hold in many real-world applications due to the inability to reproduce testing conditions
at training time. Existing unsupervised domain adaption (UDA) methods address this problem by learning a
domain-invariant feature space that performs well on available source domain(s) (labeled training data) and the
specific target domain (unlabeled test data). In contrast, instead of simply adapting to domains, this paper aims
for an approach that learns to adapt effectively to new unlabeled domains. To do so, we leverage meta-learning
to optimize a neural network such that an unlabeled adaptation of its parameters to any domain would yield a
good generalization on this latter. The experimental evaluation shows that the proposed approach outperforms
standard approaches even when a small amount of unlabeled test data is used for adaptation, demonstrating
the benefit of meta-learning prior knowledge from various domains to solve UDA problems.
1. Introduction

Deep learning methods have seen remarkable progress in recent
years, matching or even outperforming the cognitive skills of humans in
various application areas. However, when the training data distribution
differs from the test data distribution (i.e., they represent different
domains), the performance of deep neural networks on test data drops
significantly [1]. This problem, known as distribution shift, is common
in many practical applications due to environmental changes between
the acquisition of training and test data and the bias introduced by
experimental design.

This problem is important to address in many application areas.
For example, suppose that a model is trained with data from a specific
country to differentiate between two types of cancer from blood mea-
surements. If the model is applied without any adaptation in another
country, its accuracy may deteriorate significantly, e.g., due to the
difference in patient population or quality of the medical equipment.
Another example is predictive maintenance of vehicles, where one
would want to estimate the remaining useful life or the state of health
of a vehicle’s component using onboard sensor data. These vehicles
may be driven under different conditions, thus, exhibiting different
data distributions. The same reasoning applies to several other fields
like human activity recognition on different individuals or in different
home environments and handwriting recognition for different users
with varying writing styles. This shift in the data distribution creates
what we call domains.

∗ Corresponding author.
E-mail addresses: anna.vettoruzzo@hh.se (A. Vettoruzzo), mohamed-rafik.bouguelia@hh.se (M.-R. Bouguelia), thorsteinn.rognvaldsson@hh.se

(T. Rögnvaldsson).

Because of its ubiquity in real-world applications, the problem
of distribution shift has been addressed by domain adaptation meth-
ods [2]. Specifically, unsupervised domain adaptation (UDA) methods
aim to learn a domain-invariant representation by training a classifier
on the labeled source domain(s) while minimizing the distribution
shift between the source and the unlabeled target domain, making the
classifier also applicable to the target data. Some recent works [3–5]
have also focused on addressing the problem of multi-target domain
adaptation by designing models that can adapt to multiple target
domains. These approaches can specialize to one or multiple target
domains available during training. However, when presented with a
completely new target domain, they need to be re-trained from scratch.
In addition, they also assume access to a large number of test examples
(i.e., data from the target domain) at training time. This is critical if the
unlabeled data from the new domain is limited, and predictions need
to be made as soon as possible.

This paper introduces the Unsupervised Meta-Adaptation (UMA) ap-
proach that learns to adapt to new unlabeled domains. To do so,
we leverage meta-learning to accumulate knowledge across available
labeled domains and learn an internal representation easily adaptable
to new unlabeled domains. The goal is to adapt in an unsupervised
way, effectively (in terms of performance) and efficiently (in terms of
training time and amount of unlabeled data accessible from the new
domain). Existing meta-learning approaches [6–9] focus primarily on
the problem of few-shot learning. They use a set of labeled tasks to
learn a representation that can later be adapted to a new task with
vailable online 17 January 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2024.127264
Received 24 March 2023; Received in revised form 23 November 2023; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

4 January 2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:anna.vettoruzzo@hh.se
mailto:mohamed-rafik.bouguelia@hh.se
mailto:thorsteinn.rognvaldsson@hh.se
https://doi.org/10.1016/j.neucom.2024.127264
https://doi.org/10.1016/j.neucom.2024.127264
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.127264&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.

m
i
e
t
f
u
d
b
T
d
c
t
w
c

M
r
s
a
r
l
o
a
o
A
p

l
b
U

a small number of labeled samples; therefore, such methods use a
supervised adaptation. This poses an obstacle to their practical usage in

any real-world applications where data observed from a new domain
s completely unlabeled. Our proposed approach is different as it can
fficiently adapt using unlabeled examples from the new domain at
est time. Recently, [10] proposed the adaptive risk minimization (ARM)
ramework that uses meta-learning paradigms on problems requiring
nlabeled adaptation. The primary goal of this approach is to tackle the
istribution shift problem by extracting contextual information from a
atch of inputs at test time to obtain good post-adaptation performance.
his method works well when batches of data are representative of the
omains and labels are consistent across all domains. However, these
onditions may not hold in some cases, e.g., standard few-shot learning
estbeds. In this paper, we design an approach capable of dealing
ith different labels across tasks, paving the way for the possibility of

reating new training tasks automatically in the future.
Our main contribution is to leverage meta-learning through the

odel-Agnostic Meta-Learning (MAML) framework [8] to learn a rep-
esentation effectively adaptable to any new unlabeled domain. More
pecifically, we aim to learn an initialization of the parameters for
neural network such that an unsupervised adaptation of these pa-

ameters based on new domains yields a good generalization on these
atter. The experimental evaluation shows that the proposed approach
utperforms UDA techniques in terms of the average and worst-case
ccuracy, the time required to adapt at test time, and the number
f samples needed for the adaptation. Besides, it is competitive with
RM on datasets with many training domains and exceeds ARM’s
erformance when the marginal data distribution 𝑝(𝑥) is not providing

much information about 𝑝(𝑦|𝑥).

2. Related work

Unsupervised domain adaptation

Unsupervised domain adaptation has been extensively studied to
overcome the distribution shift problem between training (source) and
test (target) data. The underlying idea is to exploit labeled data in one
domain (the source domain) to secure a good accuracy on a different
domain (the target domain) whose data is entirely unlabeled [2]. Some
methods aim to align the source and target data distributions using
statistical measures, e.g., Maximum Mean Discrepancy (MMD) [11–14].
Others use an architecture inspired by Generative Adversarial Network
(GAN) [15] to learn an embedding and make the classification on top
of that Ganin et al. [16], or they enforce an encoder–decoder network
to reconstruct target instances similar to the source domain [17,18].
Inspired by Ganin et al. [16], Multisource Domain Adversarial Network
(MDAN) [19] introduces multisource adversarial training to align the
feature distributions of multiple source domains with the target do-
main, achieving better results than single-source domain adaptation
approaches. Although these methods solve the UDA problem, they
cannot generalize to the case in which multiple target domains must
be solved. Recently, some works have focused on applying UDA in the
multi-target domain adaptation scenario by training multiple models
individually for each target domain [5] or training a single model
on combined data from multiple target domains [3,20]. However,
both approaches may result in performance degradation due to the
discrepancy between domains. A special setting of UDA is test-time
domain adaptation, also known as online domain adaptation. Test-
time domain adaptation techniques [21–23] aim to adapt a pre-trained
source model to a target domain without utilizing any source data.
This is appealing to real-world applications where data privacy and
transmission bandwidth are critical concerns. However, building a
target-domain classifier with only the source domain classifier available
as a proxy for the source domain may be challenging [22].
2

d

Domain generalization

A related problem to domain adaptation is domain generaliza-
tion, which aims to learn models that can generalize to unseen target
domains by exploiting the commonalities among different source do-
mains [24]. Nevertheless, unlike domain adaptation, domain general-
ization does not attempt to ‘‘adapt’’ to the new domain and thus does
not require data from it. One way to address domain generalization is
to incorporate a regularization term in the loss function to encourage
the model to learn discriminative and diverse representations across
all source domains and thus increase the generalization ability of the
model, as done in Domain Generalization via Entropy Regularization
(DGER) [25]. Another approach, Meta-Learning Domain Generalization
(MLDG) [26], uses meta-learning to learn an initialization that can gen-
eralize well to unseen domains. However, while domain generalization
aims at developing models capable of generalizing to unseen target
domains without requiring access to their specific data, the focus of
the approach proposed in this work is efficient domain adaptation. In
this latter, the objective is to utilize a limited amount of unlabeled
data from the new target domains and gain advantages by adapting
to them, especially when they significantly differ from the training
domains. Instead of relying solely on domain adaptation, our approach
incorporates a meta-training phase to learn efficient adaptation strate-
gies, specifically in the form of a better model initialization, prior to
executing the adaptation process.

Meta-learning

Meta-learning refers to the ability of the algorithm to build knowl-
edge across different tasks to quickly adapt to any new task [27]. In
recent years, MAML [8] has received a big interest in this field. Its
key idea is finding the initial model parameters that maximize the
performance after being adapted to new tasks with a small amount
of labeled data. Inspired by this approach, several methods have been
implemented to apply meta-learning in the semi-supervised setting [28–
30]. However, they all assume access to some labeled data from the
new task to adapt to it at test time. Some recent works address the
problem of meta-learning for unlabeled adaptation; for example, [31]
meta-learns an update rule for unsupervised representation learning,
without considering the distribution shift problem, while the ARM
framework [10] extracts contextual information from batches of unla-
beled data to adapt to distribution shifts. Interested readers can find a
more comprehensive discussion of meta-learning in [32].

As in these works, we focus on problems where only unlabeled
data is available at test time. Our method leverages meta-learning to
effectively and efficiently adapt to different unlabeled domains, demon-
strating how to improve the adaptation of existing UDA techniques such
as Domain Adversarial Neural Network (DANN) [16] and MMD [13].

3. Preliminaries and notation

Domain adaptation

Formally, a domain consists of the input or feature space , the
output or label space , and the joint probability distribution 𝑝(𝑥, 𝑦)
over the space × , i.e., = { , , 𝑝(𝑥, 𝑦)} [2]. Focusing on UDA
problems, the algorithm is provided with a labeled source dataset 𝑆 =
{(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, drawn i.i.d from the source domain 𝑆 , and an unlabeled
target dataset 𝑇 = {(𝑥𝑖)}𝑚𝑖=1, drawn i.i.d from 𝑝𝑡(𝑥) (the marginal
distribution of 𝑇 over). The key assumption in typical domain
adaptation is that 𝑝𝑠(𝑥) ≠ 𝑝𝑡(𝑥), but 𝑝𝑠(𝑦|𝑥) = 𝑝𝑡(𝑦|𝑥). The goal is to
earn a classifier on 𝑆 that generalizes to 𝑇 by minimizing the distance
etween the two domains. Without loss of generality, we focus on two
DA techniques: DANN [16] and MMD-based domain adaptation [13].

DANN aims to learn a representation that is domain-invariant and
iscriminative for the classification problem at hand. The network

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.
Fig. 1. Task formulation for a handwritten digits classification problem, where domains correspond to various rotations of the digits. Each task 𝑖 consists of a pair of source
and target domains {𝑆𝑖

,𝑇𝑖 }. The assignment of class labels to classes is consistent within each task but can differ across the training tasks. The labels in the support sets of the
target domains 𝑠𝑝

𝑇𝑖
are hidden during meta-training, and the new domains (at meta-test time) consist only of an unlabeled support set.
consists of three parts: a feature extractor 𝐠, a label predictor 𝐜 that
discriminates between class labels, and a domain classifier 𝐝 that dis-
criminates between 𝑆 and 𝑇 . To ensure that the feature distributions
over the two domains are similar, a gradient reversal layer (GRL) is
used to train the feature extractor such that it maximizes the loss of
the domain classifier while minimizing the loss on the label predictor.

Rather than using a domain classifier network to classify domain la-
bels, the disparity between domains can be measured using, e.g., MMD
[13]. MMD aims at measuring the deviation of the means computed
from the source and target domains. Given two sets of unlabeled
samples, 𝑆 = {𝑥𝑆𝑖 }

𝑛
𝑖=1 and 𝑇 = {𝑥𝑇𝑖 }

𝑚
𝑖=1, an empirical estimation of MMD

is computed by

M̂MD(𝑆, 𝑇) =
‖

‖

‖

‖

𝑛
∑

𝑖=1

𝐊(𝑥𝑆𝑖)
𝑛

−
𝑚
∑

𝑖=1

𝐊(𝑥𝑇𝑖)
𝑚

‖

‖

‖

‖𝐊

where 𝐊 represents the kernel function that maps the original data to
a reproducing kernel Hilbert space (RKHS) [33].

Meta-learning

Differently from traditional learning methods focusing on a specific
task, meta-learning methods aim for learning to learn by accumulating
experience from multiple tasks and achieving fast adaptation to a new
task with a few (𝐾) labeled examples. In MAML [8], a base learner
𝑓𝜃 , parameterized by 𝜃, takes as input labeled tasks sampled from a
distribution of tasks 𝑝(). The data sampled from each task 𝑖 is divided
into a set of 𝐾 training examples (also called support set) and a test
set (also called query set). The goal is to learn a set of parameters 𝜃
so that, after updating them with a small number of gradient descent
steps using the support set, the learner will perform well on the query
set. This update is called a ‘‘supervised adaptation’’ since 𝜃 is adapted
using labeled data from a task 𝑖 to get a set of task-specific parame-
ters 𝜙𝑖. The initial parameters 𝜃 are updated during meta-training by
minimizing the post-adaptation loss computed across all tasks. These
parameters contain across-task knowledge acting as prior knowledge
when adapting to a new task (with 𝐾 labeled examples). At meta-test
time, a new test task 𝑛𝑒𝑤 ∼ 𝑝() is observed, and the 𝐾 labeled training
examples from this task are used to update 𝜃. The updated parameters
can then be used to make predictions on test examples from 𝑛𝑒𝑤. For
a more in-depth understanding of MAML, please refer to the original
paper [8]. While MAML demonstrates strong performance when tasks
3

are drawn from the same task distribution, 𝑝(), and a limited set of
labeled data is available for each task, the UMA method introduced in
this paper is specifically crafted to address the UDA problem. Indeed,
UDA is characterized by a distribution shift between domains, and its
primary focus is on adapting to new, unlabeled domains.

4. Proposed approach: Unsupervised meta-adaptation

This section presents our proposed approach that addresses the UDA
problem more effectively and efficiently. It consists of two phases:
a meta-training phase and a meta-test phase. In the meta-training
phase, we are provided with labeled domains. The goal is to learn
an internal representation in the form of initial network parameters
that are ‘‘adaptable’’ (i.e., they can easily be adapted) using various
pairs of source and target domains. The meta-training is such that the
adaptation of the initial parameters is

i. unsupervised, i.e., uses a labeled source domain but an unlabeled
target domain

ii. effective, i.e., achieves a good post-adaptation generalization
error

iii. efficient, i.e., requires little data and few gradient adaptation
steps, thus, quick.

In the meta-test phase, we observe a mini-batch of unlabeled data from
a new domain that we pair with available source domain(s) to adapt
the internal representation learned in the meta-training phase and make
accurate predictions on this new domain.

4.1. Task formulation

We are given a set of training domains, denoted as 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛,
that are used to construct tasks during the meta-training phase. Each
domain 𝑖 is drawn from an underlying distribution over domains 𝑝(),
and the input data from each domain comes from a different distri-
bution (as explained in Section 3). Since the primary goal in domain
adaptation is to align source and target data in some latent space, here,
we consider that a training task 𝑖 corresponds to a pair of domains
𝑖 = {𝑆𝑖

,𝑇𝑖}, both selected randomly from 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛. This is unlike
the few-shot meta-learning setting, where each task corresponds to a
single dataset. Fig. 1 illustrates this task formulation, where the set of
tasks used for meta-training is denoted by = { }𝑁 . For each
𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 𝑖 𝑖=1

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.

r
s
l
𝑇
t
w
a

s

u
s
f
c
i
i
d
a
n

l
s
a
r
l
e
p
d
n
a
s
t
t
d
u
d
s
t
w
d
t
t
t
a
i
m
s
t
t
m

4

a
o
(
𝐝

i
p
D

w
d

c

w
d

𝑆
t
m
r

4

p

a

l
o
𝜃
𝜙
d
u

𝜙

w
N
s

l
a
h
o
o
o

𝜃

w

e
u
r
q

9
e
f
t

f
(
a
t
n

task 𝑖, the data from the source and the target domains (𝑆𝑖 and 𝑇𝑖
espectively) is split into support and query sets (see Fig. 1). In the
ource domain, both the support set 𝑆𝑠𝑝

𝑖 and the query set 𝑆𝑞𝑟
𝑖 are

abeled. However, in the target domain, the labels in the support set
𝑠𝑝
𝑖 are hidden (as illustrated with question marks in Fig. 1). This is so
hat we can meta-train the model to learn to adapt in an ‘‘unsupervised’’
ay, using the support sets of each task (i.e., labeled source support set
nd unlabeled target support set).

At meta-test time, we define new test tasks using a completely
eparate set of target domains denoted as 𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡. These domains in
𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 have not been utilized during the meta-training phase and are
nseen by the model. To construct a test task, we randomly sample a
ource domain from 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 and pair it with a new target domain
rom 𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡. This setup allows us to evaluate the model’s adaptation
apabilities to unseen target domains. Importantly, the target domains
n the test tasks have not been encountered previously. For instance,
n the case of the R-MNIST dataset (cf. Section 5.1 for details on the
atasets), the domains differ by various degrees of rotation of the digits,
nd the domains in 𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡 consist of new rotation angles that have
ot been used to define domains in 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛.

During the meta-training phase, one of the key challenges in meta-
earning is the potential for the model to inadvertently memorize
pecific solutions for individual training tasks, rather than acquiring
more generalized adaptation strategy. This phenomenon, commonly

eferred to as meta-overfitting or the memorization problem in meta-
earning [34], can hinder the model’s ability to effectively adapt to
ntirely new tasks during the meta-testing phase. However, as ex-
lained by [34], this memorization problem can be circumvented by
esigning the training tasks to be mutually exclusive, meaning that
o single model can proficiently solve all the tasks simultaneously. To
ddress this, following the suggestion put forth by [34], we devise a
trategy to construct mutually exclusive tasks by randomly shuffling
he labels across tasks during the meta-training phase. It is important
o note that this label shuffling is consistent within each task (for both
omains), yet it differs across tasks. To provide a concrete example, let
s consider a training task involving the classification of handwritten
igits with varying degrees of rotation. In a standard classification
etup, the label assignment is fixed, such that the digit zero is consis-
ently labeled as zero, one as one, and so on. However, in our approach,
e introduce variability by randomly assigning different labels to the
igits within each training task. For instance, as depicted in Fig. 1,
he digit zero may be labeled as 1 in the domains of 1, but as 5 in
he domains of 𝑁 . This deliberate introduction of variability prevents
he model from relying solely on specific label-to-class relationships
nd encourages it to learn a more generalizable representation that
s adaptable to new tasks. Consequently, the model avoids the risk of
emorizing a function that can solve all the tasks in 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 while

truggling to effectively adapt when presented with a completely novel
ask. This also gives more flexibility if one wants to generate more
raining tasks, unlike the ARM formulation, where all training domains
ust have consistent labels.

.2. Model specification

We consider a neural network model parameterized by 𝜃 that takes
s input data from a pair of domains, 𝑆 and 𝑇 . The model consists
f a feature extractor 𝐠 (parameterized by 𝜃𝐠), a label predictor 𝐜
parameterized by 𝜃𝐜), and, in the case of DANN, a domain classifier
(parameterized by 𝜃𝐝).

The feature extractor 𝐠 learns to extract features that are domain-
nvariant and discriminative for the main learning problem, while 𝐜
redicts the label on top of them. When the model is trained with a
ANN architecture, learning involves a minimax optimization:

min max
[

𝑐 ({𝜃𝐠, 𝜃𝐜}, 𝑆) − 𝜆𝑑 ({𝜃𝐠, 𝜃𝐝}, 𝑍)
]

, (1)
4

𝜃𝐠 ,𝜃𝐜 𝜃𝐝 d
here 𝑐 (⋅, ⋅) is the loss for the label predictor, 𝑑 (⋅, ⋅) is the loss for the
omain classifier, 𝑍 = {(𝑥𝑖, 0)}𝑥𝑖∈𝑆 ∪ {(𝑥𝑖, 1)}𝑥𝑖∈𝑇 is a set with domain

labels indicating whether each sample 𝑥𝑖 comes from the source distri-
bution (label 0) or the target distribution (label 1), and 𝜆 (default=1)
ontrols the influence of 𝐝 hence the invariance between domains.

In case of MMD,1 learning involves only a minimization

min
𝜃𝐠 ,𝜃𝐜

[

𝑐 ({𝜃𝐠, 𝜃𝐜}, 𝑆) + M̂MD(𝐠(𝑆), 𝐠(𝑇))
]

, (2)

here M̂MD(𝐠(𝑆), 𝐠(𝑇)) is the empirical MMD distance computed on the
ata mapped to the latent feature space.

In the remainder of this section, we define 𝑖𝑛(𝜃, 𝑆, 𝑇) = 𝑐 ({𝜃𝐠, 𝜃𝐜},
) + M̂MD(𝐠(𝑆), 𝐠(𝑇)). An extension for DANN can easily be derived

aking into consideration that the loss in brackets in Eq. (1) is mini-
ized with respect to some parameters (𝜃𝐠 and 𝜃𝐜) and maximized with

espect to others (𝜃𝐝) as in equation 13–15 in [16].

.3. Algorithm

Algorithm 2 shows the meta-training process of the proposed ap-
roach. First, two domains 𝑆𝑖

and 𝑇𝑖 are randomly selected from
𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛, constituting a training task 𝑖. Data from the two domains
re then divided into support and query sets (see lines 3–5).

As in MAML, meta-training of the model is performed via an inner
oop and an outer loop. The inner loop (at line 6) uses the support set
f the two domains to ‘‘adapt’’ the model’s parameters (starting from
) towards a specific task 𝑖, and results in task-specific parameters
𝑖. This adaptation is done via Algorithm 1 with one or few gradient
escent updates (parameter 𝑄 in Algorithm 1). For example, when
sing one gradient update,

𝑖 = 𝜃 − 𝛼∇𝜃𝑖𝑛(𝜃, 𝑆
𝑠𝑝
𝑖 , 𝑇 𝑠𝑝

𝑖) (3)

here 𝛼 is the learning rate and 𝑖𝑛 is defined in the previous section.
ote that the adaptation is done without considering the labels of 𝑇 𝑠𝑝

𝑖 ,
ince the goal is to learn to adapt in an unsupervised way.

Once the task-specific parameters are computed, the outer loop (at
ine 7) optimizes the initial parameters 𝜃 (i.e., the parameters before
daptation) to minimize the post-adaptation loss 𝑜𝑢𝑡. More specifically,
ere, the loss computed based on the task-specific parameters 𝜙𝑖 is
ptimized with respect to 𝜃 using the query sets and an optimizer
f choice (not necessarily gradient descent). More specifically, 𝜃 is
ptimized at line 7 as follows:

← 𝜃 − 𝛽∇𝜃
∑

𝑖
𝑜𝑢𝑡(𝜙𝑖, 𝑆

𝑞𝑟
𝑖 , 𝑇 𝑞𝑟

𝑖) (4)

here 𝛽 is the learning rate and 𝑜𝑢𝑡(𝜙𝑖, 𝑆
𝑞𝑟
𝑖 , 𝑇 𝑞𝑟

𝑖) = 𝑖𝑛(𝜙𝑖, 𝑆
𝑞𝑟
𝑖 , 𝑇 𝑞𝑟

𝑖) +
𝑐 (𝜙𝑖, 𝑇

𝑞𝑟
𝑖). In other words, the meta-training phase learns prior knowl-

dge in the form of an initial set of parameters 𝜃 that allows efficient
nsupervised domain adaptation (with a few adaptation steps 𝑄) and
esult in effective task-specific parameters 𝜙𝑖 (that minimize 𝑜𝑢𝑡 on the
uery sets).

At the end of meta-training, the parameters 𝜃 are returned (line
) and saved forever. They will act as prior knowledge that helps to
fficiently adapt to new domains. Later, at meta-test time, when data
rom a new unlabeled domain 𝑡𝑒𝑠𝑡

𝑇 is observed, it is used to specialize
he parameters 𝜃 towards this particular test domain. To do so, a task
𝑡𝑒𝑠𝑡 is created by pairing the new domain with an existing domain
rom the training set, as described in Section 4.1. The ADAPT function
Algorithm 1) is then called with a few adaptation steps 𝑄 to get the
dapted parameters 𝜙𝑡𝑒𝑠𝑡, which can be used to predict the labels of
he data in 𝑡𝑒𝑠𝑡

𝑇 . Note that we generalized this process by pairing the
ew target domain with all source domains and evaluating the model

1 Note that the method is not specific to MMD. Any other measure of the
istribution discrepancy between domains can be used.

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.

𝑇
(

o
f
t
t
d

5

p

s
c

R
d
o
1
o
m

c
a
f
a
t
R
t
c

D
d
i
o
t
v
1
t

W
A
(
c
e
m
d
f

5

u
d

e
t
o
o

Algorithm 1 ADAPT(𝑆𝑠𝑝, 𝑇 𝑠𝑝, 𝜃)
Require: Labeled source data 𝑆𝑠𝑝 = (𝑋𝑠𝑝

𝑆 , 𝑦𝑠𝑝𝑆), unlabeled target data
𝑠𝑝 = 𝑋𝑠𝑝

𝑇 , initial parameters 𝜃, learning rate 𝛼, adaptation steps 𝑄
default = 1)
1: 𝜙 ← 𝜃 − 𝛼∇𝜃𝑖𝑛(𝜃, 𝑆𝑠𝑝, 𝑇 𝑠𝑝)
2: for 𝑞 = 1,… , 𝑄 − 1 do
3: 𝜙 ← 𝜙 − 𝛼∇𝜙𝑖𝑛(𝜙, 𝑆𝑠𝑝, 𝑇 𝑠𝑝)
4: end for
5: return 𝜙

Algorithm 2 Unsupervised Meta-Adaptation
Require: Learning rate 𝛽
1: Randomly initialize 𝜃
2: while not done do
3: Sample task 𝑖 = {𝑆𝑖

,𝑇𝑖} (or tasks mini-batch)
4: Assign labels for data in 𝑆𝑖 and 𝑇𝑖 (as in Section 4.1)
5: Split 𝑆𝑖 = {𝑆𝑠𝑝

𝑖 , 𝑆𝑞𝑟
𝑖 }; 𝑇𝑖 = {𝑇 𝑠𝑝

𝑖 , 𝑇 𝑞𝑟
𝑖 }

6: Compute task-specific parameters:
𝜙𝑖 ← ADAPT(𝑆𝑠𝑝

𝑖 , 𝑇 𝑠𝑝
𝑖 , 𝜃)

7: Update 𝜃 ← 𝜃 − 𝛽∇𝜃
∑

𝑖
𝑜𝑢𝑡(𝜙𝑖, 𝑆

𝑞𝑟
𝑖 , 𝑇 𝑞𝑟

𝑖)

8: end while
9: return 𝜃

performance on the new domain for each possible combination. In this
way, we obtain a comprehensive assessment of the model’s adaptation
capability across different domain combinations.

It is also worth noting that traditional UDA approaches aim to adapt
by calling the ADAPT function (Algorithm 1) with random initialization
of 𝜃 (i.e., from scratch) and numerous adaptation steps 𝑄. This results
in a long training time and worse adaptation performance.

5. Experiments

This section compares the proposed UMA approach against UDA ap-
proaches, including DANN [16] and MMD [13], as well as MDAN [19],
a multisource domain adaptation approach. Additional comparisons
involve two domain generalization methods, namely DGER [25] and
MLDG [26], which apply entropy regularization or meta-learning to
improve the generalization ability of the model. The proposed ap-
proach is also compared with the recent state-of-the-art ARM-CML
approach [10], which uses meta-learning to extract contextual in-
formation from domains. The approaches are compared on various
datasets described in Section 5.1, using evaluation metrics described
in Section 5.2. The selection of datasets and evaluation metrics used
to compare performance across different methods was performed by
taking inspiration from the ARM paper [10]. Additionally, we extended
our evaluation to include two time-series datasets, highlighting UMA’s
capability to adapt to diverse scenarios.

The results are presented and discussed in Section 5.3. Similar
hyperparameters and neural network architectures are used in all the
approaches. In all experiments, the models are meta-trained using one
gradient step (i.e., during the meta-training phase, 𝑄 = 1 in Algorithm
1 when called from Algorithm 2) with an initial step size 𝛼 = 0.1, Adam
ptimizer in the outer loop with 𝛽 = 0.001, and the cross-entropy loss
unction for 𝑐 and 𝑑 . In the case of MMD, a Gaussian kernel with 𝜎 in
he order of 0.1 is used. Since the meta-learning-based approaches aim
o adapt with little data, we consider 30% and 70% of samples in each
omain’s support and query set, respectively, during meta-training.

.1. Datasets

Five different datasets, described below, are used to evaluate the
5

erformance of the proposed approach. Each dataset consists of several
datasets corresponding to domains. For each of the five datasets, 𝑀
domains (that constitute 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛) are used to construct tasks for
meta-training the model. In each training task, the source and target
domains are selected randomly among these 𝑀 domains. A separate
et of 𝐽 domains (that constitute 𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡) are used to evaluate the
apacity of the model to adapt to new target domains at meta-test time.

-MNIST. It is a modified version of the classic MNIST dataset, where
ifferent domains are built by randomly sampling 840 images from the
riginal dataset and rotating them at degrees sampled between 0 and
30, with a 10 degrees increment. In this way, we obtained a total
f 14 different domains, and we randomly considered ten of them for
eta-training (i.e., 𝑀 = 10) and the remaining four for meta-testing

(i.e., 𝐽 = 4).

FEMNIST (federated extended MNIST). This dataset consists of hand-
written digits and letters (uppercase and lowercase) from various users
with different writing styles [35,36]. Each user corresponds to a do-
main, resulting in 262 domains for meta-training (i.e., 𝑀 = 262) and
𝐽 = 35 held-out test users for evaluating the model’s performance.

CIFAR-10-c. This image dataset helps verify if a model can solve
problems where data is corrupted. It applies the protocol in Hendrycks
and Dietterich [37] to the CIFAR-10 dataset to partition it into do-
mains corresponding to corruptions that vary in type and severity. The
𝑀 training domains in 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛 consist of twelve corruption types
(Gaussian noise, shot noise, defocus blur, frosted glass blur, zoom blur,
snow, frost, brightness, contrast, pixelation, spatter, and jpeg). Each
corruption type is presented with five severity levels, except spatter and
jpeg corruptions which have three severity levels. This results in a total
of 𝑀 = 56 domains for meta-training. The test domains in 𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡
onsist of four additional corruptions (impulse noise, motion blur, fog,
nd elastic transformations). These corruptions are accompanied by
ive severity levels each. Additionally, spatter and jpeg corruptions
re included but with severity levels different from those used in the
raining domains. This results in a total of 𝐽 = 22 test domains.
egarding the training set, each domain comprises 1000 images. On

he other hand, for each test domain, we utilize the entire test set
ontaining 10 000 images, resulting in a total of 220 000 test images.

aily&sports activities. The dataset consists of multivariate time-series
ata from eight subjects (4 female and 4 male) performing 19 activities
n their own style. Each subject corresponds to a domain, and the data
f two subjects is held-out to evaluate the models’ performance at test
ime, resulting in 𝑀 = 6 and 𝐽 = 2. The data is acquired through
arious sensors in different body positions. From each 5-sec segment,
170 features are extracted and reduced to 30 through PCA, following
he process described in Altun et al. [38].

ISDM. This variation of the ‘‘WISDM Smartphone and Smartwatch
ctivity and Biometrics Dataset ’’ [39] consists of data from 48 subjects

between 18 and 25 years) performing 15 daily activities. Each subject
orresponds to a domain, and eight of them are randomly held-out to
valuate the model’s performance. This results in 𝑀 = 40 domains for
eta-training and 𝐽 = 8 domains for meta-testing. The accelerometer
ata is acquired through a smartphone and a smartwatch, and 43
eatures are extracted from each 10-sec segment, as in Weiss et al. [39].

.2. Evaluation metrics

The average accuracy and the worst-case accuracy are used to eval-
ate the final models’ performance based on multiple unlabeled test
omains. Let 𝐽 represent the number of held-out test domains in
𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡, and 𝑡𝑒𝑠𝑡

𝑗 be the 𝑗th held-out test domain. The adapted param-
ters 𝜙𝑡𝑒𝑠𝑡

𝑗 are obtained (as explained at the end of Section 4.3) and used
o predict the labels of the data in 𝑡𝑒𝑠𝑡

𝑗 . Let 𝑎𝑗 be the accuracy estimated
n the 𝑗th test domain. Notably, 𝑎𝑗 is computed as the average accuracy
btained by evaluating the model’s performance on the 𝑗th test domain

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.

i

Table 1
Average and worst-case accuracy computed as described in Section 5.2 for DANN [16], MMD [13], MDAN [19], DGER [25], MLDG [26],
ARM-CML [10] and the proposed UMA-DANN and UMA-MMD. Results for UMA are reported after 200 adaptation steps at meta-test time. Last
column, i.e., ‘‘Avg Rank’’, shows the average rank for each method across all datasets.

(a) Average accuracy

R-MNIST FEMNIST CIFAR10C Daily&Sports WISDM Avg Rank

DANN 50.8 ± 1.5 40.4 ± 5.9 35.5 ± 0.2 60.9 ± 1.5 19.1 ± 0.9 7
MMD 45.1 ± 1.2 33.1 ± 4.8 36.4 ± 0.2 62.5 ± 0.3 21.5 ± 0.7 8
MDAN 95.0 ± 0.4 62.8 ± 1.5 51.4 ± 1.0 79.0 ± 4.4 46.6 ± 5.0 5
DGER 92.8 ± 1.9 15.2 ± 12.6 66.5 ± 0.5 79.9 ± 1.3 37.9 ± 5.1 6
MLDG 91.1 ± 3.2 85.2 ± 2.1 64.5 ± 1.1 77.8 ± 1.1 48.0 ± 5.1 3
ARM-CML 92.9 ± 1.7 𝟖𝟔.𝟏 ± 𝟎.𝟒 𝟔𝟖.𝟒 ± 𝟏.𝟏 19.4 ± 4.7 47.6 ± 6.7 2
UMA-DANN 70.1 ± 13.4 66.3 ± 4.4 50.2 ± 1.8 𝟖𝟏.𝟎 ± 𝟒.𝟗 46.7 ± 5.8 4
UMA-MMD 𝟗𝟔.𝟒 ± 𝟎.𝟐 70.1 ± 5.4 64.6 ± 0.7 79.9 ± 2.4 𝟒𝟖.𝟖 ± 𝟔.𝟐 1

(b) Worst-case accuracy

R-MNIST FEMNIST CIFAR10C Daily&Sports WISDM Avg Rank

DANN 43.7 ± 3.0 10.0 ± 2.2 27.9 ± 0.4 58.5 ± 0.9 12.5 ± 1.3 8
MMD 40.3 ± 2.7 14.3 ± 4.5 29.3 ± 0.1 60.9 ± 1.3 15.5 ± 1.0 7
MDAN 93.0 ± 1.3 23.3 ± 5.2 40.6 ± 1.5 75.0 ± 6.7 35.9 ± 3.2 3
DGER 89.0 ± 3.5 6.5 ± 7.4 50.1 ± 0.4 75.2 ± 2.7 23.5 ± 1.6 5
MLDG 85.4 ± 6.3 𝟕𝟏.𝟐 ± 𝟑.𝟐 54.3 ± 2.1 71.9 ± 2.3 35.5 ± 2.4 2
ARM-CML 88.1 ± 5.2 67.8 ± 4.4 𝟓𝟓.𝟔 ± 𝟐.𝟖 16.8 ± 4.9 32.3 ± 5.6 4
UMA-DANN 67.1 ± 11.6 39.4 ± 24.7 40.6 ± 1.3 74.3 ± 9.3 31.8 ± 4.9 6
UMA-MMD 𝟗𝟑.𝟔 ± 𝟏.𝟔 55.5 ± 7.4 50.8 ± 2.1 𝟕𝟓.𝟑 ± 𝟔.𝟏 𝟑𝟕.𝟐 ± 𝟏.𝟖 1
v
r
U

while considering all possible combinations with source domains in
𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛. So, if we consider 𝑀 the total number of source domains
n 𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛, 𝑎𝑗 is computed as 𝑎𝑗 = 1

𝑀
∑𝑀

𝑚=1 𝑎𝑐𝑐𝑗𝑚, where 𝑎𝑐𝑐𝑗𝑚
denotes the accuracy computed considering 𝑚 as source and 𝑗 as
target domain. The specific value of 𝑀 depends on the dataset and
experimental setup, and it will vary accordingly. Consequently, the
average accuracy reported in the results is defined as 1

𝐽
∑

𝑗 𝑎𝑗 , and the
worst-case accuracy as min𝑗 𝑎𝑗 . By considering all possible combinations
of source and target domains, we obtain a comprehensive assessment of
the model’s performance, capturing the model’s ability to adapt across
different domain combinations. These metrics are computed across
three separate runs of each approach, and the corresponding means and
standard errors are reported.

5.3. Results

The results of the proposed UMA approach are presented in Table 1
and compared to UDA methods such as DANN and MMD, as well as
MDAN, which is designed for dealing with multiple source domains.
UMA outperforms all these methods, especially when the model is
meta-trained on enough domains that represent the entire distribution
𝑝(), e.g., with R-MNIST, FEMNIST and CIFAR-10-C. This observation
is reinforced by looking at the worst-case accuracy in Table 1(b), which
shows a similar trend to the one shown with the average accuracy
in Table 1(a) for all methods. Although UMA’s performance on the
R-MNIST dataset (especially for UMA-DANN) shows some variability
due to the random sampling of domains used for meta-training, our
results highlight the robustness of the proposed approach in dealing
with source domains that may not be representative of all the input
space, e.g., representing only some small degree rotations. Further-
more, Figs. 2 and 3 provide visual evidence that applying meta-learning
to UDA methods enhances the model’s ability to learn a latent rep-
resentation that better aligns the source and target domains and, at
the same time, discriminates among different classes. This is even
more evident in Fig. 3, where the large diversity between the source
and target domains poses a challenge for standard UDA methods to
learn discriminative and domain-invariant features, even after many
adaptation steps.

Another consideration is related to the FEMNIST dataset. FEMNIST
consists of highly different domains, both in terms of writing styles
and in terms of classes. Therefore, for each pair of source and target
domains, we constrain the classification on classes that are in common
6

d

between the two domains, making the adaptation to the users’ way
of writing more demanding, thus affecting the performance of the
model. The variability between source domains also affects MDAN’s
performance, as it finds it difficult to incorporate sources significantly
different from the target domain. This results in a longer adaptation
time compared to UMA, as depicted in Fig. 4. The figure shows that
UMA achieves good test accuracy with only 10 gradient steps, while
MDAN and standard UDA methods require more gradient steps. Fur-
thermore, it is worth noting that the average accuracy of standard
UDA methods reaches a stable value around 150 steps, indicating that
their performance does not improve significantly beyond that point.
In contrast, UMA consistently outperforms traditional approaches even
after a large number of gradient steps. This plot emphasizes the impor-
tance of a better model initialization achieved through meta-learning.
By starting with a well-initialized model, UMA effectively reduces the
number of steps required to adapt to the target domain, resulting
not only in faster convergence but also improved final performance
compared to traditional UDA approaches and MDAN. Domain general-
ization methods were excluded from this analysis because they do not
adapt at test time, but they directly make predictions on test data. Nev-
ertheless, UMA outperforms domain generalization methods (i.e., DGER
and MLDG) in all datasets, as shown in Table 1. UMA (in particu-
lar UMA-MMD) also outperforms ARM-CML when a small number of
training domains is available, as with R-MNIST and ‘‘Daily&Sports ac-
tivities’’. Despite the limited number of training domains, these datasets
demonstrate significant inter-domain variability and lower complexity
in comparison to RGB image datasets. This specific characteristic en-
abled UMA to effectively generalize without overfitting, even in the
presence of a small number of domains. The gap between the two
approaches is particularly evident with the ‘‘Daily&Sports activities’’
dataset (average accuracy of ≈ 80% for UMA vs. ≈ 19% for ARM),
where subjects were free to perform the activities in their own style.
To statistically assess whether UMA significantly outperforms ARM-
CML with R-MNIST and ‘‘Daily&Sports activities’’ dataset, a t-test was
conducted comparing the average accuracy of UMA to that of ARM-
CML. The results of the t-test indicate that UMA performs significantly
better than ARM-CML in ‘‘Daily&Sports activities’’ dataset with a 𝑝-
alue of 9.48 ⋅ 10−5 and 3.76 ⋅ 10−5 for UMA-DANN and UMA-MMD,
espectively. Also, in the R-MNIST dataset, the 𝑝-value is ≈ 0.04 for
MA-MMD (less than the significance level 0.05), indicating that the

ifference in performance is unlikely to be due to chance alone. This

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.
Fig. 2. Visualization with tSNE of the latent space learned by the feature extractor g with MMD (a) and UMA-MMD (b) after adaptation to a target task in the R-MNIST dataset.
The source domain (represented with circles) contains digits with 0 degree rotations, while digits in the target domain (represented with triangles) are rotated by 80 degree. The
plots highlight that UMA-MMD can learn discriminative and domain-invariant features.
suggests that UMA can learn to adapt to domain shift even when do-
mains are significantly different, increasing its spectrum of applicability
in real-world applications.

Further analysis is performed by varying the number of unlabeled
samples available during the adaptation phase. Table 2 shows the re-
sults for domain adaptation methods changing the amount of unlabeled
data at test time to 50, 100, and 150 samples. In this setting, FEMNIST
is not considered due to the lack of samples with common labels
between different domains. We also excluded domain generalization
methods (i.e., DGER and MLDG) since their performance does not
depend on the number of test data. As shown in Table 2, UMA reaches
good performance, i.e., close to the one reported in Table 1(a), with
only 50 unlabeled samples, indicating that the model is applicable
when only limited amounts of data are available at test time.

Finally, as no single method was found to perform the best across
all datasets, an average rank was computed for each method based
on its performance in all datasets. Specifically, a rank of 1 to 8 was
assigned to each method in each dataset, with 1 indicating the best
performing method and 8 indicating the worst. The average rank was
7

then calculated across all datasets, and the results were ordered in
ascending order of performance. The final rank is reported in the last
column of Table 1. The results indicate that UMA-MMD achieves a rank
of 1 on average both considering the average accuracy (Table 1(a))
and the worst-case accuracy (Table 1(b)), demonstrating its consistent
and suitable performance for domain adaptation across datasets. On
the other hand, UMA-DANN has a lower rank compared to ARM-CML
and MLDG. This is attributed to the difficulty of learning a suitable
initialization for DANN through meta-learning, given the challenges
posed by the Gradient Reversal Layer (GRL) and the training of the do-
main classifier. Nevertheless, the overall results suggest that leveraging
meta-learning to learn a better model initialization still brings notable
benefits when compared to the standard DANN approach.

5.4. Dataset limitations

Our proposed approach aims at ‘‘learning to adapt’’ to new do-
mains by leveraging meta-learning. However, when learning to adapt
through a meta-learning framework, as in UMA, additional constraints

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.
Fig. 3. Visualization with tSNE of the latent space learned by the feature extractor g with MMD (a) and UMA-MMD (b) after adaptation to a target task in the R-MNIST dataset.
The source domain (represented with circles) contains digits with 0 degree rotations, while digits in the target domain (represented with triangles) are rotated by 100 degree
(bottom). The plots highlight that UMA-MMD can learn discriminative and domain-invariant features even when the difference between the source and target domain is large.
on problem properties arise compared to standard UDA methods. In
meta-learning, tasks are treated as individual data-points, necessitating
the construction of a diverse set of training tasks to prevent overfitting.
Therefore, datasets suitable for UMA need to consist of several domains
to enable the creation of multiple training tasks. However, depending
on the scenario, it may be difficult to collect data from a large number
of domains. Hence, these practical limitations should be considered
when selecting an algorithm to address a specific problem. Notably,
many benchmarks commonly used in domain adaptation and general-
ization, such as PACS [40], Office-Home [41], and DomainNet [42],
have a limited number of domains (ranging from 4 to 6), which
restricts the applicability of UMA to these datasets. A similar issue
is encountered in the ARM framework [10], where the authors pro-
pose leveraging domain-specific information through meta-learning to
improve predictions. However, ARM faces additional challenges when
adapting to domains where the marginal distribution 𝑝(𝑥) is not provid-
ing much information about 𝑝(𝑦|𝑥), as observed in the ‘‘Daily&Sports
activities’’ dataset.
8

6. Conclusion and future work

We presented an approach for meta-training neural networks to
adapt more effectively and efficiently when facing shifts in the dis-
tribution of the data. The approach used unlabeled data from a new
domain to adapt the prior knowledge it has learned during the meta-
training phase with a few gradient steps and, possibly, a few data.
Experiments showed that the proposed approach consistently improves
performance in terms of average and worst-case accuracy compared to
prior approaches for handling domain shifts, even when meta-trained
with a small number of domains.

The proposed approach opens up an interesting future research
direction. Although the adaptation is performed without supervision
from the new domain, the meta-learning itself is supervised, i.e., it
assumes access to labeled training domains. Even though meta-training
is required once, these training domains might not always be ac-
cessible. Therefore, it would be interesting in the future to explore
self-supervised meta-learning for unsupervised domain adaptation. The

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.
Fig. 4. Average accuracy obtained adapting the model’s parameters until a maximum of 200 gradient descent steps at meta-test time.
idea would be to automatically construct training domains from exist-
ing data, e.g., using data augmentation, clustering, and incorporating
domain knowledge to generate various training domains.

CRediT authorship contribution statement

Anna Vettoruzzo: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Project administration, Resources,
Software, Validation, Visualization, Writing – original draft, Writing
– review & editing. Mohamed-Rafik Bouguelia: Conceptualization,
Formal analysis, Funding acquisition, Investigation, Methodology, Re-
sources, Supervision, Writing – review & editing. Thorsteinn Rögn-
valdsson: Conceptualization, Formal analysis, Funding acquisition, Re-
sources, Supervision, Writing – review & editing.
9

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to the code used to obtain the experimental
results in the appendix of the paper.

Acknowledgments

This work was supported by the ‘‘Knowledge Foundation’’ (KK-
stiftelsen, Sweden).

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.

D

G

M

Table 2
Average accuracy varying the number of unlabeled examples used for adaptation at
meta-test time. Accuracies are computed after 200 adaptation steps at meta-test time.

Method R-MNIST

50 samples 100 samples 150 samples

DANN 31.9 ± 1.1 41.9 ± 2.2 45.8 ± 2.4
MMD 29.5 ± 1.2 37.2 ± 1.9 39.1 ± 1.8
MDAN 83.6 ± 5.1 91.6 ± 1.6 93.6 ± 0.8
ARM-CML 93.2 ± 1.6 91.5 ± 2.2 91.5 ± 2.1
UMA-DANN 66.3 ± 8.0 70.5 ± 9.3 70.8 ± 9.4
UMA-MMD 𝟗𝟓.𝟐 ± 𝟎.𝟐 𝟗𝟔.𝟎 ± 𝟎.𝟒 𝟗𝟔.𝟏 ± 𝟎.𝟒

Method CIFAR-10-C

50 samples 100 samples 150 samples

DANN 23.2 ± 0.5 26.5 ± 0.5 29.2 ± 0.2
MMD 24.0 ± 0.8 27.5 ± 0.4 30.1 ± 0.6
MDAN 37.7 ± 0.7 40.0 ± 1.1 40.6 ± 0.6
ARM-CML 𝟔𝟗.𝟑 ± 𝟏.𝟔 𝟔𝟖.𝟗 ± 𝟎.𝟑 𝟔𝟖.𝟓 ± 𝟎.𝟑
UMA-DANN 43.9 ± 3.9 46.6 ± 3.7 47.4 ± 3.6
UMA-MMD 60.4 ± 3.0 62.8 ± 1.9 63.5 ± 1.7

Method Daily&Sports activities

50 samples 100 samples 150 samples

DANN 52.5 ± 6.4 58.6 ± 2.6 60.2 ± 3.4
MMD 54.4 ± 4.0 56.7 ± 1.6 61.7 ± 0.7
MDAN 71.6 ± 6.3 79.1 ± 4.6 80.5 ± 4.5
ARM-CML 15.7 ± 4.0 19.7 ± 4.6 20.1 ± 6.1
UMA-DANN 𝟕𝟓.𝟓 ± 𝟑.𝟔 𝟕𝟗.𝟖 ± 𝟐.𝟕 𝟖𝟐.𝟓 ± 𝟒.𝟐
UMA-MMD 74.2 ± 2.2 76.7 ± 0.7 79.4 ± 2.3

Method WISDM

50 samples 100 samples 150 samples

DANN 16.3 ± 0.1 18.4 ± 0.6 19.2 ± 0.6
MMD 18.8 ± 0.6 21.0 ± 0.7 22.0 ± 0.7
MDAN 45.5 ± 3.9 48.1 ± 4.0 𝟒𝟗.𝟕 ± 𝟑.𝟒
ARM-CML 𝟒𝟔.𝟔 ± 𝟕.𝟐 48.8 ± 5.2 49.2 ± 6.6
UMA-DANN 43.7 ± 5.0 47.1 ± 6.4 47.8 ± 5.9
UMA-MMD 45.4 ± 4.5 𝟒𝟗.𝟏 ± 𝟔.𝟏 𝟒𝟗.𝟕 ± 𝟔.𝟎

Appendix A. List of acronym

ARM Adaptive Risk Minimization [10]

DANN Domain Adversarial Neural Network [16]

GER Domain Generalization via Entropy Regularization [25]

RL Gradient Reversal Layer

AML Model-Agnostic Meta-Learning [8]

MLDG Meta-Learning Domain Generalization [26]

MMD Maximum Mean Discrepancy [11]

RKHS Reproducing Kernel Hilbert Space [33]

UDA Unsupervised Domain Adaptation

UMA Unsupervised Meta-Adaptation

Appendix B. Additional experimental details

The experiments detailed in this paper were executed on a single
Nvidia A100-SXM4 GPU with 40 GB of RAM using Python and the
PyTorch library. The complete code for reproducing results in Ta-
ble 1 is available at https://github.com/annaVettoruzzo/Unsupervised_
10

Meta_Adaptation.git.
References

[1] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, N.D. Lawrence, Dataset
Shift in Machine Learning, Mit Press, 2008.

[2] A. Farahani, S. Voghoei, K. Rasheed, H.R. Arabnia, A brief review of domain
adaptation, in: Advances in Data Science and Information Engineering, Springer
International Publishing, 2021, pp. 877–894.

[3] B. Gholami, P. Sahu, O. Rudovic, K. Bousmalis, V. Pavlovic, Unsupervised multi-
target domain adaptation: An information theoretic approach, IEEE Trans. Image
Process. 29 (2020) 3993–4002.

[4] T. Isobe, X. Jia, S. Chen, J. He, Y. Shi, J. Liu, H. Lu, S. Wang, Multi-target
domain adaptation with collaborative consistency learning, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Computer
Vision Foundation / IEEE, 2021, pp. 8187–8196.

[5] L.T. Nguyen-Meidine, A. Belal, M. Kiran, J. Dolz, L.-A. Blais-Morin, E. Granger,
Unsupervised multi-target domain adaptation through knowledge distillation, in:
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2021, pp. 1339–1347.

[6] Y. Chen, Z. Liu, H. Xu, T. Darrell, X. Wang, Meta-baseline: exploring simple meta-
learning for few-shot learning, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 9062–9071.

[7] T. Elsken, B. Staffler, J.H. Metzen, F. Hutter, Meta-learning of neural archi-
tectures for few-shot learning, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 12365–12375.

[8] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, in: International Conference on Machine Learning, ICML, PMLR,
2017, pp. 1126–1135.

[9] J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning,
in: Advances in Neural Information Processing Systems, Vol. 30, NIPS, Curran
Associates, Inc, 2017.

[10] M. Zhang, H. Marklund, N. Dhawan, A. Gupta, S. Levine, C. Finn, Adaptive
risk minimization: Learning to adapt to domain shift, in: Advances in Neural
Information Processing Systems, Vol. 34, NeurIPS, Curran Associates, Inc, 2021.

[11] A. Kumagai, T. Iwata, Unsupervised domain adaptation by matching distributions
based on the maximum mean discrepancy via unilateral transformations, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019,
pp. 4106–4113.

[12] M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features with deep
adaptation networks, in: Proceedings of the 32nd International Conference on
Machine Learning, ICML, PMLR, 2015, pp. 97–105.

[13] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion:
Maximizing for domain invariance, 2014, arXiv preprint arXiv:1412.3474.

[14] W. Wang, H. Li, Z. Ding, F. Nie, J. Chen, X. Dong, Z. Wang, Rethinking maximum
mean discrepancy for visual domain adaptation, IEEE Trans. Neural Netw. Learn.
Syst. (2021) 1–14.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural
Information Processing Systems, Vol. 27, NIPS, Curran Associates, Inc, 2014.

[16] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M.
Marchand, V. Lempitsky, Domain-adversarial training of neural networks, J.
Mach. Learn. Res. 17 (59) (2016) 1–35.

[17] M.-Y. Liu, T. Breuel, J. Kautz, Unsupervised image-to-image translation networks,
in: Advances in Neural Information Processing Systems, Vol. 30, NIPS, Curran
Associates, Inc, 2017.

[18] Y. Taigman, A. Polyak, L. Wolf, Unsupervised cross-domain image generation,
in: International Conference on Learning Representations, ICLR, OpenReview.net,
2017.

[19] H. Zhao, S. Zhang, G. Wu, J.M. Moura, J.P. Costeira, G.J. Gordon, Adver-
sarial multiple source domain adaptation, in: Advances in Neural Information
Processing Systems, Vol. 31, 2018.

[20] Z. Chen, J. Zhuang, X. Liang, L. Lin, Blending-target domain adaptation by ad-
versarial meta-adaptation networks, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 2248–2257.

[21] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, T. Darrell, Tent: Fully test-time
adaptation by entropy minimization, 2020, arXiv preprint arXiv:2006.10726.

[22] D. Chen, D. Wang, T. Darrell, S. Ebrahimi, Contrastive test-time adaptation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 295–305.

[23] Q. Wang, O. Fink, L. Van Gool, D. Dai, Continual test-time domain adaptation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 7201–7211.

[24] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, C.C. Loy, Domain generalization: A survey,
IEEE Trans. Pattern Anal. Mach. Intell. (2022).

[25] S. Zhao, M. Gong, T. Liu, H. Fu, D. Tao, Domain generalization via entropy
regularization, Adv. Neural Inf. Process. Syst. 33 (2020) 16096–16107.

[26] D. Li, Y. Yang, Y.-Z. Song, T. Hospedales, Learning to generalize: Meta-learning
for domain generalization, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32, No. 1, 2018.

[27] J. Brownlee, What is meta-learning in machine learning? 2021, URL https:
//machinelearningmastery.com/meta-learning-in-machine-learning/.

https://github.com/annaVettoruzzo/Unsupervised_Meta_Adaptation.git
https://github.com/annaVettoruzzo/Unsupervised_Meta_Adaptation.git
https://github.com/annaVettoruzzo/Unsupervised_Meta_Adaptation.git
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb1
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb1
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb1
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb2
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb2
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb2
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb2
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb2
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb3
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb3
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb3
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb3
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb3
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb4
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb5
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb6
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb6
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb6
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb6
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb6
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb7
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb7
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb7
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb7
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb7
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb8
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb8
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb8
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb8
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb8
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb9
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb9
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb9
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb9
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb9
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb10
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb10
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb10
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb10
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb10
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb11
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb12
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb12
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb12
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb12
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb12
http://arxiv.org/abs/1412.3474
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb14
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb14
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb14
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb14
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb14
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb15
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb15
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb15
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb15
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb15
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb16
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb16
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb16
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb16
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb16
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb17
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb17
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb17
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb17
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb17
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb18
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb18
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb18
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb18
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb18
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb19
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb19
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb19
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb19
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb19
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb20
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb20
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb20
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb20
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb20
http://arxiv.org/abs/2006.10726
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb22
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb22
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb22
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb22
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb22
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb23
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb23
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb23
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb23
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb23
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb24
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb24
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb24
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb25
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb25
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb25
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb26
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb26
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb26
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb26
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb26
https://machinelearningmastery.com/meta-learning-in-machine-learning/
https://machinelearningmastery.com/meta-learning-in-machine-learning/
https://machinelearningmastery.com/meta-learning-in-machine-learning/

Neurocomputing 574 (2024) 127264A. Vettoruzzo et al.
[28] X. Li, Q. Sun, Y. Liu, Q. Zhou, S. Zheng, T.-S. Chua, B. Schiele, Learning
to self-train for semi-supervised few-shot classification, in: Advances in Neural
Information Processing Systems, Vol. 32, NeurIPS, Curran Associates, Inc, 2019.

[29] Y. Wang, J. Guo, S. Song, G. Huang, Meta-semi: A meta-learning approach for
semi-supervised learning, 2020, arXiv preprint arXiv:2007.02394.

[30] T. Xiao, X.-Y. Zhang, H. Jia, M.-M. Cheng, M.-H. Yang, Semi-supervised learning
with meta-gradient, in: International Conference on Artificial Intelligence and
Statistics, PMLR, 2021, pp. 73–81.

[31] L. Metz, N. Maheswaranathan, B. Cheung, J. Sohl-Dickstein, Meta-learning update
rules for unsupervised representation learning, in: International Conference on
Learning Representations, ICLR, OpenReview.net, 2019.

[32] A. Vettoruzzo, M.-R. Bouguelia, J. Vanschoren, T. Rögnvaldsson, K. Santosh,
Advances and challenges in meta-learning: A technical review, 2023, arXiv
preprint arXiv:2307.04722.

[33] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A. Smola, A kernel method for
the two-sample-problem, in: Advances in Neural Information Processing Systems,
Vol. 19, NIPS, Curran Associates, Inc, 2006.

[34] M. Yin, G. Tucker, M. Zhou, S. Levine, C. Finn, Meta-learning without
memorization, in: International Conference on Learning Representations, ICLR,
2020.

[35] S. Caldas, S.M.K. Duddu, P. Wu, T. Li, J. Konečnỳ, H.B. McMahan, V. Smith,
A. Talwalkar, Leaf: A benchmark for federated settings, in: Advances in Neural
Information Processing Systems, NeurIPS, Curran Associates, Inc, 2019.

[36] G. Cohen, S. Afshar, J. Tapson, A. Van Schaik, EMNIST: Extending MNIST
to handwritten letters, in: International Joint Conference on Neural Networks,
IJCNN, IEEE, 2017, pp. 2921–2926.

[37] D. Hendrycks, T.G. Dietterich, Benchmarking neural network robustness to
common corruptions and perturbations, in: International Conference on Learning
Representations, ICLR, OpenReview.net, 2019.

[38] K. Altun, B. Barshan, O. Tunçel, Comparative study on classifying human
activities with miniature inertial and magnetic sensors, Pattern Recognit. 43 (10)
(2010) 3605–3620.

[39] G.M. Weiss, K. Yoneda, T. Hayajneh, Smartphone and smartwatch-based
biometrics using activities of daily living, IEEE Access 7 (2019) 133190–133202.

[40] D. Li, Y. Yang, Y.-Z. Song, T.M. Hospedales, Deeper, broader and artier domain
generalization, in: Proceedings of the IEEE International Conference on Computer
Vision, 2017, pp. 5542–5550.

[41] H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep hashing
network for unsupervised domain adaptation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 5018–5027.

[42] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment matching
for multi-source domain adaptation, in: Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 1406–1415.
11
Anna Vettoruzzo is a Ph.D. student at the Center for
Applied and Intelligence Systems Research at Halmstad
University (Sweden). She received her M.Sc. degree in ICT
for Internet and Multimedia at the University of Padova in
2019 with focus on Machine Learning for Healthcare. Her
research interests cover the areas of meta-learning, few-shot
learning, and continuous learning.

Mohamed-Rafik Bouguelia is Associate Professor in Ma-
chine Learning, and Docent, at the Center for Applied
Intelligent Systems Research, Halmstad University (Sweden).
Before moving to Sweden, he worked as a research and
teaching assistant at the University of Lorraine (France)
and the INRIA research center, where he received his
Ph.D. degree in Computer Science with focus on Machine
Learning. He received his M.Sc. degree in Computer Science
earlier from the USTHB University (Algeria). His current
research is related to representation learning with deep neu-
ral networks, transfer learning, meta-learning, and multitask
learning.

Thorsteinn Rögnvaldsson did his B.Sc. in Physics at Lund
University in 1989, and his Ph.D. in Theoretical Physics at
the same university in 1994. In his thesis, he introduced
neural networks for interpreting high-energy physics experi-
ments, and developed a programming library for this. From
1994 to the fall of 1996, he worked as a machine learn-
ing researcher at the Oregon Graduate Institute, Portland
OR, before becoming an associate professor at Halmstad
University. He became professor of mechatronics at Örebro
University, Sweden, in 2006, and worked there with mobile
robotics. He is today professor of computer science at
Halmstad University.

http://refhub.elsevier.com/S0925-2312(24)00035-3/sb28
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb28
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb28
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb28
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb28
http://arxiv.org/abs/2007.02394
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb30
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb30
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb30
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb30
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb30
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb31
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb31
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb31
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb31
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb31
http://arxiv.org/abs/2307.04722
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb33
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb33
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb33
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb33
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb33
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb34
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb34
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb34
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb34
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb34
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb35
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb35
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb35
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb35
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb35
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb36
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb36
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb36
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb36
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb36
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb37
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb37
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb37
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb37
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb37
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb38
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb38
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb38
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb38
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb38
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb39
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb39
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb39
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb40
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb40
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb40
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb40
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb40
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb41
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb41
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb41
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb41
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb41
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb42
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb42
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb42
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb42
http://refhub.elsevier.com/S0925-2312(24)00035-3/sb42

	Meta-learning for efficient unsupervised domain adaptation
	Introduction
	Related Work
	Unsupervised domain adaptation
	Domain generalization
	Meta-Learning

	Preliminaries and Notation
	Domain Adaptation
	Meta-Learning

	Proposed Approach: Unsupervised Meta-Adaptation
	Task Formulation
	Model Specification
	Algorithm

	Experiments
	Datasets
	Evaluation Metrics
	Results
	Dataset limitations

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. List of acronym
	Appendix B. Additional experimental details
	References

