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ABSTRACT

Time-To-Event (TTE) modeling using survival analysis in
industrial settings faces the challenge of premature replace-
ments of machine components, which leads to bias and errors
in survival prediction. Typically, TTE survival data contains
information about components and if they had failed or not
up to a certain time. For failed components, the time is noted,
and a failure is referred to as an event. A component that has
not failed is denoted as censored. In industrial settings, in
contrast to medical settings, there can be considerable uncer-
tainty in an event; a component can be replaced before it fails
to prevent operation stops or because maintenance staff be-
lieve that the component is faulty. This shows up as “no fault
found” in warranty studies, where a significant proportion of
replaced components may appear fault-free when tested or
inspected after replacement.

In this work, we propose an expectation-maximization-like
method for discovering such premature replacements in sur-
vival data. The method is a two-phase iterative algorithm
employing a genetic algorithm in the maximization phase to
learn better event assignments on a validation set. The learned
labels through iterations are accumulated and averaged to be
used to initialize the following expectation phase. The as-
sumption is that the more often the event is selected, the more
likely it is to be an actual failure and not a “no fault found”.

Experiments on synthesized and simulated data show that the
proposed method can correctly detect a significant percentage
of premature replacement cases.

1. INTRODUCTION

Maintenance plays a vital role in industrial operations. Aim-
ing at increasing the reliability and the cost-efficiency of in-
dustrial systems, predictive maintenance (PdM) techniques,
e.g. machine prognostics, have received much attention in
recent years. The goal of PdM is to conduct maintenance
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service in a proactive way so that both the downtime and
the maintenance cost of industrial systems are reduced, fully
utilizing the lifetime of the equipment and fixing problems
before they lead to stops in operation. Machine prognostic
methods aim at modeling the reliability of the equipment,
using, e.g., Survival Analysis or methods for predicting Re-
maining Useful Life (RUL). In recent years, this has often
been done with machine learning models.

To develop prognostic methods, machine failure data, e.g.,
sensor readings and the time of the failure event, is required.
However, in most industrial applications, equipment is not
allowed to run to failure. Under circumstances when the con-
sequences of unplanned downtime are safety-critical or asso-
ciated with a high cost, preventive maintenance is likely to
be implemented. Maintenance personnel will not wait until
the full lifetime of a component is exhausted but replace the
component before the end-of-life, especially if incipient or
intermittent faults have been observed.

Because of the increasing complexity of industrial equip-
ment, it is challenging to acquire thorough coverage in un-
derstanding all types of abnormal behavior. With a preven-
tive mindset, abnormal behaviors observed from the opera-
tion have an increased chance of being treated as indicating a
risk to the operation, and thus, the equipment is scheduled for
repair, in many cases, replacement. Such premature replace-
ment of components showing (occasional) abnormal behav-
ior should improve the overall reliability of the system, but
it comes with increased maintenance expenses and, more im-
portantly, it introduces significant noise into the TTE data,
making it more difficult to improve the prognostic models.

The replaced equipment being determined as healthy in post-
replacement tests is referred to as one type of the “no fault
found” (NFF) phenomenon (Khan, Phillips, Hockley, & Jen-
nions, 2012), i.e., a false alarm. Common factors caus-
ing a component to be replaced prematurely due to a false
alarm include a lack of understanding of the component and
proper testing methods, lack of training in the workshop, mis-
reporting and -communication, etc.

1

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 R09-02



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Survival models are statistical methods used to analyze the
time for an event of interest to occur, such as a patient’s death
or a machine component’s failure. Such models endeavor to
learn the distribution of events through modeling the Survival
function S(t) = P (T > t) referring to the probability of sur-
viving beyond time t, or the hazard function h(t) correspond-
ing to the instantaneous failure rate. Several statistical and
machine learning methods have been proposed for surviv-
ability prediction, e.g. (Cox, 1972; Ishwaran, Kogalur, Black-
stone, & Lauer, 2008; Katzman et al., 2018). In this work, we
utilize the Cox Proportional Hazards model CPH (Cox, 1972)
as it is the fastest to train, making it a suitable surrogate in our
algorithm, which requires numerous iterations of fitting and
evaluation. The CPH method is a semiparametric method that
models the hazard function h(t|x) = h0(t)e

w⊺x conditioned
on the covariates x, where w is a vector of parameters (the
weight vector) and h0(t) is the baseline hazard function.

The strength of survival models is the ability to handle cen-
sored data, which refers to the case when some subjects un-
der study did not experience the event (the “death”) during the
study period. Such censored subjects contain information that
they survived past the recorded time, called censoring time.
The concept of censoring is useful when dealing with prema-
ture replacements and NFF cases. From the survival model’s
perspective, an event that corresponds to a premature replace-
ment should actually be labeled as a censored case; the equip-
ment was taken out of the study when it was replaced, but it
survived beyond that point. Such incorrectly labeled events
affect the ranking performance of the survival model, as will
be shown experimentally in the results section, which we uti-
lize in this work to uncover the incorrectly labeled events.

In this work, we propose SurvPRD, a new iterative algorithm
for discovering premature replacements. The algorithm relies
on survival analysis and the concept of censoring as a surro-
gate to identify premature replacements. It iteratively utilizes
genetic algorithms to improve the suggested solution over it-
erations. To the best of our knowledge, this is the first method
that makes the link between premature replacements and cen-
sored subjects and utilizes survival analysis to uncover these
cases. The code is available on our GitHub repositoy1

2. LITERATURE REVIEW

Since survival modeling relies on the time for an event of in-
terest (in our case, replacing worn-out components) to occur,
premature replacement in the dataset would affect the mod-
eling in a way similar to mislabeled data samples. There are
two general approaches to tackling mislabelled data: i) im-
proving learning algorithms to better tolerate noisy labels; ii)
filtering out or correcting potential mislabelled data before
the training process starts (Guan & Yuan, 2013). The lat-
ter approach is preferable since it is not designed to enhance

1https://github.com/abdoush/SurvPRD

one specific learning algorithm, and the output, i.e., identi-
fied mislabeled data, can be utilized for any algorithm. Most
mislabeled data identification methods fall into the following
categories: i) Nearest Neighbour based approaches that as-
sume local smoothness in the data (Wilson, 1972; Sánchez,
Barandela, Marqués, Alejo, & Badenas, 2003); ii) Majority
voting and consensus filtering based on ensembles of multi-
ple trained predictors (Brodley & Friedl, 1999; Zhu, Wu, &
Chen, 2003); iii) learning algorithm specific approaches that
utilize the property of the predictor, e.g., (Zeng & Martinez,
2003). In addition, genetic algorithms have been applied to
iteratively search for the best subset of learning samples that
optimize over specific criteria, e.g., maximizing the statisti-
cal separability between classes (Ghoggali & Melgani, 2009;
Pasolli & Melgani, 2015). Nevertheless, both methods use
human experts to validate/invalidate examples. TTE data, the
focus of this work, have a special type of labels, where it
comes in tuples; the time and the event indicator. To the best
of our knowledge, our study is the first to identify premature
replacement in repair events based on genetic algorithms and
survival modeling, treating the premature replacement as an
incorrect event label. Moreover, our proposed method relies
on aggregating the optimized solutions’ history to gain better
confidence in the labels after each iteration.

3. METHOD

The method is a two-phase iterative algorithm, with the first
phase being the Expectation phase and the second being the
Maximization phase. The intuition behind the algorithm is
to repeatedly find the set of event labels that maximizes the
performance of the survival model. Starting from a random
initialization of the labels, and aggregating the history of the
found solutions over iterations provide statistics of each la-
bel. This leads to a more probable solution after each iter-
ation, converging to the final solution after some iterations.
The algorithm splits the dataset into two sets. In the Expec-
tation phase, a survival model is trained on the first set with
the latest found event labels (the aggregated history of the
found labels in the previous iterations). In the Maximization
phase, a genetic algorithm is used to search for event labels
that maximize the performance on the second set. The two
sets are then switched, using the second set and its aggre-
gated history to train the model and the first set to search for
the labels. The two phases repeat for a number of iterations
until convergence to the final solution.

Let X ∈ Rn×p be the input features matrix of n samples
of p dimensions, T ∈ Rn×1 the censored time vector, and
E ∈ {0, 1}n×1 is the event indicator vector. Denoting an el-
ement in E as ek, ek = 1 indicates that the recorded time tk
is an event, i.e., a component was replaced, and ek = 0 indi-
cates that the component survived beyond tk, i.e. a censoring
time. The problem we are targeting is that a fraction c of the
replacements (recorded events) in the workshop repair data
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are actual failures, while the rest are premature replacements
and should be considered censored cases. From that perspec-
tive, our algorithm only switches the recorded event cases,
while the originally censored cases are considered censored
in all the iterations of the algorithm and not part of the opti-
mization process. To simplify the notations in this section, the
originally censored part of the data is omitted. Without loss
of generality, we assume that all the times are recorded as ob-
served events. However, in practice, the originally censored
part of the data is concatenated to the output of the Maximiza-
tion phase.

The algorithm, see Algorithm 1, first splits the dataset (X,T)
into two sets: Set A (XA,TA) and Set B (XB ,TB), between
which the algorithm alternates during the two phases. Let HA

and HB be the histories used to store the found labels over
iterations for Set A and Set B, respectively. E0

A, the initial
event labels for Set A are randomly initialized and added to
HA. The algorithm iterates for Niter number of iterations. At
iteration i, the two phases are:

Expectation: In the Expectation phase, a CPH model Mi

is trained on the set (XA,TA,EA), where EA = 1(Ep
A ≥

(1−P c(Ep
A))) is the accumulated and thresholded results for

Set A, Ep
A = EEj

A∈HA
(Ej

A), and P c(.) is the cth percentile
where c is the fraction of the correctly labeled event. Thresh-
olding with the complement of the cth percentile ensures that
the events’ fraction converges to c in the final result.

Maximization: In this phase, a genetic algorithm is uti-
lized to search for events’ assignments Ei

B that maximizes
the performance of the model Mi on Set B. The history of
Set B is then updated with the value Ei

B . The algorithm
then switches the two datasets and repeats until the maxi-
mum number of iterations is reached. At the last iteration,
the algorithm concatenates the two histories HA and HB into
H and the final output E = 1(Ep ≥ (1 − P c(Ep))) where
Ep = EEj∈H(Ej).

4. EXPERIMENTS AND RESULTS

Four experiments were conducted. The purpose of the first
two experiments was to study the behavior of the survival
model and the C-index metric with respect to erroneous la-
beling and illustrate that they can be used to guide the genetic
algorithm towards a more likely solution. In the third exper-
iment, we ran our algorithm on simulated data with different
fractions of correct labeling. The simulated data were cre-
ated following the simulation study in (Pölsterl, 2020). The
datasets consist of varying number of examples with pro-
portional hazards, four covariates with hazard ratios ranging
from 1 to 4, and a baseline hazard of 0.1. Survival times
are drawn from an exponential distribution linearly related
to the log of the hazard ratios. In the last experiment, we
ran our algorithm on the C-MAPSS dataset, which we modi-
fied to simulate premature replacements. In all experiments,

Algorithm 1 SurvPRD

Input: X ∈ Rn×p, T ∈ Rn×1

Input: c the fraction of correctly labeled events
Split Data : (XA,TA), (XB ,TB)← (X,T)
1) Initialization:
E0

A ← Random
Update the history: HA ← E0

A
for i ∈ {0, . . . Niter} do

1) Expectation:
Accumulate the history: Ep

A ← EEj
A∈HA

(Ej
A)

Thresholding: EA = 1(Ep
A ≥ (1− P c(Ep

A)))
Train Mi(XA,TA,EA)
2) Maximization:
Ei

B ← argmaxEi
B
Mi(XB ,TB ,E

i
B)

Update the history: HB ← Ei
B

if i < Niter then
(XA,TA, HA)← SwitchSets→ (XB ,TB , HB)

end if
end for
H ← Concat(HA, HB)
Accumulate the history: Ep ← EEj∈H(Ej)
Thresholding: E = 1(Ep ≥ (1− P c(Ep)))

the same hyperparameter values were used for the genetic al-
gorithm: a population size of 100 individuals with a 100%
crossover probability, a 50% individual mutation probability,
and a 10% bit mutation probability.

4.1. Concordance Index as a Guiding Metric

Survival models are usually evaluated using the concordance
index (C-index) (Harrell, Califf, Pryor, Lee, & Rosati, 1982),
quantifying the rank correlation between survival times and
the model’s predictions. In this experiment, three datasets of
100 samples with different fractions of correct labels were
created corresponding 25%, 50%, and 75% correctly labeled
examples. In each of the three datasets, the original censoring
percentage ranged from 20% to 80%. In each experiment, a
CPH model was trained using the incorrectly labeled data and
recorded the C-index score of the model. We flipped one label
at a time, computed the difference in C-index performance
before and after flipping the label, and ranked the example
from highest to lowest change in the C-index (0 being the
rank of the biggest change). We repeated each experiment
100 times to get statistics on the change. In every repetition,
a different dataset was created with the same characteristics.

Figures 1a, 1b, 1c show plots corresponding to the main three
experiments with 25%, 50%, and 75% correctly labeled ex-
amples, respectively. In each plot, the curves correspond to
different original censoring levels, ranging from 20% to 80%,
where the y axis in each curve represents the fraction of times,
out of 100 runs, that the flipped label was a wrong label, and
the x axis is the rank-order of the change caused by the flip.
The horizontal dotted line is the random guess probability of
flipping a wrong label.
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The results show that P (wrong label), the probability
that the flipped label was wrong, is higher at the highest
rank of the change in the C-index, i.e., the flip that caused
the biggest change in the C-index. They also show that the
probability drops with lower-ranked changes. In other words,
correcting an erroneous label (changing an incorrectly labeled
event into a censored case) is more likely to lead to the biggest
change in the C-index performance of the model. This indi-
cates that the C-index measure can be used to lead the genetic
algorithm towards more correct labeling.
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Figure 1. The probability that the largest C-Index change
comes from flipping an erroneously labeled event, at different
censoring levels and different correctly labeled events%.

4.2. Survival Model and Noisy Labels

In this experiment, we analyze the performance of the CPH
survival model under noisy labels. The idea behind this ex-
periment is to show that the model performance on noisy la-
bels, i.e., trained and tested on noisy labels, is more likely to
be worse than on correct labels. This then indicates that the
survival model performance can be used as the genetic algo-
rithm’s fitness to guide it towards better labeling.

We performed three scenarios, corresponding to 25%, 50%,
and 75% correctly labeled instances. Each scenario was re-
peated 1, 000 times. At each run, a dataset of 1, 000 examples
and 50% originally censored cases was created, and a CPH

model was trained and tested on both the correct labels and
random assignments of the labels. Figures 2a and 2b show
the train and test performance, respectively, comparing the
models’ performances in the three scenarios. The results in
Figure 2 show that the model’s performance on the true la-
bels is significantly better than on the random labels. Statis-
tically, from the 1, 000 runs, we can compute the probabil-
ity that training and testing on the correct labels has a bet-
ter performance than training and testing on random labels
P (True > Random), which corresponds to (97%, 98%,
and 98%) on the training sets and (84%, 90%, and 86%) on
the testing sets in the three scenarios of 25%, 50%, and 75%
correctly labeled instances, respectively.

These results suggest the plausibility of using the survival
model’s performance as a fitness function of the genetic algo-
rithm and maximizing the performance of the models leads to
more correct assignments of the events’ labels.
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(a) Train
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Figure 2. Difference between the CPH model performance
with correct labels vs. random labels, at different levels of
correctly labeled events%.

4.3. SurvPRD with Different Fractions of Correct Labels

This experiment shows the results of running the algorithm
for 1, 000 iterations (500 iterations on each set) on three sim-
ulated datasets of variable fractions of correct labels. In each
case, the dataset consists of 2, 000 examples with an original
censoring level of 50%. Out of the remaining 50% observed
event examples, the three datasets contain different percent-
ages of correctly labeled examples. Figures 3, 4, and 5, show
the results of the three experiments with 25%, 50%, and 75%
correctly labeled examples, respectively.

The accuracy on all samples is computed as Accuracy =∑
i∈0,1 P (ê = i|e = i)P (e = i). While the accuracy on

the event samples only is computed as Events Accuracy =
P (ê = 1|e = 1). The random guess accuracy, illustrated in
Figures 3, 4, and 5 as a horizontal gray dotted line, is the ac-
curacy of a random classifier. It is computed for each case
based on the probability of correct labeling, i.e., the fraction
of correct labels in each dataset. This results in a random
guess total accuracy and events’ accuracy of (62.5%, 25%),
(50%, 50%), (62.5%, 75%) in the three cases of 25%, 50%,
75% correct labels, respectively.
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Figure 3. Results of running the algorithm 1,000 iterations on
a simulated dataset with 25% correctly labeled events.

In the three experiments with 25%, 50%, and 75% correct la-
beling, the algorithm successively improved the accuracy and
the AUC over iterations and converged towards accuracies of
69.0%, 61.4%, and 70.4%, as shown in Figures 3a, 4a, 5a,
corresponding to AUCs of 66%, 63%, and 65%, respectively.
Figures 3b, 4b, and 5b, show the Event accuracies over itera-
tions which converged to 38.4%, 62.0%, and 80.4% in the
three experiments respectivly. Event accuracy fluctuations
during early iterations is due to the accumulation process of
the candidate solutions during iterations, which causes the
percentage of events to fluctuate a lot until enough knowledge
is gathered, at which stage the event percentage converges to
the desired value, which is the percentage of the correctly la-
beled events. Details are shown in Table 1.

Table 1. Results of the experiments on the three simulated
datasets with 25%, 50%, 75% correct labels.

Correctly Labeled Events% 25% 50% 75%
Total Accuracy % 69.0 61.4 70.4
Total Rand. Acc % 62.5 50.0 62.5
Events Acc % 38.4 62.0 80.4
Events Rand. Acc % 25.0 50.0 75.0
Premature Replacements Acc % 79.2 60.8 40.4
Premature Replacements Rand. Acc % 75.0 50.0 25.0

Figures 3d, 4d, 5d, show the percentage of actual premature
replacements against the predicted probability of an instance.
The higher the predicted probability, the higher the confi-
dence that an instance is an actual event (a genuine compo-
nent failure). The lower the predicted probability, the higher
the confidence that an instance is a premature replacement.
The figures show that the percentage of actual premature re-
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Figure 4. Results of running the algorithm 1,000 iterations on
a simulated dataset with 50% correctly labeled events.

placements is highest in examples where the model is con-
fident that they are premature replacements (the lowest pre-
dicted probabilities).

4.4. Turbofan Engine Dataset Use Case

The NASA C-MAPSS engine degradation data has four sets
of simulated data, for different combinations of operational
conditions and fault modes (Saxena, Goebel, Simon, & Ek-
lund, 2008). We used the set with two failure modes. We sim-
ulated the censoring by limiting the observation period to 300
cycles resulting in an original censoring of 20.41%. We sub-
sampled the dataset, selecting 98 engines with 20 readings per
engine, resulting in 1, 960 samples. Finally, we simulated a
scenario where 50% out of the 79.59% recorded events were
incorrectly labeled.

As in previous experiments, we ran the algorithm for 1, 000
iterations (500 iterations on each set), converging to an AUC
of 72% and an accuracy of 66.0%. With an event accuracy of
66.4% and premature replacements accuracy of 65.6%. Fig-
ure 6 shows the progress over iterations. Figure 6d shows that
almost all the instances with a probability of less than 30% of
being events are actually premature replacements.

5. CONCLUSION

We presented an algorithm for discovering premature compo-
nent replacement; an algorithm that relies on survival analysis
models and their ability to handle censored cases. We experi-
mentally illustrated the effect of incorrect labeling on the sur-
vival model’s ranking performance. Moreover, we utilized
such an effect on ranking to drive the genetic algorithm to
discover a considerable percentage of incorrectly-labeled in-
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Figure 5. Results of running the algorithm 1,000 iterations on
a simulated dataset with 75% correctly labeled events.

stances corresponding to prematurely replaced components.
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