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Abstract. The performance versus interpretability trade-off has been well-
established in the literature for many years in the context of machine learning
models. This paper demonstrates its twin, namely the data-centric perfor-
mance versus interpretability trade-off. In a case study of bearing fault
diagnosis, we found that substituting the original acceleration signal with a
demodulated version offers a higher level of interpretability, but it comes at the
cost of significantly lower classification performance. We demonstrate these
results on two different datasets and across four different machine learning algo-
rithms. Our results suggest that “there is no free lunch,” i.e., the contradictory
relationship between interpretability and performance should be considered
earlier in the analysis process than it is typically done in the literature today;
in other words, already in the preprocessing and feature extraction step.

Keywords: Explainable AI · SHAP · Intelligent Fault Diagnosis · Bearings
· Hilbert Transform · Envelope Spectrum

1 Introduction

Rotary machines are one of the most crucial pieces of equipment in industrial pro-
duction [9]; they consist of a huge number of components, including bearings. Even
non-severe bearing faults disrupt the normal operation of rotating machines. Bearing
fault is also among the frequent failure modes of rotary machines; 40% to 50% of all
failures in rotating machinery are estimated to be due to bearing faults [20]. Therefore,
bearing condition monitoring is of great importance.

The promising performance of pattern recognition techniques in machine condition
monitoring use cases resulted in the creation of Intelligent Fault Diagnosis (IFD)
– the application of artificial intelligence methods for machine fault diagnosis [13].
Although IFD-based solutions often achieve super-human performance in scientific
settings, their application in the industrial sector is relatively limited due to a lack of
transparency. Therefore, the employment of eXplainable Artificial Intelligence (XAI)
methods to provide insight into their reasoning is of high priority.

Over the last decades, the interpretability versus performance trade-off from the
model perspective – i.e., the fact that higher performance is often associated with
higher complexity, and thus usually achieved by sacrificing the interpretability – has
been well established [5]. While improved interpretability is not necessarily followed
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by reduced model performance, maintaining the latter while improving the former
typically requires conscious effort, and often advanced techniques [21]. In this study,
we pose a complementary question “does the application of preprocessing methods
to make IFD pipelines more interpretable necessarily degrade their performance?”

The contribution of this work is to bring attention to an inherent decrease in
classification performance caused by replacing the original data with an interpretable
representation. A bearing fault diagnosis case study with and without counter-
modulation transformation is an example of such a situation. To compare the original
data versus an interpretable version of it, we evaluate two different preprocessing
branches. One includes the Hilbert Transform as a demodulation technique, while the
other excludes it. As pointed out by [2], bearing faults are easier to recognize – for a
human expert – in the frequency spectrum of a demodulated signal. The classification
accuracy achieved by the two branches, however, shows the opposite effect. Comparing
the performance of the two representations clearly demonstrates that, for an artificial
neural network, such human-interpretable features are subpar compared to raw data.

The rest of the paper is organized as follows: we first investigate relevant earlier
work in Section 2. Afterward, in Section 3, a brief scientific background of the em-
ployed methods is provided. Next, in Section 4, the experimental setup is explained
in detail, while the corresponding results are discussed in 5. Finally, in Section 6, we
provide a discussion of the findings and conclude the paper.

2 Related Works

Explainability is on its way to becoming a must in IFD implementations. For exam-
ple, in [3], authors introduced an unsupervised classification approach based on the
attribution of explainability from an anomaly detection model. The effectiveness of
this method is evaluated not only by the application of different models but also by
an examination of different datasets. The authors took advantage of Shapely Additive
Explanations (SHAP) to derive the feature importance scores. Similarly, in [19], au-
thors evaluated the effectiveness of different XAI methods, including Gradient Class
Activation Map (Grad-CAM), Layer-wise Relevance Propagation (LRP), and Local
Interpretable Model-agnostic Explanations (LIME), to explain a shaft imbalance
detection model. Another approach is to incorporate physics-inspired features, cf [6].
Authors applied a Frequency-RPM transformation to transform time domain signals
to time-frequency representation; these representations are usually regarded as images,
and therefore Convolutional Neural Networks (CNNs) are widely applied to manipu-
late these representations. Lastly, in [4], Grad-CAM is applied to derive explanations
from a CNN model used to diagnose bearing faults. Short-Time Fourier Transform
(STFT) is used to extract the time-frequency representation of time-domain bearing
acceleration signals. As the authors ignored the modulation phenomena in bearings,
their derived explanations are not in good accordance with patterns expected phys-
ically; however, the authors then showed that patterns corresponding to different
health states are repeatable and comparative.

Hilbert transform is frequently used to demodulate time domain signals. For
example, in [11], authors used Hilbert transform for envelope extraction purposes,
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alongside cyclo-stationary analysis (to cope with non-stationary signals) to reveal
fault frequency components in an air conditioning production assembly line. More-
over, Hilbert Transform is frequently used as the demodulation technique in bearing
vibration analysis pipelines. As an example, in [16], authors used it alongside wavelet
packet decomposition to extract the fault characteristics from the bearing acceleration
signal. Similarly, authors of [22] showcased the effectiveness of the application of
envelope analysis to reveal fault frequency components expected to observe in the
Case Western Reverse University bearing dataset.

3 Background

3.1 Zoom FFT

Zoom FFT is a technique to improve frequency resolution within a specific frequency
range [12]. Application of Zoom FFT not only reduces the length of the original signal
to achieve the desired frequency resolution but also decreases the computational cost
significantly [12]. Implementation of Zoom FFT consists of two main stages; the first
one is the application of a group of operations to preprocess the original signal, while
the second stage is the application of conventional FFT.

As illustrated in Figure 1, the preprocessing stage starts with a multiplica-
tion of the original signal (x[k] with a length of N) by the complex signal of
[cos(2πfct)+isin(2πfct)], where fc is the lower limit of the desired frequency range
([fc,fc+Bp]). It continues with low-pass filtering of the multiplication signal (xmu),
using the bandwidth of Bp. Afterward, the filtered signal is undersampled by M
(known as decimation), resulting in a signal with the length of N/M. Next, zero
padding is employed to fill in for the N − (N/M) instances removed during the
decimation process. Finally, the FFT is employed to derive a frequency domain signal,
within the desired frequency range, out of the zero-padded signal.

3.2 Hilbert Transform to Extract Envelopes

Hilbert Transform (HT) of a signal is defined [7] as:

Fig. 1: Visual illustration of Zoom FFT
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H[x(t)]= x̃(t)=
1

π

∫ ∞

−∞

x(t)

t−τ
dτ (1)

Therefore, we can define an analytic signal as a complex function in which the
real part is the original signal, and its imaginary part is the HT [7]:

X(t)=x(t)+ix̃(t), (2)

where X(t) is the analytic signal, x(t) is the original signal, and the x̃(t) is the
HT of the original signal. Similar to any other time variant complex function, the
instantaneous amplitude of the analytic signal can be computed as:

A(t)= |X(t)|=
√
x2(t)+x̃2(t) (3)

The instantaneous amplitude of the analytic signal varies slower than the original
signal [7]. Therefore, the instantaneous amplitude function – also known as envelope
– is a version of the original signal excluding high-frequency oscillations. Accordingly,
the envelope extraction based on HT is considered a demodulation approach widely
used in rotating machinery vibration analysis [8].

4 Experiments

4.1 Introduction to Datasets

Most of our experiments are done on the Case Western Reverse University (CWRU)
bearing dataset; it includes four different bearing health states: normal, inner-race
fault, outer-race fault, and ball problems. We focus our study on Drive-End (DE) bear-
ings, as DE bearings are subjected to more mechanical stresses in real-world scenarios.
Signals with 48000 and 12000 Hz sampling frequencies are available; however, we found
12000 Hz sufficient. In this dataset, four levels of rotational speeds (1730 RPM, 1750
RPM, 1772 RPM, and 1797 RPM) are included, and we used them all to consider the
challenge of variation in mechanical loading. The rotational speed is vitally important
for bearing fault detection, as the occurrence of faults in the bearings is likely to
exhibit dominant peaks at particular frequency components (fault characteristic
components). These components are the multiplication of geometrically defined ratios
by the rotational speed of the bearing. In Table 1, ratios of different faults1 alongside
the fault frequency component by the rotational speed are summarized.

Unfortunately, due to the modulation phenomena, the expected bearing fault
components are not usually observable in frequency spectra; therefore, a demodulation
step is essential to reveal the true fault frequency components.

To generalize our findings beyond a single dataset, we confirm our observations
also using the Paderborn University (PU) bearing dataset [14]. We again focus on
bearing fault classification, including normal and synthetically generated faults of the
inner race and outer race. Moreover, we also considered mechanical loading variation
by including both 900 and 1500 RPM shaft rotational speeds.

1 Ratios from https://engineering.case.edu/bearingdatacenter/bearing-information
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4.2 Data Preparation and Preprocessing

To study the effect of the application of HT on classification accuracy, we consider
two preprocessing branches. Both preprocessing branches start with the initial step
of splitting the original time domain signals to 2048 and 12800 points-long signals
for CWRU and PU datasets, respectively. Following that, on the first branch, raw,
we use a generally accepted pipeline for rotating machinery vibration analysis [23,
15, 18]. It starts with the application of a Hann window to avoid leakage error, and
a Butterworth bandpass frequency filter (with a degree of 25 and cut-off frequencies
of 2.5 Hz and 5500 Hz for CWRU, and 2.5 and 31000 for PU) is employed to both
remove the DC components and prevent aliasing. Afterward, we applied Fast Fourier
Transform (FFT) algorithm to derive the frequency spectrum. The resulting frequency
domain signals are 1024 points-long signals, covering 0 to 6000 Hz and 0 to 32000
Hz for CWRU and PU datasets, respectively.

On the second branch, envelope, we take advantage of HT to extract the
envelope from the raw time domain signal. Therefore, to derive a well-suited fre-
quency resolution within the desired frequency range (0 to 1000 Hz), Zoom FFT is
employed. The choice of the frequency range is made to cover not only the frequency
components corresponding to the faults but also their initial harmonics. Moreover,
since 1024 points are used to apply the Zoom FFT technique, the resulting frequency
domain signals are also 1024 points long. Similar to the raw branch, we also used
the Butterworth bandpass frequency filter prior to the application of Zoom FFT;
however, the second cut-off frequency is 800 Hz.

In Figure 2a, an example of the original time domain signal and its envelope is
visualized. A comparison of the two indicates that the application of HT is indeed
capable of reducing the disturbance level in the time domain signal. Moreover, plots
in Figures 2b, 2c and 2d show that the envelope preprocessing branch is more pow-
erful in revealing characteristic frequency components for bearing faults. It is worth
noting that the red dashed lines in these plots highlight the expected fault frequency
component, according to the values presented in Table 1. It is also to be noted that all
the plots visualized in Figure 2 come from the CWRU dataset; however, the insights
from the PU dataset are analogous.

For the experiments, data is split so that 40% is the hold-out testing dataset, and
25% of the remaining data is used for validation purposes. Additionally, we employ
min/max scaling to transform values of all the frequency components within the
frequency spectra to the range from zero to one.

Table 1: Frequency Fault Components by Rotational Speed for CWRU Dataset

Fault Ratio
Fault Frequency Component by Rotational Speed

1730 RPM 1750 RPM 1772 RPM 1797 RPM

Inner-Race 5.4152 156.14 HZ 157.94 Hz 159.93 Hz 162.19 Hz

Outer-Race 3.5848 103.36 HZ 104.56 Hz 105.87 Hz 107.36 Hz

Ball 4.7135 135.91 HZ 137.48 Hz 139.21 Hz 141.17 Hz
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(a) Original time domain signal versus its envelope.

(b) FFT versus Zoom FFT, for Inner Race fault.

(c) FFT versus Zoom FFT, for Outer Race fault.

(d) FFT versus Zoom FFT, for Ball fault.

Fig. 2: Visual demonstration of the signals from each preprocessing branch
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4.3 Training Classifiers

Our experiments start with the application of Multi-Layered Perceptrons (MLP)
to classify signals from the CWRU dataset. Networks to classify signals from both
preprocessing branches utilize the structure of 1024-512-256-128-64-4 as neurons per
layer. For the training of the network on the data from the first preprocessing branch
(the one with the application of FFT on raw time domain signals), a combination
of 10−4 and 50 as the learning rate and the number of epochs, respectively, provides
monotonic and smooth minimization of the categorical cross-entropy loss. Notably, the
proposed architecture achieves repeatable 100% classification accuracy on the held-out
test dataset. On the other hand, we experienced strong overfitting when training
the same network on the second preprocessing branch (using envelope extraction
and Zoom FFT). Our experiments showed that the highest classification accuracy
is achieved using a learning rate of 10−5 and 150 epochs at the verge of overfitting.
Nevertheless, perfect performance is not attainable anymore.

Additionally, to strengthen the claim of the ubiquity of the tradeoff and demon-
strate that the difference in the performance of the two preprocessing branches is
independent of the classification method and not specific to deep neural networks,
we also trained a group of classic machine learning models – including Decision Tree
(DT), Random Forest (RF) and Support Vector Machine (SVM) – utilizing data
belonging to both preprocessing branches, on data from CWRU dataset. It is worth
mentioning that all the hyper-parameters of these models were set to the default
values of scikit-learn2 library.

Finally, to generalize our findings beyond a single dataset, we decided to evaluate
the classification performance of both preprocessing branches on the PU dataset.
For the conventional preprocessing, we employed an MLP with the structure of
6400-2000-250-3 with the 10−5 and 200 as the learning rate and epochs, respectively.
Similarly, for signals from the interpretable branch, the structure is 1024-256-64-3,
and a learning rate of 10−5 with 250 epochs were utilized.

5 Results

Table 2 summarizes the classification performance of different methods for both
datasets and preprocessing branches. We repeat each experiment 5 times to minimize
the randomness effect of training. To be able to examine the misclassified observations
one by one, we keep the train and test sets fixed across all the trials. Based on the
results in this Table, the performance decrease caused by the substitution of Raw
FFT data with the Zoom FFT is consistently seen for essentially all cases. The one
exception is the DT’s results on the PU dataset; however, since the performance
of this method is overall very poor (barely any learning is done, and the result is
essentially random), we do not consider this to be contradicting our claim.

To better understand the performance versus interpretability tradeoff showcased
here, we analyze the observations consistently misclassified across all 5 trials. As
presented in the rightmost columns of Table 2, for the MLP row on the CWRU

2 https://scikit-learn.org/stable/
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Table 2: Classification performance of different methods on both datasets and
two preprocessing branches, over 5 trials (the “C” column denotes the number of
consistently misclassified observations).

Dataset Method Preprocessing
Classification Accuracy # Misclassified
Min Avg Max Min C Max

CWRU

DT
Raw FFT 0.9491 0.9525 0.9565 76 0 89

ZoomFFT on Env 0.9376 0.9482 0.9605 69 5 109

RF
Raw FFT 0.9977 0.9982 0.9989 2 2 4

ZoomFFT on Env 0.9851 0.9859 0.9874 22 9 26

SVM
Raw FFT 0.9994 0.9999 1.0000 0 0 1

ZoomFFT on Env 0.9468 0.9469 0.9473 92 84 93

MLP
Raw FFT 1.0000 1.0000 1.0000 0 0 0

ZoomFFT on Env 0.9760 0.9769 0.9788 37 35 42

PU

DT
Raw FFT 0.7395 0.7629 0.7816 378 4 451

ZoomFFT on Env 0.7556 0.7839 0.8018 343 26 423

RF
Raw FFT 0.8914 0.8951 0.8983 176 54 188

ZoomFFT on Env 0.8862 0.8889 0.8925 186 91 200

SVM
Raw FFT 0.9041 0.9074 0.9110 154 135 166

ZoomFFT on Env 0.8723 0.8776 0.8833 202 142 221

MLP
Raw FFT 0.9365 0.9374 0.9393 105 70 110

ZoomFFT on Env 0.8082 0.8109 0.8140 322 288 332

dataset, 35 observations were misclassified every time. Compared to the minimum
and the maximum number of misclassified observations over these trials (37 and 42,
respectively), the number of consistently misclassified observations is quite signifi-
cant. This brings up a hypothesis that the application of interpretability-enhancing
preprocessing makes a portion of the data impossible to classify correctly. This phe-
nomenon seems to originate in the fact that the envelope branch, specifically the HT,
is making the signals more interpretable to humans by removing some (ostensibly)
irrelevant features. Nevertheless, while the removed features are irrelevant to human
practitioners, they can likely be helpful to machine learning models; by their removal,
a noticeable decrease in the classification performance of the models is registered.

Next, we check whether this phenomenon is independent of the first cut-off
frequency of the bandpass filter since this is the most important hyperparameter of
the interpretable preprocessing branch. Frequency components before the first cut-off
frequency are likely to get their magnitude reduced significantly; therefore, we find
this value crucial for maintaining information. We study the effect of its variation on
the classification accuracy and the number of misclassified observations. In Table 3,
minimum and maximum classification accuracies of MLP and the number of misclas-
sified observations over 5 trials of the experiments for different cut-off frequencies are
provided. Across these results, no difference in overall performance is seen. Although
we are likely to have around 35 observations constantly misclassified for any given
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Table 3: Average classification accuracy, and number of repeatably misclassified
observations, on CWRU using MLP, over 5 trials (“A”, “M” and “C” stand for
accuracy, number of misclassified and constantly misclassified, respectively)

Metric
First Cut-off Frequency (Hz)

2.5 10 20 30 40

A
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max
97.60 97.69 97.88 97.37 97.40 97.42 97.31 97.40 97.48 96.97 97.17 97.31 96.97 97.22 97.42

M
Min Max C Min Max C Min Max C Min Max C Min Max C
37 42 35 45 46 36 44 47 37 47 53 38 45 53 36

value of the first cut-off frequency, it is to be noted that only 25 observations were
never correctly classified across all the different frequency values.

Finally, in Table 4, the number of each combination of ground-truth and misclassi-
fied labels – of the 25 constantly misclassified observations, no matter what is the first
cut-off frequency – is summarized. According to this Table, the ball problem is always
either the ground truth or misclassified label, in all of these observations. This finding
is a confirmation of the previously presumed hypothesis that the application of the
interpretable preprocessing branch makes a portion of the data – in this case study,
a relatively limited number of ball fault observations – impossible to classify correctly.
By comparing Figures 2b and 2c with Figure 2d, we can see that – unlike inner
race and outer race faults – the envelope preprocessing branch is not successful in
revealing expected bearing fault characteristic frequency components. We believe that,
alongside the missing dominant peak at the fault characteristic frequency components,
the low-frequency peaks at the right subplot of Figure 2b are the reasons why ball
fault signals are often misclassified.

Table 4: Types of misclassifications that occur in the envelope branch consistently,
i.e., regardless of the cut-off frequency.

Ground-truth Label Misclassified as Count

Outer-Race Fault Ball Problem 12

Ball Problem Outer-Race Fault 12

Ball Problem Normal 1

5.1 Application of SHAP to Explain Classifiers

SHAP is an explanation method originated from game theory literature [10], concerned
with the calculation of an additive feature importance score [1]. The importance
score of each feature is assessed by the comparison of the model performance when
including and excluding the desired feature in different coalitions, computed as the
weighted average of all possible differences [17].
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ϕi=
∑

S⊆F\{i}

|S|!(|F |−|S|−1)!

|F |!
[fS∪{i}(xS∪{i})−fS(xS)], (4)

where F is the set of all features, fS∪{i} is the model trained with an arbitrary feature,
and fS is the model trained without that feature.

We employ SHAP (as implemented by [17]) to estimate the importance of ev-
ery frequency component towards each prediction. In Figure 3, three instances of
frequency domain signals – each exemplifying a fault class – from both preprocessing
branches (the conventional branch on the left and the interpretable one on the
right) are visualized. The input data is shown in blue, and the corresponding SHAP
explanations are in orange. The red dashed lines are the first, second, and third
harmonics of the fault characteristic frequency components, according to Table 1.

The perfect alignment of peaks from both original signals and SHAP values at
physically expected frequencies on the right-hand subplots of Figures 3a and 3b
shows that explanations from the envelope preprocessing branch match the expected
physical patterns very well; the lack of the same on the left-hand subplots indicates
that the opposite is true for the conventional, or raw, branch. Besides, the comparison
of Figure 3c with Figures 3a and 3b shows that the agreement between explanations
and the physically expected patterns varies with the type of fault. In other words, the
interpretable processing branch is not capable of dealing with all the classes. While
the explanations for inner and outer race faults are as expected, the ball faults are
not. This can be seen in the right-hand subplot in Figure 2d, where in contrast with
inner race and outer race faults, no dominant peak can be observed for the ball fault.
Moreover, low-frequency peaks are likely to make this bearing fault detection harder.

Moreover, while the model utilizing the conventional preprocessing branch is likely
to perform perfectly, its explanations (left-hand plots visualized in Figure 3) show no
meaningful alignment with the physically expected patterns. This lack of agreement
with the physics knowledge is the disadvantage of this model in comparison with its
interpretable counterpart and will likely make it less trustworthy.

6 Conclusions

In this study, we evaluated how the classification accuracy of bearing fault detection
changes depending on including or excluding a counter-modulation technique. We ran
experiments over two datasets and used four classification algorithms. Results show
that while the demodulated pipeline offers higher interpretability, aligning better
with the underlying physical phenomena, its classification performance is decreased
noticeably. Therefore, we believe an inherent interpretability versus performance
trade-off exists from the data-centric (alternatively to be called representation, feature
extraction, or preprocessing) perspective. With complex enough problems, making
the data representation interpretable involves simplifications that remove information
– information that would otherwise be possible for machine learning algorithms to
exploit. The effect is consistent for variations in the first cut-off frequency of the
interpretable preprocessing branch, different datasets, and classification algorithms.
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(a) FFT versus Zoom FFT and their SHAP values, for Inner Race Fault

(b) FFT versus Zoom FFT and their SHAP Values, for Outer Race Fault

(c) FFT versus Zoom FFT and Their SHAP Values, for Ball Fault

Fig. 3: Examples of each fault from both branches, with SHAP values

Our supplementary analysis shows that applying the envelope preprocessing
branch affects a relatively minor portion of the data. We believe this is due to remov-
ing the features irrelevant to human analysts and simultaneously useful for AI models.
The next step in pursuing this study is to understand the adversarial mechanism
responsible for this decrease, hopefully leading to the discovery of transformations
with a better balance between the two aspects.

Furthermore, since some of the misclassified samples differed between experiments
with different first cut-off frequencies, this hyperparameter can be considered a factor
in generating diverse datasets. It may be, therefore, possible to improve fault clas-
sification accuracy by using an ensemble of different datasets produced by varying
the first cut-off frequencies.
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Current results demonstrate the idea in a single domain. It is interesting to
extend this research and explore this data-centric interpretability versus performance
trade-off in other fields where well-understood interpretable transformations exist,
such as computer vision or speech recognition.
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