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Abstract

Abstract:
Survival analysis is an essential statistics and machine learning field in var-

ious critical applications like medical research and predictive maintenance. In
these domains understanding models’ predictions is paramount. While ma-
chine learning techniques are increasingly applied to enhance the predictive
performance of survival models, they simultaneously sacrifice transparency
and explainability.

Survival models, in contrast to regular machine learning models, predict
functions rather than point estimates like regression and classification models.
This creates a challenge regarding explaining such models using the known
off-the-shelf machine learning explanation techniques, like Shapley Values,
Counterfactual examples, and others.

Censoring is also a major issue in survival analysis where the target time
variable is not fully observed for all subjects. Moreover, in predictive main-
tenance settings, recorded events do not always map to actual failures, where
some components could be replaced because it is considered faulty or about to
fail in the future based on an expert’s opinion. Censoring and noisy labels cre-
ate problems in terms of modeling and evaluation that require to be addressed
during the development and evaluation of the survival models.

Considering the challenges in survival modeling and the differences from
regular machine learning models, this thesis aims to bridge this gap by facil-
itating the use of machine learning explanation methods to produce plausible
and actionable explanations for survival models. It also aims to enhance sur-
vival modeling and evaluation revealing a better insight into the differences
among the compared survival models.

In this thesis, we propose two methods for explaining survival models
which rely on discovering survival patterns in the model’s predictions that
group the studied subjects into significantly different survival groups. Each
pattern reflects a specific survival behavior common to all the subjects in their
respective group. We utilize these patterns to explain the predictions of the
studied model in two ways. In the first, we employ a classification proxy
model that can capture the relationship between the descriptive features of sub-
jects and the learned survival patterns. Explaining such a proxy model using
Shapley Values provides insights into the feature attribution of belonging to a
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specific survival pattern. In the second method, we addressed the "what if?"
question by generating plausible and actionable counterfactual examples that
would change the predicted pattern of the studied subject. Such counterfac-
tual examples provide insights into actionable changes required to enhance the
survivability of subjects.

We also propose a variational-inference-based generative model for esti-
mating the time-to-event distribution. The model relies on a regression-based
loss function with the ability to handle censored cases. It also relies on sam-
pling for estimating the conditional probability of event times. Moreover, we
propose a decomposition of the C-index into a weighted harmonic average of
two quantities, the concordance among the observed events and the concor-
dance between observed and censored cases. These two quantities, weighted
by a factor representing the balance between the two, can reveal differences
between survival models previously unseen using only the total Concordance
index. This can give insight into the performances of different models and
their relation to the characteristics of the studied data.

Finally, as part of enhancing survival modeling, we propose an algorithm
that can correct erroneous event labels in predictive maintenance time-to-event
data. we adopt an expectation-maximization-like approach utilizing a genetic
algorithm to find better labels that would maximize the survival model’s perfor-
mance. Over iteration, the algorithm builds confidence about events’ assign-
ments which improves the search in the following iterations until convergence.

We performed experiments on real and synthetic data showing that our pro-
posed methods enhance the performance in survival modeling and can reveal
the underlying factors contributing to the explainability of survival models’
behavior and performance.
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1. Introduction

1.1 Introduction

Survival analysis is a prominent branch of Statistics, used to analyze time-to-
event data in various fields, like medical studies and predictive maintenance.
The main challenge that gave rise to this field is the time-boundedness of time-
to-event studies. This caused the target variable (time-to-event) to be not fully
observed, a phenomenon referred to as censoring. This challenge complicates
both the estimation of the time-to-event distribution, the evaluation, and the
explanation of the estimation models.

However, although the target variable of the censored cases is not fully
observed, it contains the information that the subject has survived up to a cer-
tain time, and including such information can correct part of the bias resulting
from censoring and improve the performance of the prediction models. Many
traditional and deep learning methods were proposed that can handle both, ob-
served and censored cases, like [1–5] to name a few.

Survival analysis is mainly interested in estimating the event’s distribu-
tion through estimating one of its related functions like the hazard function
estimated by the Cox Proportional Hazards Model (CPH) [2], or the Cumu-
lative Hazard function estimated by the Random Survival Forests (RSF) [3].
More recently, deep generative models adapted to handle censored examples
were developed for events time distribution estimation and were shown to be
powerful in capturing intricate patterns and relationships in large and com-
plex datasets. The two most popular generative models’ paradigms in machine
learning, the Generative Adversarial Networks (GAN) [6] and Variational Au-
toencoders (VAE) [7] were extended to handle survival data. Namely, the
Deep Adversarial Time-to-event model (DATE) [8] extends GAN utilizing a
regression-based function consisting of two terms to handle the events and the
censored cases separately. The Variational Survival Inference (VSI) model [9],
is another method based on the variational inference to estimate a discrete sur-
vival time.
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1.2 Challenges

One major difference between Survival models and regular machine learning
models is the type of output. While machine learning models usually output
a regression value or a class label prediction in regression and classification
cases, respectively, Survival models usually output functions. This creates a
challenge regarding explaining such models using the known machine learn-
ing explanation techniques, like Shapley Values, Counterfactual examples, and
others.

Another major difference is the existence of censoring in the time-to-event
data. Censoring is the phenomenon where the target variable (time-to-event)
is not fully observable for all the subjects under study. Censoring gives sur-
vival models their special nature in terms of modeling and evaluation. More
specifically, having partial information about the target variable prohibits the
use of regular evaluation metrics like the mean squared error (MSE) leading to
the use of less informative metrics like the Concordance Index (C-index) rely-
ing on ranking instead. The C-index as a summary statistic is the most used
metric in survival analysis for its intuitive interpretation, and that it considers
both observed and censored event cases. However, by relying on ranking, the
C-index discards information about the actual times of occurrence of events.
Also, the fact that it is computed based on the comparable pairs of observed
and censored events, makes it hide information that can be insightful compar-
ing seemingly similar models’ performances.

From the modeling perspective, machine learning generative modeling is
a promising technique for estimating the time-to-event distribution. However,
this requires special handling for the censoring problem to allow the model to
make use of the partial information present in the censored cases.

Moreover, in predictive maintenance settings, recorded events do not al-
ways map to actual failures, where some components could be replaced be-
cause it is considered faulty or about to fail in the near future based on an
expert’s opinion. Such premature replacements which are recorded as failures
in the time-to-event data create some kind of noisy labels that can compromise
the performance of the trained survival model.

1.3 Research questions

This thesis explores the different aspects of the performance and explainabil-
ity of machine learning survival models. This research aims to address the
following two main key research questions:

• How can survival models be explained? This can break into more con-
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crete research questions: How different survival behaviors can be de-
scribed with feature attributions? How to suggest alternative behavior
for improving survival behavior? How can the differences in perfor-
mance between survival models be understood?

• How to improve the performance of machine learning survival models?
In more detail, how can advanced Machine Learning techniques like
Generative models be incorporated to estimate time-to-event distribu-
tion? How to deal with noisy event labels in survival modeling e.g. in
predictive maintenance settings.

By investigating these questions, this thesis seeks to contribute to the grow-
ing body of knowledge surrounding machine learning survival models and
their application in real-world scenarios, with a focus on both performance
enhancement and interpretability, ultimately advancing the field of survival
analysis.

1.4 Contributions

• We have presented an algorithm to find Survival Patterns that can be used
to identify risk groups that have significantly different survival behaviors
(Paper I).

• Based on Survivl Patterns and Shapley Values, we have presented an
algorithm that can explain the behavior of survival models which works
for Proportional and Non-proportional hazards’ models (Paper I).

• Based on Survivl Patterns, we presented an algorithm that can find plau-
sible and actionable counterfactual explanations (Paper II).

• We derived a decomposition of the concordance index which showed
that it is a harmonic weighted average of two quantities that can give a
better understanding of survival models’ performances (Paper III).

• We presented a new variational-inference-based generative survival model
that enhances survival modeling and achieves performance comparable
to the state of the art (Paper III).

• We presented an iterative algorithm based on survival analysis and ge-
netic algorithms that can discover incorrectly labeled events which can
enhance survival modeling (Paper IV).
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1.5 Summary of the papers

• Paper I: SurvSHAP: A Proxy-Based Algorithm for Explaining Sur-
vival Models with SHAP.
Survival models usually predict functions, like the survival or the haz-
ard functions. In the case of non-proportional hazards, survival functions
can intersect in which case the area under the survival curve (AUC) is not
representative of the curve. This prohibits the use of the AUC as a sin-
gle output value when applying regular machine learning explainability
methods like Shapely Values. In this work, we propose an algorithm that
discovers survival patterns in the predictions of a survival model. Such
patterns represent subgroups of the population that are significantly dif-
ferent from the survival perspective where subjects that follow a certain
pattern share similar survival characteristics. Based on the discovered
patterns we employ a classification proxy model that learns the map-
ping between descriptive features and the survival patterns leading to a
coarse approximation of the survival model. In the final step, we explain
the proxy model with Shaple Values that produce feature attributions for
each survival pattern which we consider as an explanation of the survival
model.

• Paper II: Understanding Survival Models through Counterfactual
Explanations.
Based on the same algorithm proposed in Paper I, in this work, we ex-
tend the use of survival patterns with the help of Particle Swarm Opti-
mization (PSO) to find counterfactual examples seeking the minimum
change to the covariates, that changes the predicted survival function
from one pattern to a predefined target pattern. One of the important
aspects of a counterfactual example is the plausibility (or the likelihood)
of the generated example. For that sake, we employed an autoencoder-
based anomaly detection model to ensure that the generated counterfac-
tual example is a plausible subject. Actionability is another important
aspect that we considered in this work. In various scenarios, some fea-
tures of the subject under study can not be changed like the age of the
patient. In this regard, we introduced a mask to the optimization algo-
rithm to block the change of certain features. In the end, the algorithm
will find counterfactual examples that are plausible and actionable with
minimum change to subjects’ features.

• Paper III: The Concordance Index Decomposition: A measure for a
deeper understanding of survival prediction models.
The concordance Index is the most commonly used metric in survival
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analysis that relies on comparing the concordance of pairs of subjects.
However, when analyzing it, we found out that it is a harmonic weighted
average of two quantities resampling the concordance in two subsets of
pairs; event vs. event (CIee) and event vs. censored (CIec). The weight
is the fraction of correctly ordered (ee) pairs out of the total correctly
ordered pairs which we call α . Two survival models can have different
performances with respect to the decomposition terms while having sim-
ilar C-index values. In this work, we propose the C-index decomposition
as it gives a deeper understanding of models’ differences previously un-
seen due to the averaging in the total C-index.

We also propose a variational-inference-based generative model with a
regression-based loss function that can handle continuous survival time.
We also utilized a ranking term in the loss function to encourage con-
cordance.

• Paper IV: Discovering Premature Replacements in Predictive Main-
tenance Time-to-Event Data.
In industrial settings, a significant fraction of component replacements
are performed as a proactive response to the risk of failure. This results
in noisy event labels in time-to-event data that can affect the use of such
data to estimate the survival of the studied component. In this work,
we propose an evolutionary-based iterative algorithm to discover pre-
mature replacements. The algorithm splits the data into two parts that
will be used interchangeably in two phases. In the first phase (Expecta-
tion phase) one part of the data is used for fitting a survival model, and
in the second phase (Maximization phase) the other part of the data is
used to search for label assignments that maximize the fitted model per-
formance. Starting with random labels, the algorithm iterates over these
two phases and accumulates the found labels to seed the next iteration.
Over iteration, the algorithm builds confidence in label assignments find-
ing a significant fraction of the wrongly labeled events.
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2. Background

2.1 Survival Analysis

Survival Analysis is the branch of Statistics focusing on the examination of
time-to-event data. A significant challenge with time-to-event data is that the
target variable (time) is partially unobserved for a considerable number of sub-
jects under study. This phenomenon is commonly known as censoring. Cen-
soring arises due to multiple reasons, primarily because of the finite duration of
the study, during which some subjects (whether they are patients or machines)
survive beyond the study’s endpoint, as depicted in Figure 2.1. These subjects
are referred to as censored cases.

Loss of tracking, Early 
replacement, or No fault found.

X 5

X 4

X 3

X 2

X 1

Time to Event

Start 
Time

Event 
Time

Figure 2.1: Time-To-Event Data.
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The main outcome of survival analysis studies is the Survival Function
S(t), which represents the probability of surviving beyond time t:

S(t) = P(T > t) (2.1)

where T is the event time (e.g., time of death of a patient or time of failure of
a machine).

The Kaplan-Meier estimator [1], also known as the product limit estimator,
is the earliest method to estimate the survival function S(t). It estimates the
survival function in a non-parametric way:

Ŝ(t) = ∏
i:ti≤t

(
1− di

ni

)
, (2.2)

where di is the number of events occured at time ti, and ni is the number of
the subjects at risk at time ti. The Kaplan-Meier estimator is a population-level
estimator and does not consider the covariates x that describe subjects.

The earliest model to introduce an explicit dependence on x was the Cox
Proportional Hazard model (CPH), as described by Cox in 1972 [2]. The CPH
model assumes the existence of a baseline hazard function at the population
level and that x has a linear and time-independent influence on the logarithm
of the hazard function: og of the hazard function:

h(t|x) = h0(t)ew⊺x (2.3)

where h0(t) is an unknown baseline function, and w are the weights (parame-
ters) that reflect the effect of the features on the hazard function.

Random Survival Forests (RSF), introduced by Ishwaran et al. in 2008 [3],
is a machine learning technique that extends the Random Forests method pro-
posed by Breiman in 2001 [10] to the domain of survival analysis. An RSF
is composed of multiple survival trees, and its node-splitting criterion aims at
maximizing the survival difference of the resulting nodes using the log-rank
statistical test [11]. Each survival tree of the ensemble computes the Cumu-
lative Hazard Function (CHF) for its leaf nodes in a non-parametric manner,
based on the instances falling within those nodes during training. As a final
outcome, RSF predicts the CHF for a subject by averaging the predictions gen-
erated by all the trees in the ensemble.

More recently, with the advancements achieved by deep learning tech-
niques, many deep learning models were introduced for modeling survival
time. One such model is DeepSurv, presented by Katzman et al. in 2018 [4].
DeepSurv is a direct extension of the Cox Proportional Hazard (CPH) model,
where it replaces the CPH linear predictor with a deep neural network. Im-
portantly, DeepSurv, like the CPH model, adheres to the proportional hazards
assumption.
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Other deep learning models adopt a discretized approach to the survival
timeline. Notably, DeepHit, introduced by Lee et al. in 2018 [5], estimates the
probability mass function based on discrete outputs.

An important aspect of survival analysis is handling censored cases, e.g.,
hospitalized patients who do not experience a relapse before the end of a study,
equipment that is replaced before a breakdown, or equipment that has not ex-
perienced a breakdown yet. Censoring is very common in clinical studies and
may arise for different reasons. It is possible for a patient not to experience
the event (death or relapse, for example) during the time of the study. Also, a
patient might experience a different event, making it impossible to follow up
on the event of interest.

Censoring also creates the problem of evaluating the goodness of fit while
the target variable is not fully observed. Several evaluation metrics have been
proposed to measure different aspects of a model’s performance [12]. How-
ever, the Concordance Index (C-index) is one of the most commonly used
metrics that consider both events and censored cases. It quantifies the rank
correlation between actual survival times and a model’s predictions. Multi-
ple estimators of the C-index have been proposed, like Harrel’s C-index [13],
Uno’s C-index [14] that is a modified weighted version of Harrel’s C-index,
and Gonen and Heller’s measure [15], which is an alternative estimator based
on the reversed definition of concordance. A time-dependent version of the
C-index was proposed in [16], which takes the whole survival function into
consideration.

2.2 Explainability in Survival Analysis

Explainability is essential in machine learning models especially when the ap-
plication domain involves high risk like healthcare and predictive maintenance.
The increasing interest in explainability led to the development of many ex-
planation methods that try to address different aspects of machine learning
models’ behavior. Some of these methods are model-specific and depend on
the model’s mechanisms to generate explanations like gradient-based meth-
ods which explain deep learning models [17–19]. However, model-agnostic
methods, most notably LIME [20] and SHAP [21], gained more attention for
their applicability to various types of machine-learning models. LIME depends
on approximating the decision boundaries locally around the point of interest
with a linear model and provides local explanations. On the other hand, SHAP
method adopts a game-theoretic approach by computing the contributions of
features to the difference between the model’s prediction and the average pre-
diction using Shapley Values [22]. SHAP also provides global explanations
based on the aggregation of Shapley values of many instances [23]. The afore-
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mentioned methods, in general, rely on feature attribution trying to explain the
model’s decision based on features’ contribution to the output values.

SurvLIME [24] is an extension to LIME which uses the Cox Proportional
Hazard model instead of the linear model in the vicinity of the exampled exam-
ple. The SHAP method was also very recently extended in SurvSHAP(t) [25]
to handle functional output models and provide time-dependent explanation.

Other directions rely on example-based explanations. One of the most in-
teresting among them is the Counterfactual-Examples-based approach which
tries to answer the ”What if” question based on providing parallel-universe
scenarios. Such examples provide insights into alternative paths on which dif-
ferent outcome is observed. Counterfactual examples can be generated, as
proposed by [26], by finding the closest point to the original subject which sat-
isfies the condition of changing the output of the model to a predefined target.
However, such an approach can lead to unrealistic examples. To handle unre-
alistic examples, one can minimize the distance between the generated coun-
terfactual example and the observed data [27]. A more efficient solution can be
using an anomaly detection model, like Autoencoder-based models [28; 29],
which relies on minimizing the reconstruction error of the generated counter-
factual examples to ensure their likelihood.

For survival models, [30] proposed a method for finding counterfactual
examples based on the mean survival time; i.e. the area under the curve (AUC)
of the survival function. The method utilizes Particle Swarm Optimization
(PSO) to find the minimum change to the input example that would change
AUC of the predicted survival function to a predefined target value. However,
they did not discuss the likelihood of the generated counterfactual examples.
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3. Method

3.1 Paper I

In this work, we present SurvSHAP [31], a model-agnostic algorithm for ex-
plaining survival models. Given a trained survival model and its predicted
survival functions (box 1 in Figure 3.1). The algorithm comprises three steps
as shown in Figure 3.1(boxes 2 and 3):

• Distinct Survival Patterns Discovery.

• Proxy Model.

• Explanations.

Explana�on

Survival Model

Su
rvival Pa�

ern
s D

isco
very

Data
Survival Model

Classifica�on 
Proxy Model

Shapley Values

Survival 
Curves

Dimensionality 
reduc�on

Dis�nct Behaviors

Survival Patterns

1 2

3

Figure 3.1: SurvSHAP workflow.

Distinct Survival Patterns Discovery: This step aims at subgrouping the
survival model’s predictions into the maximum number of distinct survival be-
haviors within the population. To achieve this, the algorithm employs a cluster-
ing approach with pairwise comparisons using the log-rank test [11]. Survival
curves are represented as multidimensional vectors, and Principal Components
Analysis (PCA) is used to create a lower-dimensional representation (Z) of
these curves.
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Subsequently, the algorithm searches for the maximum number of survival
patterns by iteratively clustering the curves in the reduced-dimensional space
(Z). At each iteration, it conducts log-rank pairwise comparisons between re-
sulting clusters and calculates the percentage of significantly different groups
relative to the total comparisons made. Finally, the algorithm determines k∗,
which represents the largest number of patterns that yield the highest percent-
age of unique survival patterns. This choice of ’k*’ ensures that further divi-
sion of sub-populations would not yield survival patterns distinguishable from
one another.

Proxy Model: In this step we employ a classifier that learns the mapping
between the inputs (X) and the discovered survival patterns (C). This makes
the proxy model capture the coarse behavior of the survival model which trans-
forms the survival model into a classification model.

Explanations: At this step, SHAP (SHapley Additive exPlanations) method
is employed to explain the proxy model. These explanations offer descriptions
of the discovered survival patterns in the model predictions and serve as expla-
nations of the behavior of the survival model.

3.2 Paper II

Based on the same algorithm proposed in Paper I for discovering survival pat-
terns, this work extends the use of survival patterns to explain survival models
based on counterfactual explanations. For each studied subject, we utilize the
Particle Swarm Optimization (PSO) algorithm to search for a counterfactual
example optimizing an objective function that satisfies four criteria:

• Achieving Target Output Change: The generated counterfactual exam-
ples achieve the desired change in the survival model prediction.

• Minimal Input Change: It aims to make minimal changes to the input
features.

• Plausible Counterfactuals: Counterfactual examples generated are plau-
sible i.e., realistic.

• Actionable Counterfactuals: The generated counterfactual examples ad-
here to domain-specific constraints.

The workflow of this method is slightly different from the one mentioned in
(Paper I). Utilizing the discovered Survival Patterns, we transform the problem
into a classification task where the decision function f (x), Equation 3.1, (the
mapping from the features space to survival patterns) is the composition of
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three functions as shown in Figure 3.2. ms is the survival model that predicts
the survival curve, hz lowers the dimensionality of the predicted curve, and gc

is the clustering model that predicts the survival patterns based on the nearest
centroid.

f (x) = (gc ◦hz ◦ms)(x) (3.1)

Su
rv

iv
al

 M
o

d
el

Survival Pa�erns Discovery

Data

x
ms

(Survival Model)

gc
(Clustering)

Survival Func�ons

hz
(Dimensionality 

reduc�on)

Dis�nct
Pa�erns
Number

Figure 3.2: Survival Counterfactuals decision function parts ms, hz, and gc.

Given a subject x and a target survival pattern t, the algorithm uses PSO
to search for a counterfactual example xc f that changes the predicted survival
curve to the predefined target Survival Pattern.

The objective function consists of three weighted terms:
Change in Target Output (Ly): Realizes the desired change to the target

Survival Pattern.

Ly = 1(( f (xc f ) ̸= t)∥z(xc f )− ct∥2 (3.2)

where ct is the centroid of the target survival pattern in the lower dimensional
space and z(xc f ) = (hz ◦ms)(xc f ) is the lower dimensional representation of
counterfactual example predicted survival curve.

Minimal Input Change (Lx): Encourages minimal changes to input fea-
tures.

Lx(xc f ) = ∥x−xc f ∥p (3.3)

Likelihood of Counterfactuals (LLL): Ensures plausibility of counter-
factual examples and considers the anomaly score of the Autoencoder model
trained on the same dataset as the survival model.

LAE = ReLU(∥xc f −x′c f ∥p−At) (3.4)

where At is the anomaly threshold estimated based on the quantiles of the
autoencoder reconstruction error and the ReLU function stops the effect of this
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term when the anomaly score of the counterfactual example is less than the
threshold.

Figure 3.3a shows the full counterfactual explanations’ optimization work-
flow with the three parts of the objective function. It also shows in Figure 3.3b
an illustration of Survival Patterns and their embedding space depicting the
distance between the embedding of the survival function of the counterfactual
example being optimized and the embedding of the Survival Pattern’s center.

. 2

𝐿𝑦 = (𝑓 𝑥𝑐𝑓 ≠ 𝑦𝑡) 𝑧 𝑥𝑐𝑓 − 𝑐𝑡 2

𝐿𝑙𝑙 = max(0, 𝑥𝑐𝑓 − 𝑥𝑐𝑓 − 𝜖)

𝐿𝑥 = 𝑥 − 𝑥𝑐𝑓 2

PSO

𝐿 = 𝐿𝑦 + 𝐿𝑥 + 𝐿𝑙𝑙

Is the predicted label changed?

Is the cf close to the original?

Is the cf likely?

(a) Counterfactual Explanations workflow

(b) Survival Patterns (right) and their embedding space (left).

Figure 3.3: a) The full counterfactual explanations optimization workflow. b)
The Survival Patterns with their representation in the embedding space color-
coded and distance ∥z(xc f )− ct∥2 between the counterfactual example embed-
ding and the embedding of the target survival pattern’s center.

The actionability of counterfactual examples is guaranteed by masking fea-
tures that cannot be controlled in real-life applications, which are specified by
domain experts. This constraint ensures that generated counterfactuals adhere
to practical limitations.
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Figure 3.4 shows counterfactual examples generated for two subjects with
and without using the likelihood loss. It shows that the counterfactuals with
the likelihood loss were closer to the distribution of the target survival pattern.
This is also reflected in the anomaly scores of the counterfactuals shown in the
figure.

Two CEs from Pattern 8 to Pattern 0 with vs. Without Likelihood Loss

Figure 3.4: Counterfactual Examples with/out using the likelihood loss.

The method offers another option based on Survival Scores (area under the
survival curve) which treats the survival problem as a regression problem. This
option works well when survival curves do not intersect (proportional hazards).

3.3 Paper III

[32] The C-index measures the agreement between predicted and actual event
times in survival analysis. It quantifies the probability that the predicted time
for one subject exceeds that of another, given the actual event order. It is
important to note that not all pairs can be compared when there is censoring.
Pairs are only comparable when the earlier subject is an event, resulting in two
types of comparable pairs event vs. event (ee) and event vs. censored (ec).

Mathematically, the C-index is represented as the probability of concor-
dance (CI =P(o)), where o denotes whether a pair is concordant or discordant.

We designate CIee as the C-index for event-event instances and CIec as the
C-index for event-censored cases. Additionally, we introduce the symbol α

to represent the conditional probability that a pair is an event-event pair (ee)
given that it is correctly ordered.

CIee ≡ P(o|ee) (3.5)

CIec ≡ P(o|ec) (3.6)

α ≡ P(ee|o) = 1−P(ec|o) (3.7)

The C-index can be written as a weighted harmonic average of the two
terms CIee and CIec weighted by α .
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1
CI

= α
1

CIee
+(1−α)

1
CIec

(3.8)

The weight α denotes the fraction of correctly ordered ee pairs out of the
total concordant pairs. It quantifies how much of the C-index relates to cor-
rectly ordering ee pairs compared to ec pairs and is influenced by the model’s
performance and dataset characteristics.

α∗ represents the optimal value of α when all pairs are correctly ordered.
A "balanced" predictor can achieve α = α∗ by equally scoring event-event and
event-censored pairs.

We define the α-Deviation as the difference between α and α∗. A posi-
tive α-Deviation indicates a predictor excelling in ordering ee pairs, while a
negative α-Deviation suggests better performance with ec pairs.

Figure 3.5 is a schematic illustration of the C-index decomposition terms
in the space of comparable pairs. Interestingly, it shows the scores of three
different models that have the same C-index, however, different scores with
respect to the decomposed terms.

Nee Nec

Model1
(Balanced)

Model2
(α-Dev>0)

Model3
(α-Dev<0)

Figure 3.5: C-index Decomposition illustrated in the space of pairs.

On the modeling side, we propose a new generative survival model for
estimating time-to-event distribution based on a variational encoder-decoder
model. The model, Gθ (x), learns the conditional probability distribution of
the event’s accruing time P(t|x) using a regression loss function consisting of
four terms.

The first term Le, Equation 3.9, is the mean absolute error estimated based
on observed event cases. The second term Lc, Equation 3.10, is a truncated
version of the mean absolute error, which only penalizes when the predicted
event’s time is less than the censoring time. The third term LKL, Equation 3.11,
is the regularization term active on the latent layer. Finally, Clb, Equation 3.12
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is the negative of a lower bound of the concordance index which, by minimiz-
ing, helps to maximize the concordance index.

Le = Ex∼Pe(x) [|t−Gθ (x)|] (3.9)

Lc = Ex∼Pc(x) [max(0, t−Gθ (x))] (3.10)

LKL = KL(P(z|x),N(0,1)) (3.11)

Clb(θ ,ε) =−
1
|ε| ∑

(xi,x j)∈ε

(
1+

logσ(Gθ (xi)−Gθ (x j))

log2

)
(3.12)

The final loss function is a weighted sum of the four terms Le, Lc, LKL, and
Clb.

3.4 Paper IV

In predictive maintenance settings, a considerable number of components are
replaced before they fail while recorded as failures in the maintenance log.
From the perspective of Survival analysis, such premature replacements should
be treated as a censored case. In order to discover such cases, in this work,
we use the mentioned assumption and survival analysis to search for better
labels of events that maximize the performance of the survival model. We pro-
pose an evolutionary-based iterative algorithm to discover premature replace-
ments [33] in the log of time-to-event data assuming that we know a rough
estimate of their fraction. The algorithm splits the data into two parts that will
be used interchangeably in two phases, Expectation and Maximization.

Max Iterations?

Data

Set 1

Set 2

ms

(Survival Model)

Events Labels for A

New Solu�on
Maximize

Performance

Accumulate 

Switch 
sets

Set 
A

Set 
B

Random Init

Final Labels
YesNo

Figure 3.6: SurvPRD workflow

• Expectation Phase: A Cox Proportional Hazards Model (CPH) is fitted
to the first part of the data (training data) with random events’ labels
at the first iteration. However, in the following iterations, we use the
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aggregated solutions found in the previous iterations as a result of the
Maximization phase.

• Maximization Phase: We use the fitted model in the Expectation phase,
and use a genetic algorithm to find event assignments that maximize
the performance of the model of the second part of the data (validation
data). The found solution will be aggregated with the previous solutions
found on this part of the data and used to seed the next iteration of the
algorithm.

The two parts of the dataset are switched and the algorithm repeats for a certain
number of iterations until convergence as shown in Figure 3.6.

Over iterations, the algorithm gains confidence in the labels where the sub-
jects that are likely to be actual failures will be more frequently selected as
events by the algorithm.

18



4. CONCLUDING REMARKS
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4.1 Conclusion and future work directions

This thesis explores two tracks in machine learning survival analysis. The
first focuses on the explainability of survival models in which we proposed
two model-agnostic methods for post-hoc survival model explanations. The
two methods are based on the same framework which finds survival patterns
that distinctly categorize subjects into different survival behaviors that are sig-
nificantly different from each other. In the first method, we utilized survival
patterns to build a proxy classification model which we then explained with
Shapley Values. Whereas in the second method, we search for counterfactual
examples with a minimal change to the subjects of interest which changes the
survival model’s prediction from one survival pattern to a predefined target
pattern.

Understanding machine learning models’ behavior is the main goal of ex-
plainability methods where the focus is to understand the relation between the
input and the output of the model. However, we believe that understanding the
performance is as important which can lead to better modeling. In this regard,
we proposed a decomposition of the concordance index which revealed unseen
differences between models’ performances. This decomposition showed that
with smaller datasets with high censoring percentages, there were no big dif-
ferences between classical and deep learning survival models. However, as the
number of observed events increases, deep-learning models make better use
of the events improving the ranking between event pairs and converging to a
higher total C-index.

The second track of this thesis aims to improve survival models’ perfor-
mance. In particular, we proposed a continuous-time variational-inference-
based generative model that learns the survival time distribution conditioned on
the subject features using an encoder-decoder neural network structure. More-
over, in this track, we also explored the case of noisy event labels, a problem
that is observed in industrial time-to-event data. We proposed an iterative algo-
rithm based on genetic algorithms to discover such cases based on maximizing
a surrogate survival model C-index performance.

As a future work, we are planning to bridge the gap between the aforemen-
tioned tracks, i.e., modeling and explanation. Self-explainable neural networks
(SENN) [34] is a neural network structure that learns locally-linear approxima-
tion of the decision boundaries making the explanation an intrinsic property of
the model. With added regularizations, such explanations can be controlled to
meet certain desiderata of robustness. Our plan is to use SENNs for survival
analysis, exploring their potential to produce faithful and stable explanations
while maintaining good survival modeling.

On the other hand, there is an interesting growing direction in using evo-
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lutionary algorithms for optimizing different aspects of neural networks where
it is used to find new activation and loss functions [35; 36] that can outper-
form the out-of-the-box functions. Such direction is even more interesting for
survival analysis due to the special nature of time-to-event data where loss
functions are designed to achieve different goals in survival modeling. Such
loss functions usually consist of multiple terms to handle observed and cen-
sored cases or encourage a better ranking in the predictions. Our plan is to
explore the use of evolutionary algorithms in finding loss functions for neural-
networks-based survival models which can enhance the performance and draw
insights into the choices of different loss functions in different scenarios.
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