

9th International Conference on Smart Energy Systems 12-13 September 2023 #SESAAU2023

Powered by

VIABILITY OF DISTRICT HEATING NETWORKS IN TEMPERATE CLIMATES: BENEFITS AND BARRIERS OF COLD AND WARM TEMPERATURE NETWORKS

Luis Sánchez-García, Urban Persson, Helge Averfalk, Nekane Hermoso-Martínez, Patxi Hernández-Iñarra

Index

- Background
- Research questions
- Methodology and assumptions
- Results
- Conclusions

Background

Bilbao → city of 346 405 inhabitants located in northern Spain.

Mild climate: 1 147 heating degree-days (13°C/17°C).

Relatively low specific heat demands: ~60 kWh/m²_{floor}

High population density: 54 662 p/km² (population-weighted).

High heat densities. Most of the city above 500 MWh/ha.

Background

Demand: 806 GWh

Current heat supply: mostly based on fossil fuels and a small share of Joule electric heating.

Less than 30% of the buildings have centralized heating systems.

No District Heating system.

Abundant industrial waste heat (~400 GWh) in the vicinity of the city and ambient heat from river, sea and WWTP (~600 GWh).

Bilbao's current heat supply

Research questions

Area of study: 20 GWh heat & 3 GWh cold

- Is a District Heating system feasible in such a mild climate?
- What are the benefits and costs for Cold and Warm District Heating?

Case study in the District of Abando

Focus 2022 → Network

Focus 2023 → Production

Studied Solutions

Combined Heating and Cooling with Warm Network

Heat Pump for Cold Production

Space Cooling

Combined Heating and Cooling with Cold Network*

Cold Network

Space Heating

^{*}Terms after: Werner, Sven. (2022). Network configurations for implemented low-temperature district heating. *Energy*, 254, 124091. https://doi.org/10.1016/j.energy.2022.124091

Methodology

Combined Heating and Cooling with Warm Network

- Heat Pump + TES + Gas Boiler
- Mixed Integer Linear Programming. All linear except for heat pump dispatching. (MATLAB & Gurobi)
- Heat Pump & TES → Danish costs
- Circular pit for TES → Estimated based on Spanish

costs

Spanish spot

 prices for 2014

 2019 and spanish,
 grid losses, fees
 and charges.

Combined Heating and Coolingwith Cold Network

- Heat Pump + SH TES + DHW TES + (Cold TES)
- Thermal storages limited to 5000 L each.
- Mixed Integer Linear Programming
 → One sole heat pump supplies
 both DHW and space heating
 (different COPs) (MATLAB & Gurobi)
- Invesmtent costs → Spanish sources
- Spanish spot prices for synthetic year of 2014-2019 and spanish, grid losses, fees and charges.

Data

Cost of Heat Pumps

Cost of TES

Results – LCOH Comparison

Results – Cold DH LCOH Production

Results – Cold DH Impacts

0.06LCOH Buildings - Baseline LCOH Buildings - Option B 0.05 LCOH Buildings - Option C μm 0.04Baseline 9776 Frequency [-] Option B7872 Option C7064 0.020.01 0.00 400 150 200 250 Levelized Cost of Heat Production [€/MWh]

Option C → Option B + High Voltage grid fees & losses

Option B → Limitless storage for SH and DHW

Results – Marginal Cost of Cooling

Results – Cost of Heating and Cooling :nergy EMER

Results – Benefits of extending area

- All Abando District
- Heat Demand: 20 GWh → 74 GWh (or 130 GWh with individual systems)
- Feasible to transport waste heat from incineration plant (7 km & 125 GWh) or cement factory (9 km & 200 GWh).
- Waste heat @ 15 €/MWh & pipeline @ 7 €/MWh → LCOH-production from 47,1 €/MWh to 28,5 €/MWh
- Cost of district cooling?

Cost of cold district heating?

Conclusions

- Only Heating (20 GWh heating) → Warm District Heating is slightly cheaper than Cold District Heating
- Heating (20 GWh) & Cooling → Nearly same cost
- Cost of cold district heating → very dependent on building characteristics
 & presence of outliers.
- Cost of cold district heating → cost could be lowered by 17% with limitless storage (feasible?) & an additional 10% with high voltage grid tarifs.
- Use of waste heat → viable with warm DH, viable with cold DH?

Powered by

THANK YOU FOR YOUR ATTENTION!

Luis Sánchez-García, Urban Persson, Helge Averfalk, Nekane Hermoso-Martínez, Patxi Hernández-Iñarra

Results – Warm DH

Results – Cold DH

