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A B S T R A C T

Muscle fatigue is a severe problem for elite athletes, and this is due
to the long resting times, which can vary. Various mechanisms can
cause muscle fatigue which signifies that the specific muscle has
reached its maximum force and cannot continue the task. This the-
sis was about surveying and exploring state-of-the-art methods and
systematically, theoretically, and practically testing the applicability
and performance of more recent machine learning methods on an ex-
isting EMG to muscle fatigue pipeline. Several challenges within the
EMG domain exist, such as inadequate data, finding the most suit-
able model, and how they should be addressed to achieve reliable
prediction. This required approaches for addressing these problems
by combining and comparing various state-of-the-art methodologies,
such as data augmentation techniques for upsampling, spectrogram
methods for signal processing, and transfer learning to gain a reliable
prediction by various pre-trained CNN models.

The approach during this study was to conduct seven experiments
consisting of a classification task that aims to predict muscle fatigue
in various stages. These stages are divided into 7 classes from 0-6, and
higher classes represent a fatigued muscle. In the tabular part of the
experiments, the Decision Tree, Random Forest, and Support Vector
Machine (SVM) were trained, and the accuracy was determined. A
similar approach was made for the spectrogram part, where the sig-
nals were converted to spectrogram images, and with a combination
of traditional- and intelligent data augmentation techniques, such as
noise and DCGAN, the limited dataset was increased. A comparison
between the performance of AlexNet, VGG16, DenseNet, and Incep-
tionV3 pre-trained CNN models was made to predict differences in
jump heights.

The result was evaluated by implementing baseline classifiers on
tabular data and pre-trained CNN model classifiers for CWT and
STFT spectrograms with and without data augmentation. The eval-
uation of various state-of-the-art methodologies for a classification
problem showed that DenseNet and VGG16 gave a reliable accuracy
of 89.8 % on intelligent data augmented CWT images.

The intelligent data augmentation applied on CWT images allows
the pre-trained CNN models to learn features that can generalize un-
seen data. Proving that the combination of state-of-the-art methods
can be introduced and address the challenges within the EMG do-
main.

iii





A C K N O W L E D G M E N T S

We would like to express our sincere gratitude to our supervisor, Jens
Lundström, for his invaluable guidance, support, and mentorship
throughout the duration of this project. His expertise, constructive
feedback, and dedication have played a crucial role in shaping our
research and pushing us to achieve our best.

We would also like to thank our opponent, Atiye Sadat Hashemi,
for her insightful comments, thoughtful questions, and constructive
criticism while evaluating our work. Her perspectives and challeng-
ing discussions have greatly contributed to the refinement of our re-
search.

Kind Regards,
Abboud Afram & Danial Sarab Fard Sabet
Halmstad, Sweden
June, 2023

v





C O N T E N T S

1 introduction 1
2 problem formulation 5

2.1 Research questions 5
2.2 Contribution 6

3 related work 9
3.1 EMG Device 9
3.2 Feature Extraction 9
3.3 Spectrogram Methods 11
3.4 Transfer Learning 12
3.5 Data Augmentation 13
3.6 Summary and comparison 15

4 theory 17
4.1 Signal Processing 17

4.1.1 SEMG Features 18
4.1.2 Spectrogram 20

4.2 Data Pre-processing 20
4.3 Data Upsamling 21

4.3.1 Generative Adversarial Network 21
4.3.2 Synthetic data using GAN 22

4.4 Transfer Learning Methodology 22
4.4.1 Pre-Trained models 23

5 method 25
5.1 The Experimental Setup 25
5.2 Data Format 26
5.3 Data Description 26
5.4 Signal Processing methods 27

5.4.1 Baseline Signal Processing 27
5.4.2 Spectrogram 28

5.5 Pre-Processing 29
5.6 Training Baseline Classifiers 31
5.7 Data augmentation 31

5.7.1 Noise 31
5.7.2 DCGAN 32

5.8 Pre-trained Models 35
6 results 37

6.1 Baseline Classifiers 37
6.2 Hardware Component 37
6.3 Spectrogram and Data Augmentation 38

6.3.1 CWT and STFT Spectrograms 38
6.3.2 Traditional- and Intelligent Data Augmentation 38

6.4 Pre-Trained CNN Models 40
7 discussion 49

vii



viii contents

7.1 Comparison of the Spectrogram methods 50
7.2 Learning Plots and Confusion Matrices Analysis 51
7.3 Improvement of accuracy using data augmentation 52
7.4 Comparison of traditional- and intelligent data aug-

mentation 53
7.5 Comparison of the pre-trained CNN models 53
7.6 Dataset 54
7.7 Adressing the research questions 54
7.8 Future works 55

7.8.1 The choice of target variable 55
7.8.2 Choice of datasets 55
7.8.3 Hyperparameter tuning 56
7.8.4 Other spectrogram methods 56
7.8.5 Transfer learning methodologies 56

8 conclusion 57
a appendix 59

bibliography 61



L I S T O F F I G U R E S

Figure 1 Shows images before (a) and after signal pro-
cessing (b), where yellow represents knee ex-
tension, pink represents wall squat, and green,
red, and cyan represent the three jumps during
the squat jump. 18

Figure 2 DCGAN adversarial game 22
Figure 3 Experimental setup during this thesis. 25
Figure 4 Heatmap showing the correlation between the

manually extracted features. 31
Figure 5 DCGAN generator architecture 33
Figure 6 Example of real (a) and noise augmented (b)

CWT images with a combination of multiple
noise factors. 38

Figure 7 Example of real (a) and noise augmented (b)
STFT images with a combination of multiple
noise factors. 39

Figure 8 Example of real (a) and fake generated (b) CWT
images using DCGAN. 40

Figure 9 Example of real (a) and fake generated (b) STFT
images using DCGAN. 40

Figure 10 Training and validation learning curve for STFT
without data augmentation. 43

Figure 11 Confusion matrix for STFT without augmenta-
tion. 43

Figure 12 Training and validation learning curve for CWT
without data augmentation. 44

Figure 13 Confusion matrix for CWT without augmenta-
tion. 44

Figure 14 Training and validation learning curve for STFT
with noise augmentation. 44

Figure 15 Confusion matrix for STFT with noise augmen-
tation. 45

Figure 16 Training and validation learning curve for CWT
with noise augmentation. 45

Figure 17 Confusion matrix for CWT with noise augmen-
tation. 46

Figure 18 Training and validation learning curve for STFT
with DCGAN augmentation. 46

Figure 19 Confusion matrix for STFT with DCGAN aug-
mentation. 47

ix



x List of Figures

Figure 20 Training and validation learning curve for CWT
with DCGAN augmentation. 47

Figure 21 Confusion matrix for CWT with DCGAN aug-
mentation. 48



L I S T O F TA B L E S

Table 1 Description of the acquired feature after signal
processing. 28

Table 2 Description of generator architecture and lay-
ers. 33

Table 3 Description of the discriminator architecture
and layers. 34

Table 4 Evaluation of the baseline classifiers for Exper-
iment 1 37

Table 5 Data augmentation, run time, and accuracy of
the different pre-trained models for STFT spec-
trograms. 41

Table 6 Data augmentation, run time, and accuracy of
the different pre-trained models for CWT spec-
trograms. 42

xi



A C R O N Y M S

EMG Electromyography

SEMG Surface Electromyography

STFT Short Time Fourier Transform

CWT Continuous Wavelet Transform

SVM Support Vector Machine

CNN Convolutional Neural Network

GAN Generative Adversarial Network

DCGAN Deep Convolutional Generative Adversarial Network

BCE Binary Cross Entropy

CSV Comma Seperated Values

SGD Stochastic Gradient Descent

xii



1
I N T R O D U C T I O N

Today’s exercise and training have become important in many peo-
ple’s daily lives. To track how well the training was done, many wear-
ables have allowed people to gain insight into their health and pro-
gression. Training has positively affected young and old individuals
regarding mental and physical health [47][29]. High-performing elite
athletes gain a competitive advantage when predicting muscle fatigue
before its occurrence. This prevents overly long resting time, which
gave various business insights for companies to develop a device that
notifies the user if the training session can continue or if rest is neces-
sary to prevent muscle fatigue.

Techniques today are implemented to prevent or to get an under-
standing of muscle fatigue occurrence. In human-computer interac-
tions, sports injuries, performance, biomechanics, and prosthetics, the
identification and analysis of muscle fatigue provide critical informa-
tion. Automated systems that can forecast and identify when fatigue
arises are very helpful in sporting situations where muscle fatigue
can result in harm. These systems would direct the user’s training by
serving as a warning mechanism prior to exhaustion while maintain-
ing an ideal fatigue state, fostering progress, and preventing needless
tension on the muscle to prevent damage [2]. Muscle fatigue can be
caused by various mechanisms and signifies that the specific muscle
has reached its maximum force and does not have the ability to con-
tinue the task. The recovery time can vary; nevertheless, it takes a sig-
nificant time for the muscle to regain its normal functions to perform
a task. Localized muscle fatigue is harmful and can lead to major in-
jury when the level of fatigue is high. However, it can occasionally
be helpful during muscle growth. Fatigue muscles absorb less energy
before being stretched to where an injury occurs [2]. Muscle fatigue
occurs when protein-generating processes become impaired and can
be classified into two categories, acute- and chronic fatigue [13]. The
treatment for acute fatigue is to rest, while chronic fatigue is a term
of illness or long-time condition [60]. A deeper focus on a solution
for predicting acute muscle fatigue will be performed during the fol-
lowing thesis.

There are two ways the devices can be used to measure muscle ac-
tivity data from a specific muscle, non-invasive or invasive, and these
methods differ significantly. The invasive technique is mostly used
for diagnostic purposes and involves entering the desired muscle us-
ing a needle-type electrode via the skin. In comparison, the invasive
technique causes discomfort to the user, while the non-invasive tech-
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2 introduction

nique lessens the patient’s suffering and makes the device portable.
The non-invasive technique has the advantage of applying mounted
electrodes on the desired muscle. Both of these techniques have their
advantages and disadvantages. High-resolution data and precise lo-
calized descriptions of muscle activity are produced by the invasive
approach, while the sample rate and segment length affect these fac-
tors for the non-invasive approach [52]. During this thesis, the non-
invasive technique will be the center of attention mainly due to the
device used for gathering data and for comfortable daily usage.

Different methodologies can quantify fatiguing of muscles in a non-
invasive way. Ultrasound is one of the methods used in sonomyogra-
phy (SMG) to describe the structural and morphological alteration
in skeletal muscles. According to a study, a review of non-invasive
techniques to detect and predict localised muscle fatigue written by
Al-Mulla and others, the SMG method can be combined with another
method to gather more information about the muscle. Near-infrared
spectroscopy (NIRS) detects changes in the blood flow which is cru-
cial during muscle contraction to measure the absorption of the pro-
tein hemoglobin. However, NIRS has been proven to understand or
analyze the oxidative metabolism in healthy muscles. Additional re-
search is necessary to determine how it may be utilized to study mus-
cle fatigue. Mechanomygraphy (MMG) is an additional method that
records both the muscle vibrations as the fibers move and the me-
chanical signals of a contracting muscle. This method can also be
combined with an additional method for a deeper analysis of muscle
activity. However, MMG is assumed to be unsuited for the analysis
of dynamic muscle contraction due to the number of variables influ-
encing the complicated signals and challenges with consistency when
used repeatedly to quantify fatiguing of muscles [2]. The Electromyo-
graphy (EMG) technique is a newly implemented cheap and easy-to-
use solution to predict or detect muscle fatigue in various cases. The
sensors called surface EMG (sEMG) offers essential information about
the changes in the muscles, and data can be gathered from the sensor
signals to analyze localized muscle fatigue. Muscle electrical activity
during contraction is recorded using EMG to detect muscle abnor-
malities [36]. Measuring the time- or frequency domain variation in
EMG signals brought on by fatigue is possible. EMG is well-chosen
hardware during this thesis because it is applicable for capturing in-
formation regarding acute muscle fatigue. EMG is becoming more
frequent in physiology, and this is due to the noninvasive, real-time,
and multitarget measurement benefits [61][2].

Feature extraction is a crucial part of using any machine-learning
solution. There are various feature extraction methods for extract-
ing features from the sEMG signals for predicting muscle contrac-
tions and fatigue [24]. The extracted features can then be adapted
to the chosen machine learning algorithm of choice [30]. Currently,
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several baseline methods are known for calculating fatigue indicators
from EMG data. There are two primary groups of fatigue algorithms
used. The first group consists of traditional frequency-based methods
that quantify changes in the spectrum. This group includes the tradi-
tional mean frequency (MNF), spectral moments ratio (SMR), and
wavelet-based techniques. The second group of algorithms for de-
tecting muscle fatigue considers additional nonlinear elements like
recurring patterns or fractal measurements of the signal. This group
includes recurrence quantification analysis (RQA) and entropy-based
techniques like sample entropy (SampEn) and Fuzzy approximation
entropy (fApEn) [22]. Time-frequency methods can be combined to
process non-stationary and time-vary signals. This combination could
be suitable for predicting muscle fatigue and the estimation process
for the obtained data. This method is a non-machine learning algo-
rithm but a mathematical technique mainly used to analyze the sig-
nals frequency content. Even though these mathematical methods are
adequate for the task, there are more advanced algorithms for mus-
cle fatigue prediction [53]. The machine learning Naïve Bayes, ran-
dom forest, SVM, and rotation forest can be mainly used for classi-
fication tasks for different domains. These techniques can enhance
the automated system’s architecture for the sEMG signals [24]. The
machine-learning algorithms logistic regression, SVM, and artificial
neural network (ANN) can process sEMG signals to classify and rec-
ognize motion patterns which could be adapted and implemented
for this thesis to predict various muscle fatigue phases [69]. Unsuper-
vised machine learning is not a popular method for muscle fatigue
prediction tasks.

During the work of this master thesis, cooperation with the com-
pany Innowearable was done to surveying and explore state-of-the-
art methods and systematically, theoretically, and practically test the
applicability and performance of more recent machine learning meth-
ods on an existing EMG to muscle fatigue pipeline. This investiga-
tion will be done by conducting seven experiments. The minor ex-
periment consists of running the baseline methods, such as decision
tree, random forest, and SVM, using the processed limited tabular
data as input for the models and difference in jump heights as a tar-
get variable indicating the muscle performance, which is considered
a crucial factor for muscle fatigue prediction. The majority of the ex-
periment consists of utilizing STFT and CWT spectrogram images
and performing traditional- and intelligent data augmentation, noise,
and DCGAN, then implementing various pre-trained models, such as
AlexNet, VGG16, DenseNET, and InceptionV3, using transfer learn-
ing for comparison in performance, further discussed in Chapter 2.
Innowearable offers various innovative wearables consisting of sen-
sors to prevent injury and enhance performance for athletes[1]. Our
part in their company is to help them with the collected data from
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their device, Inno-X, from pre-determined isometric exercises for the
prediction of muscle fatigue.



2
P R O B L E M F O R M U L AT I O N

The usage of EMG signals for muscle fatigue prediction is a broad
subject. Numerous research studies and experiments have been done
regarding utilizing machine learning and deep learning techniques
to process EMG data and predict muscle fatigue in human muscles.
The central part of this thesis consists of the chosen research field to
combine various techniques regarding muscle fatigue stages in the
thigh, which implies studying various related works to analyze dif-
ferent methodologies used by authors. These methodologies can vary
depending on data complexity and limitations.

As mentioned in Chapter 1, the sEMG is a common sensor to pre-
dict and detect muscle fatigue. However, there are several challenges
regarding this thesis’s research, such as limited data and finding the
most suitable pre-trained model, which led to focusing on addressing
these challenges and combining various methodologies. These chal-
lenges could be solved by studying different machine learning algo-
rithms for similar tasks, reproducing and comparing these techniques,
and applying them to the acquired data. Various research papers have
stated the challenge of inadequate data in the EMG domain and how
it is addressed by adapting transfer learning (discussed later in Chap-
ter 3). Research presented approaches for solving the problem of in-
sufficient EMG data by adapting data augmentation techniques for
upsampling the EMG dataset, which is then evaluated using added
noise and deep learning networks, as discussed in Section 3.5. The
amount of acquired data in this thesis is insufficient, creating a chal-
lenge regarding implementing state-of-the-art solutions and baseline
methods. Due to the absence of done and proven approaches that
combines the above solutions, this thesis aims to further investigate
and conduct experiments in this area. The present study aims to sur-
vey and explore state-of-the-art methods and systematically, theoreti-
cally, and practically test the applicability and performance solution
for fatigue prediction with limited datasets by investigating and in-
tegrating various state-of-the-art methodologies. To achieve this ob-
jective, an evaluation of the positive and negative aspects of the pro-
posed solution will be conducted. Furthermore, future research direc-
tions and potential improvements will be proposed.

2.1 research questions

The research aims to conduct seven experiments, where six (main
contribution) consists of transforming the 1D EMG signals to the
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6 problem formulation

time-frequency domain as spectrogram images using various meth-
ods. These images will be used to fine-tune a pre-trained CNN model
to be reused and adapted for predicting muscle fatigue. Different im-
age datasets is fed into the pre-trained model and consist of limited
images and an up-sampled dateset of augmented images for com-
parison. The experiment setup of the thesis is shown later in Sec-
tion 5.1. The research objectives also involve exploring the following
questions:

• Can state-of-the-art methods, such as transfer learning, STFT
and CWT spectrogram techniques, and traditional- and intelli-
gent data augmentation methods, be combined and introduced
to the EMG field, if they can, how do they perform compared
to each other and to the baseline methods?

• How do various pre-trained models perform when using traditional-
and intelligent data augmentation techniques on time-series data?

• How do the pre-trained models perform on different spectro-
gram methods?

To achieve our goal, further study and research are required re-
garding the subject of muscle fatigue and EMG hardware component,
together with determining the field of research to obtain an efficient
solution within muscle fatigue prediction. The analysis should cover
how the data is processed using different methods, comparison be-
tween traditional- and intelligent data augmentation techniques, the
implementation of the pre-trained models, evaluations and compari-
son of the experiments, and the results.

2.2 contribution

The primary contribution of this thesis lies in surveying and intro-
ducing state-of-the-art methods within the EMG domain partly by
addressing the challenge of limited dataset availability for muscle
fatigue prediction through the integration of data augmentation tech-
niques and if transfer learning can be beneficial when utilizing syn-
thetic data. Specifically, this thesis discusses the possibility of upsam-
pling a small dataset using traditional- and intelligent data augmen-
tation techniques to adapt various pre-trained models for muscle fa-
tigue prediction. This is done by conducting the mentioned experi-
ments to compare and discuss the various methodologies. This ap-
proach has the potential to improve the accuracy and reliability of
muscle fatigue prediction models in scenarios where only a limited
amount of data is available. The pre-trained model’s purpose is to
demonstrate that the image dataset can be utilized in a pre-trained
model without the need to construct and train a new model with
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a large dataset. This could reduce the time and computational re-
sources required for model development, which is particularly im-
portant in practical applications. Moreover, the proposed methodol-
ogy has the potential to reduce the data acquisition requirements for
similar experiments in the future. This could be particularly useful
in artificial intelligence within healthcare or other contexts where ob-
taining large datasets may take time and effort. The results can be
affected by some factors mentioned below [60][56]:

• Skin preparation before placement of the sEMG.

• The placement of the sensors is essential for correct reading.

• Biased values between each person’s state of physical routine
and gender.

• Choice of clothes during exercises.

If successful, this thesis would introduce and represent an advance-
ment in state-of-the-art muscle fatigue prediction, enabling more ac-
curate and effective prediction models to be developed with a re-
duced data acquisition burden. This contribution could have impor-
tant implications for developing more efficient and practical solutions
for predicting muscle fatigue.





3
R E L AT E D W O R K

The literature review for the thesis is broad, and the field of research
is significant. The following section presents a description of the de-
vice, state-of-the-art techniques and methodologies addressing the
problem of muscle fatigue prediction.

3.1 emg device

According to Reaz and others, EMG can be referred to as myoelectric
activity due to the electrical potential produced by the muscle tissues
[43]. As Wang suggests, muscle fatigue can be revealed by studying
the EMG hardware and states the importance and aspects of using
EMG in sport and science research [61]. According to Fuentes del
Toro and others, the main reason for using EMG is low cost and avail-
ability to athletes because the equipment used to detect fatigue today
is expensive. Muscle fatigue is localized into two levels: fatigue and
non-fatigue. Fatigue, as mentioned in Chapter 1, states the decline in
muscular capacity during contraction. Non-fatigue is associated with
the state of the muscle during contraction before the occurrence of
fatigue. The authors mention the usability of sEMG for evaluating
muscle activity and gathering information about the specific muscle
[56]. In other words, a methodology of recording and acquiring in-
formation from the specific muscle during exercises [43]. Chowdhury
and others mention that the recorded signals from the EMG attached
to the muscle can produce various noises which can corrupt the ac-
quired data [7], which will be further discussed later in section 4.1.
According to Fuentes del Toro and others, the crucial factors when
using sEMG for evaluating muscle activity is the necessity of healthy
subjects to avoid abnormal fatigue outcome and knowledge about
the generated signals. A descriptive statistical analysis was used to
ensure the validation of the data [56].

3.2 feature extraction

Marotta and others state that EMG is better suited for acute fatigue
than cumulative fatigue regarding capturing information. The differ-
ence between these fatigue stages is that the subjects perform physical
exercises rather than getting affected by physical or mental stressors.
The preparation of data is a critical step for obtaining a functional so-
lution. This step consists of an evaluation of feature importance and
selection. The data preparation process will benefit the model in pre-
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10 related work

dicting muscle fatigue efficiently. According to Fuentes del Toro and
others, the isometric contraction measured from the sEMG is the main
focus for most researchers. These measurements are obtained mainly
using mean frequency or median frequency features regarding mus-
cle fatigue evaluation [56]. Jamaluddin and others had a similar ap-
proach where features from intensive training were extracted using
sEMG. To gain good prediction accuracy, the extracted features were
mean frequency, median frequency, root mean square, and mean ab-
solute value [21]. The two articles have similar features extracted for
the task. The features extracted from our raw data contain mean fre-
quency, median frequency, and root mean square from three isomet-
ric contraction exercises. However, additional features are extracted
and adapted to the exercises instead of the mean absolute value. The
representation of the non-fatigue and fatigue stages are determined
depending on the value changes of each feature. Using the Bayes de-
cision theory classification method based on the chosen features, the
authors achieved an excellent prediction accuracy [21].

Training a machine learning model starts with preparing and an-
alyzing the data, followed by extracting the features and building
the model. Many feature extraction methodologies and algorithms
are generally used for this purpose. According to Zang and others,
the sEMG signal exhibits unpredictable and non-stationary variations,
mainly because the signal from the sEMG depends on the muscle con-
traction during movement or activity, leading to analysis challenges.
Because of this, it is difficult for traditional machine-learning algo-
rithms to evaluate such complicated data. The authors describe how
end-to-end feature extraction is easier using deep learning and the
possibility of doing that in one training process. The authors present
a new Multi-dimensional Feature Fusion Network (MFFNet) method
for feature extraction and detection of muscle fatigue based on mea-
surements of EMG signals. This is done by combining CNN, Bidirec-
tional Long Short-Term Memory (BiLSTM) Networks, and attention
models. The authors mention the usage of two different datasets. The
first consists of over 18000 data from two healthy subjects, and the
second consists of over 90000 data from ten healthy subjects that per-
formed three exercises three times. Zang and others designed three
attention networks with customized classification loss trained on spe-
cific hardware designated for the acquired data. The authors state
in the article that their methodology "solves the shortcoming of tra-
ditional machine learning algorithm in feature extraction and cross-
subjects". However, the authors mention that for a performance im-
provement, exploration of optimization algorithm and cross-subject
analysis is necessary [68].

According to Duan Na and others, feature extraction for measure-
ments from sEMG is a critical challenge for gaining correct mus-
cle movement detection. Duan Na and others explain the usage of
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Convolutional Neural Networks (CNN) to extract features from the
sEMG and describe the benefits of using CNN to solve these types
of problems. The authors constructed their own CNN architecture
and trained the network by adding multiple convolutional-layer com-
bined with various layer types and adapted parameters. The network
was mainly built for hand-motion recognition [12]. However, in our
thesis, a deeper focus on how pre-trained CNN models are utilized is
discussed later in section Section 3.4 to predict muscle fatigue. In their
article, Duan Na and others mention the usage of spectrogram tech-
nique and how the EMG channels are converted into a spectrogram
using frequency and time dimensions [12]. Similarly to this thesis,
the EMG signals will be converted into images using various spec-
trogram techniques to utilize multiple pre-trained models and then
to classify muscle fatigue, which is part of the experiments. Zawawi
and others mention that signal processing using a spectrogram is bet-
ter because the technique can represent the signals in time-frequency
representation [66].

3.3 spectrogram methods

The spectrogram is used to preprocess the raw data, and there are
various spectrogram techniques to convert various types of collected
data to images to extract useful information. The distribution of the
data over time is represented and visualized using spectrograms [28]
[17]. The spectrogram images can then be input for the pre-trained
model for classification tasks. Lynn and others mention that spectro-
gram is an important and common method in applications focused
on time-varying spectral analysis. The authors mean that the spectro-
gram is an STFT squared magnitude and is a well-performed method
regarding peak-to-side lobe ratio (PSLR) and main-lobe width (MLW).
However, in the article, the spectrogram is compared with the multi-
windowed spectrogram (MW), and the authors state the benefits and
drawbacks of the methods [31]. The data collected from the muscle
using the sEMG consist of time-series data. According to Ghaderpour
and Pagiatakis, time series data can contain variability of frequency
over time together with high and low amplitude, which allow the
utilization of two time-frequency methods, namely STFT and CWT
[15]. Zhang and others state that STFT is the most common method
because of the expansion of the signal in two dimensions [67]. Ghader-
pour and Pagiatakis mention that STFT was introduced because of the
capability to analyze both equally and stationary-spaced time series.
According to Zawawi and others, the window size of the spectrogram
can vary, and the authors state that a window size set to 512 is most
suitable for EMG signals [66]. Ghaderpour and Pagiatakis mention
that the well-known technique CWT computes the wavelet functions
translation and dilation through a scalogram which, through various
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approaches, can be converted to a spectrogram. However, the authors
state the importance of appropriate wavelets to prevent poor results
from an obtained spectrogram [15]. Karlsson and Gerdle mean that
CWT is a suitable method for EMG signals for stationary and non-
stationary conditions mainly because of the enhancement in resolu-
tion in common parameters and detailed analysis [23]. Because of the
variety of spectrogram methods, a deeper focus on STFT and CWT
methods for time-series data will be fully explored and compared
during this thesis.

3.4 transfer learning

Weiss and others mention that in some real-world machine-learning
cases, data collection can be difficult or expensive, requiring a trained
high-performance learner that can obtain data in different domains,
namely transfer learning. The paper states that "the need for trans-
fer learning occurs when there is a limited supply of target train-
ing data." [62]. Transfer learning has been successful in human activ-
ity classification, allowing us to adapt a transfer learning technique
to work with the limited amount of data gathered from the sEMG
device. Demir and others mention in their article that current deep
learning development is called transfer learning and involves shar-
ing or transferring the knowledge of one network’s prior training to
another network’s fine-tuning of feature extraction [11]. Demir and
others describe using deep transfer learning-based physical action
classification for EMG signals. The authors represent the acquired
EMG signals as time-frequency images (TFI) used as input for the
implemented pre-trained networks. The pre-trained deep learning
networks VGG16 and AlexNet were used for deep feature extrac-
tion. Demir and others mention that the models used for the task are
trained on millions of images which is far more efficient than imple-
menting and constructing the network architecture from scratch. Dur-
ing their experiment, a dataset from the UCL machine learning reposi-
tory with 10000 images was used, containing ten exercises performed
by four subjects. With the pre-trained model, the authors achieved
good accuracy when compared with different results. However, for
future work, the authors want to use or investigate recent pre-trained
models such as GoogleNet, DenseNet, etc. [11].

Côté-Allen and others had a similar approach for gesture recog-
nition. Fourier transformed-based spectrogram and CWT was used
and fed into the pre-trained ConvNet model when processing the
raw signals. The authors used two datasets, Myo Dataset, and Ni-
naPro DB5, without mentioning the amount of retrieved data. The
Myo Dataset contained two sub-datasets for pre-training and evalu-
ation from 19 participants. The NinaPro DB5 dataset contained data
from 54 movements performed by 10 participants. Understanding the
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performance of the suggested algorithm within the current state-of-
the-art is crucial because the article’s primary goal is to show a deep
learning-based transfer learning approach to the issue of sEMG hand
gesture recognition. Four distinct feature sets were chosen from the
literature to provide a foundation for comparison. For the Myo eval-
uation dataset, the model achieved an accuracy of over 98%, while
for NinaPro DB5, an accuracy of about 68% was achieved due to the
model learning general features. To use labeled data for long-term
classification, Côté-Allen and others want to perform experiments for
the transfer learning algorithm’s application for inter-session classi-
fication [10]. Considering the methodologies and perspectives of the
articles contributes a superior summary of the spectrogram technique
on the EMG data and the utilization of a pre-trained model to pre-
dict muscle fatigue [11] [10]. Limited data is the main challenge dur-
ing this research, requiring recent pre-trained models combined with
the spectrogram technique to be knowledgeable and successful. How-
ever, after studying these articles and noticing that the least required
amount of data is around thousands, data augmentation is crucial
and necessary to implement the state-of-the-art solution.

3.5 data augmentation

The amount of data received from the company needs to be increased
for transfer learning. Thus, data augmentation will be crucial for this
thesis’s achieved results. Even if a significant amount of data could
be achieved by data augmentation, we aim to gather enough train-
ing data to benefit from transfer learning technology. Van and others
state that data augmentation refers to methods in which unobserved
data or latent variables construct iterative optimization or sampling
algorithms [59]. Shorten, and others mean that many application do-
mains cannot access a significant amount of data, and the risk of
overfitting is high on the training data [48]. Both articles state that
the data augmentation technique is the solution for limited datasets
and for overfitting [59] [48]. When the size of the training dataset is
increased and enhanced, the utilization of deep learning models can
be better suited for the task. Shorten and others mention that trans-
formations such as random cropping, horizontal flipping, and color
space augmentation can increase the training size [48]. Bahmei and
others mention in their article that data augmentation is an impor-
tant strategy to introduce variability and availability of new data in
different domains to train models. In their article, the authors men-
tion traditional augmentation, such as shifting and noise similar to
Shorten and others [48] [3]. Noise augmentation can be utilized to
apply noise frequency to the raw data, leading to increased training
data. Yazgac and Kirci state that noise augmentation is done by mul-
tiplying noise amplitude with a random noise factor, leading to the
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original signal being added with the Gaussian noise [63]. However,
Bahmei and others mean that intelligent data augmentation, GAN, is
also beneficial for producing synthetic data to increase training data
size [3]. The structure of the GAN and the model used during the
following thesis will be further explained in section 4.3.1.

Tsinganos and others have implemented a similar approach regard-
ing data augmentation of the EMG domain for hand gesture recogni-
tion due to inadequate data availability. Various strategies regarding
data augmentation are presented for EMG signals, and the challenges
with maintaining correct labels on the generated data are mentioned.
The authors note the different categories of data augmentation, basic
image manipulations, and deep learning approaches and how few
studies exist for utilizing data augmentation for a specific task. Dur-
ing the authors’ experiment, the process presents the various data
augmentation tools regarding EMG signals and the comparison. Five
augmentation tools were used in the article to compare standard
methods and methods that take time- and frequency domains into
consideration. The data augmentation tools evaluated in the article
were Gaussian Noise (GN), Magnitude Warping (MW), Wavelet De-
composition (WD), and two random combinations of the mentioned
methods, Augmentor.All (AA) and Augmentor.Random (AR). The au-
thors concluded that WD, MW, and GN augmentations gave benefi-
cial accuracy results [58].

Mendes and others implemented the deep learning approach by
utilizing GAN for EMG data augmentation [35]. Shorten and others
introduce GAN-based data augmentation as "the practice of creating
artificial instances from a dataset such that they retain similar char-
acteristics to the original set." [48]. Mendes and others mention chal-
lenges recurring in the EMG domain, and they tackle this problem
by creating synthetic data using GAN. The authors use a developed
model based on data augmentation for Parkinson’s disease. Instead,
the model’s input would consist of the raw data collected from the
EMG frequency spectrum. The model was trained and evaluated on
raw data from the sEMG of one subject, and by utilizing the sliding
window technique, the model generated one second of synthetic data.
Mendez and others conclude their work by stating that the distribu-
tion of the generated data differs from the real EMG signals. However,
the generated data increases the performance by including variability
in the dataset. The authors train each channel independently for each
model, and they state a potential improvement by designing an archi-
tecture that generates multiple channels at once. Mendes and others
mention that their approach can be combined with transfer learning
[35].

Chatzigapi and others propose a similar approach regarding uti-
lizing GAN to upsample speech emotion data to prevent misbalance
issues. The authors’ method corresponds to our tasks, where spectro-
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grams are used and normalized to convert the raw data into images
to utilize a GAN model to generate synthetic spectrogram images.
The authors implement Balancing GAN (BGAN) with modified lay-
ers to achieve high-quality spectrogram images. The synthetic data
is compared with various augmentation techniques to prevent data
imbalance and evaluated using a pre-trained CNN network as a clas-
sification algorithm. The CNN network determines and evaluates the
performance of the augmentation techniques used. The authors con-
cluded their work by improving their synthetic data produced by
the BGAN and mentioned that the model has the ability to gener-
ate as many spectrograms as necessary for the imbalanced class [5].
All the articles mentioned various solutions regarding data augmen-
tation on limited data, and the results look promising for this task.
This thesis will focus on intelligent data augmentation, such as the
GAN data augmentation technique, and traditional data augmenta-
tion techniques, such as adding noise to the raw data.

3.6 summary and comparison

Summarizing the related work, the first step is to understand the
sEMG device and the signals produced by the hardware. However,
the main focus will be on processing the data using spectrograms and
acquiring more by utilizing traditional- and intelligent data augmen-
tation techniques to benefit from transfer learning solutions. As dis-
cussed in Section 3.5, noise data augmentation will be compared with
the GAN technique, a newly developed deep learning algorithm that
shows promising results for creating synthetic data. With increased
training data, the spectrogram technique will convert the raw data
into images and benefit from transfer learning. The spectrogram tech-
nique has shown positive results for EMG signals in several articles
mentioned. Transfer learning will be implemented to perform classi-
fication with multiple pre-trained models using the augmented data
to compare the various techniques and methods.
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T H E O RY

4.1 signal processing

A pre-developed script in MatLab language was given for processing
the signals manually from the raw data. However, this script required
a significant amount of modification. MatLab is a high-performing
language regarding visualization and signal processing [33]. The script
was first translated from MatLab to Python, but due to the function-
alities used for noise filtering and signal processing being better per-
formed on Matlab, the Matlab script was used for this purpose.

Reaz and others mention, "All electronics equipment generates noise.
This noise cannot be eliminated; using high-quality electronic compo-
nents can reduce it". The authors mention the issues that occur and
affect the recorded EMG signals. These issues are signal-to-noise ra-
tio and distortion of the signal. The ratio represents the energy ra-
tio between the noise signal and the EMG signals, while the distor-
tion of the signal indicates that the component’s contribution of any
frequency to the EMG signal should not be changed. Before feature
extraction is possible, it is crucial to filter, process, and analyze the
signals the sEMG produces. Raez and others describe the EMG elec-
tronic noise as an important characteristic affecting the EMG and that
the produced noises can be categorized [43].

Yousif and others state that EMG is developing in various fields
of application. However, the signals acquired can consist of noise
leading to challenges, and processing these signals before feature ex-
traction is required to prevent file obstruction. According to Yousif
and others, using various filtering methods adapted to low- or high-
frequency lowers the impact of noise in the signals and the acquired
data. Low-frequency noises are caused by the amplifier’s direct cur-
rent offset (DC), and applying a high-pass filter can reduce these
noises. The authors state that high-frequency noise occurs from vari-
ous factors, such as electrical interference from nearby electronic de-
vices and muscle activity. Applying a low-pass filter allows the re-
moval of high-frequency noise. The band-pass filter is suitable for the
signals produced from the sEMG and necessary to isolate and ana-
lyze the frequency content [65].

17
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(a) Example of raw data produced
from EMG before signal processing.

(b) Example of signal processed data
where the various exercises are di-
vided into colors.

Figure 1: Shows images before (a) and after signal processing (b), where
yellow represents knee extension, pink represents wall squat, and
green, red, and cyan represent the three jumps during the squat
jump.

4.1.1 SEMG Features

Feature extraction aims to acquire the most relevant data for the spe-
cific task. The data is obtained by transforming the raw signal into a
data structure by removing the noise as mentioned in Section 4.1 and
stated by Spiewak and others [52]. There are no exclusive strategies
for feature extraction techniques. However, various mathematical for-
mulas are widely used when interpreting the EMG signals for feature
extraction, but this depends on the feature domain [9]. According to
Spiewak and others, the feature domain can be divided into three
categories: time, frequency, and time-frequency.

4.1.1.1 Time Domain

Spiewak and others state that the time domain consists of features
that are used for EMG pattern recognition due to its simplicity and
rapid calculation, while Yousif and others mentioned that this is achieved
by filtering to prevent noise. The time domain features can be calcu-
lated according to the articles based on the increase or decrease of the
amplitude of the EMG signals [52] [65]. The features can be extracted
using root mean square (RMS) and mean absolute value (MAV) to
detect muscle fatigue. According to Yousif and others, the observa-
tion of the amplitude is rarely used for fatigue detection. However,
a combination of methods can achieve better accuracy and detection
[65]
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4.1.1.2 Frequency Domain

Spiewak and others mention that the extracted features from the
frequency domain are based on power spectral density (PSD) from
the estimated signal [52]. Fast Fourier transform (FFT) method can
be used for calculations, and according to Cifrek and others, the
Fourier transform was the earliest algorithm used to approximate
the spectrums of the signals produced from the sEMG because the
fast Fourier transform is computationally effective [65] [9]. The mean
frequency (MNF) and median power frequencies (MPF) are the most
common methods observed for changes. These methods are based on
the power spectrum and are crucial for detecting muscle fatigue. The
time domain features are more computationally heavy than those in
the frequency domain [52]. In Section 4.1.1.1, Yousif and others men-
tioned that the time domain would be more reliable if combined with
other methods. Thus combining the time- and frequency domains,
more information regarding muscle fatigue can be obtained [65].

4.1.1.3 Time-Frequency Domain

Karthick and others mention, "The time-frequency method show the
non-stationary nature of biomedical signals and has become an ideal
tool for this analysis" [24]. According to Yousif and others, when
achieving a time-frequency domain, the methods can perform a joint
analysis of the various signal characteristics by analyzing the spec-
trum and amplitude (JASAP). The article states that the analysis of
this domain consists of four stages in which force and fatigue are
determined.

• Increase in amplitude and spectrum increases the mean force.

• Decrease in amplitude and spectrum decreases the mean force.

• Increase in amplitude and decrease in spectrum gives mean fa-
tigue.

• Decrease in amplitude and increase in spectrum gives mean
recovery.

The signals acquired from sEMG during muscle fatigue can then
be analyzed using the functions from the time-frequency domain
[65]. Marri and Swaminathan say that the signals produced by the
sEMG are nonstationary and indicate nonlinear characteristics, and
these challenges are addressed by using time-frequency methods [32].
Karthic and others state that the features extracted using time-frequency
methods can increase the computational complexity due to the high
resolution of capturing frequency components in minor variations.
Thus, it is crucial to utilize suitable features for the task [24]. Dur-
ing this thesis, we will operate and process the signals in the time-
frequency domain to analyze the signals by using the MatLab script,
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including various methods, such as filters and fast Fourier transforms,
to process the raw data from EMG to extract the features from each
exercise.

4.1.2 Spectrogram

The spectrogram is a widely used tool for visualizing signals, which is
generated by applying the Fourier Transform to raw time-frequency
signals and displaying the frequency content over time. Nodera and
others explain that spectrogram techniques have been developed to
improve accuracy compared to simply visualizing raw time-frequency
signals, such as speech recognition, emotion detection, and music
genre recognition [38]. Zawawi and others motivate the reason for
using spectrograms for signal analysis and state that spectrogram is
utilized due to the inability of the Fast Fourier Transform to handle
the non-stationary signal with spectral properties in the time domain
[66]. There are various ways to calculate the spectrogram of EMG
raw signals. Canal compares the EMG signals using STFT and CWT
techniques in his paper. Canal describes that the STFT managed to
satisfy the non-stationary EMG signals when selecting a proper sig-
nal segment length. In contrast to STFT, which uses short windows
for high frequencies and long windows for low frequencies, the CWT
provides a more flexible approach by using wavelet functions local-
ized in both time and frequency. Applying CWT to EMG signals
makes it possible to obtain details and approximate coefficients of
the signal. The high-frequency components of the signal are captured
by the approximation coefficients, while the detail coefficients cap-
ture the low-frequency components. Canal states that the CWT is a
powerful technique for analyzing the time-varying frequency content
of non-stationary EMG signals [4].

4.2 data pre-processing

Data pre-processing is a crucial step before training any machine
learning algorithm. It consists of data cleaning, detection of outliers,
feature engineering such as normalizing, and feature selection and
extraction. Kotsiantis and others explain the importance of the data
pre-processing step regarding training supervised machine learning
models [26]. Nargesian and others explain that feature engineering in-
volves using transformation functions, such as arithmetic and aggre-
gate operators, on existing features to create new ones. Transforma-
tions can be useful for adjusting the scale of a feature or transforming
a non-linear relationship between a feature and a target class into a
linear relationship. This can simplify the learning process for machine
learning models [37]. Singh and others describe the importance of
data normalization among other data pre-processing techniques. The
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article explains that data normalization handles the transformation of
the numeric feature values to a consistent range, which prevents fea-
tures with larger numeric values from dominating those with smaller
values [51].

4.3 data upsamling

As mentioned in Section 5.3 later, the acquired data is insufficient to
implement a deep learning network or a pre-trained model. Shorten,
and others describe data augmentation as a technique to solve sev-
eral challenges [49]. Thus, using the data augmentation technique is
crucial to reduce overfitting and to construct synthetic data. Several
studies are currently exploring solutions related to training without
possessing significant labeled data. Shorten, and others mention how
the synthetic data consists of minor variations without affecting the
model prediction ability. Applying the data augmentation technique
for our thesis will help prevent overfitting, which could occur on the
limited data [49].

Fawzi and others mean that the choice of data augmentation algo-
rithm affects the result. The authors mean that an unsuitable choice
can lead to the synthetic dataset being uninformative [14]. After study-
ing various articles [58] [35], one methodology for data augmentation
gave promising results for images. There are various algorithms to
upsample the training data. During this task, traditional- and intelli-
gent data augmentation, as mentioned in Section 3.5, is implemented
to create synthetic data as input for multiple pre-trained CNN models
for muscle fatigue detection.

4.3.1 Generative Adversarial Network

GAN is a recently developed algorithm within deep learning intro-
duced by Goodfellow and others. The authors state that the designed
algorithm addresses generative modeling problems and has the abil-
ity to generate both synthetic images and text [16]. Park and others
describe GAN’s structure and learning process as two different net-
works competing. GAN consists of two networks, namely the gener-
ator and the discriminator. The competition between the networks is
described as an adversarial game. The generator and discriminator
have different objectives during the adversarial game. The generator
tries to produce convincing fake data that the discriminator cannot
separate from real data. Thus, the objective of the discriminator is to
discern the data received from the generator and real data, as shown
in Figure 2 below. The training idea for GAN is that the generator
strives to minimize while the discriminator seeks to maximize the ob-
jective [40]. Sulaiman and Larsson mention that other types of loss
functions can be adapted for the GAN network depending on the
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task. The authors mention that Mean Squared Error (MSE) is benefi-
cial when the task is within the image domain [54]. However, during
this thesis, binary cross entropy (BCE) loss was used as the architec-
ture of the model was followed from PyTorch documentation and the
DCGAN paper [41] [19].

Figure 2

Figure 2: DCGAN adversarial game

4.3.2 Synthetic data using GAN

Utilizing and improving the architecture of a GAN allows the gener-
ation of synthetic spectrograms. The objective of the training of our
GAN is to generate realistic spectrogram images regarding the vari-
ous jump height data. The GAN architecture determines the quality
of the output [5]. Pytorch owns DCGAN architecture will be devel-
oped and tuned during this thesis to produce synthetic spectrogram
images. The output will be evaluated by the performance of the pre-
trained CNN models to determine if the synthetic data is similar
to the real data. An explicit use of convolutional and convolutional-
transpose layers in the discriminator and generator makes a DCGAN
a straightforward extension of the GAN discussed above [19]. Rad-
ford and others introduced DCGAN with the goal of filling the gap
between supervised learning’s and unsupervised learning’s success
rates for CNNs [41].

4.4 transfer learning methodology

Transfer learning is very beneficial when introduced to a new task.
Transferring the knowledge from an already-trained model can be
effective and an improvement. However, the model needs to be task-
related for transfer learning to be beneficial or negative transfer could
occur. Torrey and Shavlik mention that transfer learning can be an
improvement in several aspects. Transfer learning reduces the time
complexity, collecting a significant amount of data is unnecessary,
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and has a considerable learning curve because of the already ac-
quired knowledge compared to training a new model with an im-
plemented architecture from scratch [57]. Zhuang and others mean
that despite its great success and effective practical uses, traditional
machine-learning technology still has limitations in some situations.
The transfer learning technique addresses these limitations and chal-
lenges by transferring knowledge. Torrey and Shavlik previously men-
tioned negative transfer [57]; Zhuang and others mean that transfer
learning can be divided into two categories to adapt the methodology
to task-related subjects, homogenous and heterogeneous. The authors
describe homogenous transfer learning as "developed and proposed
for handling the situations where the domains are of the same feature
space." and heterogenous as "the knowledge transfer process in the
situations where the domains have different feature space." [70]. Dur-
ing this thesis, the transfer learning methodology will be adapted and
related to the spectrogram representation of EMG signals to classify
muscle fatigue through images.

4.4.1 Pre-Trained models

The input images for the pre-trained models will consist of raw data
with added noise that is converted to spectrograms and synthetic im-
ages of STFT and CWT spectrograms from the DCGAN model, which
leads to using multiple pre-trained CNN models for classification. As
mentioned in section Section 3.4, the various articles mention the vari-
ability of pre-trained models that can be used to perform image clas-
sification on the spectrogram. Demir and others mentioned some pre-
trained models suitable for our task in their future work that will be
considered and implemented during this thesis [11]. For the classifica-
tion of the time series spectrogram, the choice is large. Raghu and oth-
ers mentioned implementing multiple pre-trained models where the
best-acquired accuracy was achieved using InceptionV3 [42]. Yosinksi
and others state in their article that natural images are most common
when training deep neural networks. Pre-trained models are imple-
mented similarly and vary in architecture, the first layer is not spec-
ified to a task, but the models are generally adapted for many tasks.
The authors state that in the last layer of the networks, the features
adjust from general to specific [64]. Pytorch library offers various pre-
trained models, such as AlexNet, VGG, DenseNet, and many more.
During this thesis, the articles introducing and describing the various
models was followed to implement the models efficiently for com-
parison and perform image classification of muscle fatigue on vari-
ous spectrogram images [20]. The models implemented from PyTorch
during this thesis were AlexNet introduced by Krizhevsky and others
[27], VGG16 introduced by Simonyan and Zisserman [50], DenseNet
introduced by Huang and others [18], and InceptionV3 introduced
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by Szegedy and others [55], these methods were mentioned in the
various articles, and a comparison between the performance of these
models will be made.
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M E T H O D

5.1 the experimental setup

As shown in Figure 3, structured planning is done to perform the
different experiments. The initial phase involves manually extracting
features from the squat jump EMG signals and training multiple base-
line models. This step sets the foundation for the subsequent experi-
ments. Experiment 2 and experiment 3 focus on converting the EMG
signals into two types of spectrograms, STFT and CWT. Once the sig-
nal content is presented as spectrograms, these images are utilized as
inputs to fine-tune and train various pre-trained CNN models. Exper-
iments 4-7 shift the focus towards exploring and adapting traditional
and intelligent data augmentation techniques. Traditional techniques,
such as noise augmentation, are employed to add noise to the dataset,
allowing for the generation of new spectrogram images. Intelligent
techniques, specifically the implementation of DCGAN, are employed
to generate synthetic images. The generated images of noise and DC-
GAN techniques will then be used as input to the pre-trained CNN
models and evaluated by the accuracy acquired. The various experi-
ments will be compared and discussed. The data is divided into train-
ing and validation sets. The split is done randomly into 70 % training
and 30 % validation. This was done both for the original data set for
the experiments without data augmentation and the up-sampled data
set for the experiments with the data augmentation part.

Figure 3: Experimental setup during this thesis.

25
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The main contribution of this thesis is to utilize the spectrogram
techniques to convert the EMG signals to images, utilize noise and
DCGAN to upsample the image dataset and train multiple pre-trained
models to compare and make a prediction on the spectrogram images.
These steps will be described in the following section. Experiments 2-
7 have a similar structure except for the data augmentation part, as
shown in the Figure 3. However, experiment 1, consisting of the base-
line method, differs from the remaining experiments, thus requiring
more steps. Through the mentioned experiments, the research ques-
tions can be answered through a comparison to determine if the intro-
duced state-of-the-art methods perform better with STFT and CWT
spectrogram techniques with and without various data augmentation
methods compared to the baseline methods when introduced to the
EMG field. Utilizing these different techniques and methods allows
the creation of new knowledge within the specific field.

5.2 data format

The raw data received were in the Comma Separated Values (CSV)
format, containing data from an eight-channel sEMG sensor. The CSV
format is simple and effective when storing data in multiple domains
[8]. The raw data collected from the sensor needs to be processed and
filtered, mentioned in Section 4.1 to allow the detection of the various
exercises, divide them, and store them as separate CSV files. Each of
the eight channels consists of sample time and frequency in voltage
attributes, but the measurements are done using only one channel for
this thesis.

5.3 data description

The company gathered the raw data in real-time using a USB don-
gle that receives the signals from the sEMG combined with a Python
script [1]. Six healthy subjects performed the training in the men-
tioned order, consisting of two static exercises, knee extension, and
wall squat. The last exercise, the squat jump, is more dynamic, which
allows for gathering jump height data. However, the files contain raw
data which require signal processing. The data was gathered before
(PRE), directly after (POST), and 15 minutes after (POST2), the main
exercise, in which some files contained faulty signals that could not be
interpreted. The main exercise consists of one hour of cycling. The ex-
ercises were done sequentially once per day until the same amount of
PRE, POST, and POST2 was achieved for each person. A total of 1670
data points were gathered from each person, and files with irregular
frequency were deleted to run the script for manual signal processing.
Signal processing allows the retrieval and utilization of crucial infor-
mation when working with hardware that produces a vast amount
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of noise. When the signal is processed, the divided exercises must be
prepared to be trainable by various machine learning algorithms. To
achieve this, further processing is required to combine and label each
exercise uniquely. These steps will be explained below in Section 5.4.
When the raw data was processed, the dataset consisted of 220 knee
extension samples, 220 wall squats, and 660 squat jumps. The squat
jump exercise consists of three jumps, thus double the amount com-
pared to the other exercises when each jump is divided. During this
thesis, the focus relies on only one exercise to prevent having multi-
ple target variables. The squat jump exercise contained the most data
samples. Therefore, this exercise is used because the measured jump
height data is chosen as a target variable. After all, it indicates fa-
tigue or non-fatigue. The target variables, such as root mean square
and mean absolute values, consist of general information about the
muscle and are commonly used for predicting muscle fatigue. The
difference in jump height data is that it consists of specific informa-
tion for predicting muscle fatigue for intense training sessions, which
is of interest during this task.

5.4 signal processing methods

During this thesis, two different signal processing methods are imple-
mented to conduct the experiments. To run experiment 1, a baseline
signal processing methodology is used to clean, combine, and visual-
ize the data. However, STFT and CWT spectrograms techniques are
used for the remaining experiments to pre-process the raw data re-
ceived from the sEMG device to implement pre-trained models.

5.4.1 Baseline Signal Processing

The signal processing step is essential for preparing the EMG signal
for machine learning models. For this thesis, a script the company
provides is used to handle the signal-processing step. The script de-
tects the three exercises and then divides the signal into three parts
respective to each exercise. The script further divides the signal into
three additional parts for the squat jump exercise, each containing
one jump. Different functions are executed after dividing the jump
data to filter out the noise and extract the necessary features. This
will result in squat jump files containing the processed values/fea-
tures for each PRE, POST, and POST2 measurement per subject. The
extracted features for the jump exercise include Mean Frequency, Me-
dian Frequency, RMS, and other frequency features, shown in Table 1.
The target for our task variable is calculated in Section 5.5 to train the
baseline classifiers.
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Features Description

Subject Subject that performs the exercise.

Mean Freq Mean Frequency.

Median Freq Median Frequency.

RMS Root Mean Square.

ARV Average Rectified Value.

PSD Area The area under the power spectral density.

PSD area f24 The area under the power spectral density for specific frequencies.

Dimi fatigue ind Dimitrov spectral parameter.

BP1-BP18 Bandpower of a specific frequency band in the EMG signal.

Kurt D
Statistical measure describes the shape of

the probability distribution of a signal.

Skew D
Statistical measure that describes the symmetry of the

probability distribution of a signal.

Mode D
Statistical measure that describes the value that occurs

most frequently in a signal.

Mean D
Statistical measure that represents the

average value of a signal.

Std D
Statistical measure that represents the amount of variability

or dispersion of a signal around its Mean value.

testype Pre, Post, Post2.

Table 1: Description of the acquired feature after signal processing.

5.4.2 Spectrogram

The raw data must be converted to images to utilize various pre-
trained CNN models. For experiments 2-7, different spectrogram method-
ologies are used to process the raw signals gathered from the sEMG
and convert them to images. STFT and CWT are used to represent
the signal strength of a signal over time at different frequencies and
present it in a particular waveform.

The one channel from the sEMG consists of two properties, namely
frequency and time, and by implementing the pywt and scipy library
in Python, the two properties are converted to CWT and STFT spec-
trogram images. The STFT approach is applied to examine the time-
varying spectral composition of the squat jump EMG signals. This
technique offers a time-frequency signal representation and is often
utilized in signal processing applications. This technique applies a
short-time window to the signal and computes the Fourier transform
for each window. The resultant STFT matrix represents the signal’s
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spectral content at various time points. To acquire STFT spectrogram
images from the squat jump EMG signals, the implemented Python
function stft_spectrogram is used. This function takes an EMG signal
as input and applies the STFT method using the scipy.signal.stft func-
tion. The window size and overlap between adjacent windows can
be adjusted to optimize the resolution of the spectrogram for a par-
ticular application. In the implementation, a window size of 512 and
an overlap of 128 is used. The library matplotlib.pyplot.pcolormesh
is used to plot the generated STFT matrix as a spectrogram. The func-
tion stores the spectrogram picture under the supplied file name in
the designated folder.

In contrast to the STFT approach, which applies a fixed window
size to compute the Fourier transform, the CWT approach applies a
variable window size that can adapt to the signal’s frequency con-
tent at different time points. This allows for a more flexible and ac-
curate time-frequency representation of the signal. To examine the
time-varying spectral composition of the squat jump EMG signals
using the CWT approach, the cwt_spectrogram function is imple-
mented. This function takes an EMG signal as input and applies the
CWT method using the Morlet wavelet in the pywt.cwt function. The
scales for the Morlet wavelet are set to range from 1 to 30 to capture
a broad range of frequency components in the signal. The resulting
wavelet coefficients are then plotted as a spectrogram using the mat-
plotlib.pyplot.imshow function. The spectrogram is saved as a "png"
image using the matplotlib.pyplot.savefig function and stored in a
specified folder.

5.5 pre-processing

Preprocessing the data is crucial before using any baseline algorithms.
Preprocessing includes a number of steps, such as data normalization,
feature extraction, feature selection, and data cleaning. The dataset in
this study follows the preparation methods listed below:

Loading the dataset The dataset is loaded into a data frame using the pandas library.
The loaded dataset contains both numerical and categorical fea-
tures.

Data cleaning The datasets are checked for missing values and replaced with
either the mean or median value for the numerical features. The
pandas method fillna is used for this purpose.

Data Visulization The heatmap visualization matrix from the Seaborn library is
used to explore the correlation between the various features in
the datasets. The heatmap shows the correlation values between
each pair of features, with warmer colors (e.g., red) denoting
positive correlations and colder colors (e.g., blue) representing
negative correlations, as shown in Figure 4.
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Data Normilization As the range of the numerical features can vary widely, they are
scaled to ensure they are on the same scale. For this purpose,
the MinMaxScaler class from scikit-learn is used.

Feature Selection The dataset contains several features; not all may be relevant
to the classification task. For this thesis, feature selection is per-
formed to identify the most important features for the task. For
this purpose, the SelectKBest technique is used to select the top
k important features. Upon applying the SelectKBest technique,
the following features were identified as the most informative
for the task: Mean Frequency, Median Frequency, RMS, ARV,
PSD Area, PSD area f24, Kurt D, Skew D, Mean D, and Std D.
These features were selected based on their ability to contribute
significantly to the classification process.

Target Variable The company collected jump height data while the subjects
performed the squat jump exercise. These measurements are
stored in separate CSV files containing data for a specific sub-
ject. The jump data is then loaded into a pandas DataFrame.
Different calculations are applied to calculate the jump height
difference for each data point depending on the data type. The
jump height difference is obtained for Pre data points by sub-
tracting the jump height value of the Post data point from the
jump height value of the Post 2 data point. For Post data points,
the difference is calculated by subtracting the jump height value
of the Pre data point from the jump height value of the Post data
point. Similarly, the difference is obtained for Post 2 data points
by subtracting the jump height value of the Pre data point from
the jump height value of the Post 2 data point. After calculating
the jump height differences, the resulting values were within the
range of 0 to 9. However, to balance the data set, these values
are rounded to the nearest whole number to convert them into 7
discrete sets of classes. This rounding process ensured that the
values of the jump height differences were within the range of
0 to 6 (7 discrete classes) by setting a threshold. Higher classes
represent a greater difference in the jump height which signifies
that the subject has jumped higher before (Pre) the main exer-
cise compared to after (Post) or 15 minutes after the main ex-
ercise (Post2), which represents a fatigued muscle. The process
allows the pre-trained models to train on the dataset. Pre-train
models are better adapted for classification tasks because the
output of these models is the probability distribution over the
classes, making these pre-trained models better suited for clas-
sification tasks. Hence the continuous values are changed to a
discrete number of classes, and the data set is balanced.
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Figure 4: Heatmap showing the correlation between the manually extracted
features.

5.6 training baseline classifiers

After the pre-processing step, the different classifiers are trained on
the pre-processed dataset with the fixed target variable, explained in
Section 5.5. Three popular classifiers from literature within the EMG
subject were chosen for this task, Decision Tree, SVM, and Random
Forest. The dataset is divided into training and validation sets. Each
classifier was trained separately on the pre-processed data using the
training set and validated using the validation set. After training the
classifiers, an evaluation of accuracy is acquired.

5.7 data augmentation

For experiments 4-7, two different data augmentation techniques are
implemented for comparison, traditional- and intelligent data aug-
mentation. These data augmentation methods differ from each other.

5.7.1 Noise

Synthetic signals that closely resemble real-world signals can be gen-
erated by introducing noise. In this thesis, the noise augmentation
approach is employed to enhance the EMG signals. To implement
the noise augmentation technique, a Python function is implemented.
This function takes two inputs, the original EMG signal and the noise
factor. The noise factor, a parameter crucial in this technique, deter-
mines the magnitude of the noise added to the signals. The noise
factor represents a scaling factor that controls the intensity of the
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noise introduced to the original signal. A higher noise factor results
in a more significant deviation from the original signal, while a lower
noise factor produces a more subtle effect. Within the implementation,
the numpy library is utilized to generate random noise. The gener-
ated noise follows a standard normal distribution (Gaussian noise).
The noise factor is then multiplied by the generated noise array. Scal-
ing the noise array with the noise factor amplifies or attenuates the
noise amplitude before adding it to the original signal. This allows
fine-grained control over the amount of noise applied to the signal. Fi-
nally, this is added to the original signal using element-wise addition
resulting in a new augmented signal. For the experiments conducted
in this thesis, noise data augmentation is applied to all squat jump
signals. To generate a sufficient amount of training data for the pre-
trained CNN models, noise data augmentation is performed using a
range of noise factors. The noise factors used in the experiments are
0.04, 0.05, 0.055, 0.06, 0.07, 0.08, and 0.09. For each noise factor, the
noise augmentation technique is applied to all signals in the original
dataset.

5.7.2 DCGAN

The architecture of the DCGAN is inspired and followed by the DC-
GAN paper [41]. Before training a GAN, the image folder for a spe-
cific label of jump data containing the images is set. The images
are read using a custom function that reads each "png" file, and a
dataset is created by transforming the images. The transformation of
the images includes resizing to 64x64, normalization, and cropping.
The input and output of the networks are 3x64x64, where the three
represent RGB. Hyperparameter tuning is crucial because incorrect
hyperparameter tuning can lead to faulty generated images. The op-
timizer implemented for each network is the Adam optimizer, an ef-
fective technique for stochastic objective optimization using gradients
[25]. The learning rate for the networks is set between 0.0001-0.0005,
mainly due to the various labels consisting of different amounts of
images leading to the networks requiring an adaption of the learn-
ing rate for the task. The beta parameters are set to beta1 = 0.5 and
beta2 = 0.999 and were not changed. As mentioned in Section 4.3.1,
the BCEloss function, according to Ruby and others, is an appropriate
algorithm to train CNN models [44]. The length of the latent vector
is set to 100 as an input for the generator and acts as a matrix multi-
plication. The networks are trained with a batch size of 32 during 200
epochs. A random weight initialization function is implemented and
re-initializes the different network layers.
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5.7.2.1 Generator

The generator takes the latent vector or z vector as an input and cre-
ates an RBG image as an output. The network consists of different
layers as shown in Figure 5 below.

Figure 5: DCGAN generator architecture

Each convolutional-transpose layers consist of batch normalization
layers, a ReLU activation function, and the output layer consists of a
tanh activation function that structures the generator network.

In Table 2 below, the various layers of the generator are represented
in detail.

Layer Input Kernel Size Stride Padding

ConvTranspose2D 100 4x4 2 -

ConvTranspose2D 512 4x4 2 1

ConvTranspose2D 256 4x4 2 1

ConvTranspose2D 128 4x4 2 1

ConvTranspose2D 64 4x4 1 1

Tanh - - - -

Table 2: Description of generator architecture and layers.

5.7.2.2 Discriminator

The discriminator works as a binary classification network, and the
network takes 3x64x64 real images or fake images as input and gives
the images a label as output (real or fake). Compared to the gener-
ator, the discriminator consists of strided convolutional layers. Each
layer has batch normalization layers, a Leaky ReLU activation func-
tion, and the output layer consists of a sigmoid activation function,
described in Table 3 below.

Radford and others’ study mention that using strided convolution
layers instead of the pooling layer is proposed for downsampling.
This is because it allows the network to develop its own pooling func-
tion. Additionally, healthy gradient flow is promoted by using batch
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Layer Input Kernel Size Stride Padding

Conv2D 64 4x4 2 -

Conv2D 64 4x4 2 1

Conv2D 128 4x4 2 1

Conv2D 256 4x4 2 1

Conv2D 512 4x4 1 1

Sigmoid - - - -

Table 3: Description of the discriminator architecture and layers.

normalization and leaky ReLU function, which is essential for the
discriminator and the generator’s learning process [41].

5.7.2.3 Training

When the structure of the networks is implemented, the random
weight function is initialized, which takes the models as input and
applies random weight to the layers. The learning process of the net-
works can be controlled using the loss function and optimizers. As
mentioned previously, the BCEloss function is used for both networks
and is defined in PyTorch as Equation 1 and Equation 2 below [19]:

`(x,y) = L = {l1, . . . , lN}> (1)
ln = -wn [yn · log xn + (1- yn) · log(1- xn)] (2)

The objective of the function is to provide the calculation of both
log components. With the "y" input, the part of the BCE equation ap-
plied can be chosen. This is achieved during the training loop. How-
ever, it is critical to comprehend how the component that needs to
be computed is selected when changing "y". The definition of real
and fake labels are defined for the calculation of the network’s losses
[41]. The latent vector is defined as fixed noise and is continuously
an input in the generator during the training loop. It is through the
noise vector an image will be developed during the iterations of the
epochs. The training of the networks is divided into two parts, up-
date of the discriminator network and generator network. According
to Goodfellow and others, the goal for the discriminator is to update
by ascending the stochastic gradient [16], meaning that the objective
of the discriminator is to maximize the probability by labeling each
image corresponding to real or fake (1 or 0). The discriminators’ loss
and the gradient are calculated, and an optimizer step is performed.
The generator aims to maximize the log function instead of minimiz-
ing it to provide sufficient gradient and generate fake images to trick
the discriminator. This is achieved during the training loops when
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the discriminator labels the generator output, the generator loss is
calculated using the real images, the gradient is calculated, and the
optimizer step updates the generator parameters. During the train-
ing, multiple generated images were saved after a specific amount of
epochs and iterations to allow the generator to learn how to generate
synthetic images. This is decided while printing the loss functions
of the networks to determine when the synthetic images should be
saved. The images were saved in folders corresponding to their la-
bels.

5.8 pre-trained models

The various pre-trained CNN models are implemented after the im-
ages are converted to spectrogram and data augmentation techniques
are applied. As mentioned in Section 4.4.1, the documentation in Py-
Torch is followed where multiple pre-trained CNN models are imple-
mented effectively [20].

Firstly, the necessary libraries, partly consisting of the pre-trained
models, are implemented. The important step during this section is
to initialize the various pre-trained CNN models, fine-tune the model
and adapt it to the new task [64], update the different parameters
with a defined optimizer, and finally train and validate the models.
Six datasets were used in the experiments, STFT and CWT spectro-
gram datasets without data augmentation, STFT and CWT spectro-
gram datasets with noise data augmentation, and STFT and CWT
spectrograms datasets with DCGAN data augmentation. The datasets
are stored in separate folders, each subfolder representing a specific
class. The images corresponding to each class are stored in their re-
spective subfolders. The data transformers and loaders are initialized,
and the dataset is created by transforming the images. The transfor-
mation of the images includes random resized cropping, random hor-
izontal flipping, and hard-coded normalization.

Four pre-trained models are selected for training: AlexNet, DenseNet,
VGG16, and InceptionV3. Each model is initialized with pre-trained
weights obtained from the torchvision library. The input images fed
into each model is upscaled to 224, while InceptionV3 upscales the in-
put images to 299. The models’ architectures are modified to suit our
classification task using the function set_parameter_requires_grad. This
function freezes the layers in the pre-trained models and unfreezes
the last layer for fine-tuning and updating the parameters for the last
layer. Each model’s last fully connected layer is replaced with a new
linear layer that matches the number of classes in each dataset.

After initializing the model structure correctly, the final step in
fine-tuning involves creating an optimizer that selectively updates
the desired parameters. It is important to note that after loading the
pre-trained models, the .requires_grad attribute of all parameters is
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set manually to False. However, the parameters of the reinitialized
layer automatically have .requires_grad equal to True. As a result,
only the parameters with .requires_grad equal to True need to be op-
timized. To achieve this, a list of such parameters is compiled and
provided as input to the constructor of the Stochastic Gradient De-
scent (SGD) algorithm. SGD is known for performing well with small
datasets or with few training examples. SGD allows for more precise
control over the learning rate and momentum parameters, facilitating
the fine-tuning of the optimization process.

The training and validation process is performed for each model
separately on each dataset. This is done using the train_model func-
tion. The function considers if the model to be trained is the Incep-
tionV3. As the InceptionV3 architecture includes an auxiliary output,
and the overall loss respects both the auxiliary output and the final
output. The hyperparameters chosen are a batch size of 32, and 100
epochs. Two different learning rates that are tested during training,
0.001 and 0.0002. This is done to identify the one that produces the
fastest convergence and the best validation accuracy. During train-
ing, the models are set to training mode to enable gradient compu-
tation and weight updates. The models are then evaluated on the
validation set, where no gradients are computed, and no weight up-
dates are performed. The training and validation iterations over the
datasets, calculate the model’s outputs and the loss using the speci-
fied criterion, and update the model’s weights based on the gradients
obtained during backpropagation. The Cross-entropy loss function is
used, which is well-suited for multi-class classification tasks due to
its ability to measure the dissimilarity between the predicted proba-
bilities (network outputs) and the true labels. The running loss and
correct predictions are then collected to compute the average loss and
accuracy for each epoch. After each epoch, the validation accuracy is
compared with the best accuracy achieved. The model weights are
then saved as the best-performing model if the current accuracy out-
performs the prior best accuracy obtained.
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R E S U LT S

6.1 baseline classifiers

After the baseline signal processing and pre-processing of the data,
the classifiers were trained on the limited tabular dataset. The data
was not augmented for the tabular data in Experiment 1 because of
the comparison with the pre-trained models without data augmen-
tation. The baseline methods were evaluated by training the models
with the training data and acquiring accuracy from the validation
data. In Table 4, the performance and evaluation of the Decision Tree,
Random Forest, and SVM is shown.

Table 4: Evaluation of the baseline classifiers for Experiment 1

Classifier Accuracy

Decision Tree 47.7 %

Random Forest 56.8%
SVM 50.0 %

The baseline models’ run time was not considered because they ran
significantly faster than the pre-trained models. As shown in Table 4,
the random forest classifier achieves the highest accuracy on the lim-
ited tabular data set. However, the achieved accuracy is neither bene-
ficial nor sufficient to differentiate between the multiple classes. This
signifies that a comparison with the state-of-the-art methodologies is
necessary to determine whether better accuracy can be achieved on
limited or augmented image data.

6.2 hardware component

Due to the computationally heavy algorithms and models executed
during this thesis, the choice of hardware components is crucial. To
save time, the hardware differs depending on the experiment part
to efficiently run the various tasks in parallel. For converting the
raw data to spectrogram images and running the pre-trained models,
mentioned in Section 5.4.2 and Section 5.8, a 12:e gen. Intel Core i5-
12400F-processor with NVIDIA GeForce RTX 3060 - 12 GB GDDR6X
mainly because of these tasks consisting of high computational com-
plexity. The execution time for the spectrogram methods is mentioned
in Section 6.3.1, and the execution time for the pre-trained models are
presented in Table 5 and Table 6. For training the DCGAN, mentioned

37
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in Section 5.7.2, a Macbook Pro with an Apple M1 Pro chip DCGAN
is used. The training to produce synthetic images for each class (0-
6 classes) took approximately 2 hours. However, the execution time
during hyperparameter tuning for DCGAN and the pre-trained CNN
models was excluded.

6.3 spectrogram and data augmentation

6.3.1 CWT and STFT Spectrograms

The steps mentioned in Section 5.4.2 was followed, successfully con-
verting the EMG signal to STFT and CWT spectrogram images. Con-
verting the raw signals to spectrograms is computationally efficient
for STFT compared to CWT. The execution of noise augmentation
with different noise factors to upsample the dataset does not require
significant computational time. The conversion of noise augmented
signals to spectrogram images proved to be a time-intensive task in
this study. Specifically, the STFT method required approximately 3.5
hours to complete the conversion process. On the other hand, the
CWT approach took over 3 days to convert the augmented signals
to spectrogram images. This is to achieve the same number of aug-
mented images for training the pre-trained CNN models.

6.3.2 Traditional- and Intelligent Data Augmentation

Before comparing the baseline classifiers and the pre-trained models,
all the data augmentation methods were implemented to run experi-
ments 2-7 simultaneously. The data augmentation techniques differ in
the implementation and generation of images. While the traditional
augmentation technique adds noise to the signal, which changes the
image’s appearance, the DCGAN produces similar images to the real
images. In figures 6, 7, 8, and 9 below, a comparison of real and gen-
erated images from the different augmentation methods is shown.

(a) Real CWT spectrogram images. (b) Noise augmented CWT spectrogram
images.

Figure 6: Example of real (a) and noise augmented (b) CWT images with a
combination of multiple noise factors.
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(a) Real STFT spectrogram images. (b) Noise augmented STFT spectrogram
images.

Figure 7: Example of real (a) and noise augmented (b) STFT images with a
combination of multiple noise factors.

The noise augmentation method, in Figure 6 and Figure 7, adds
noise of different levels to the frequency content of the signals, which
explains the signal content visualized in various colors in the noise
augmented spectrogram images. However, the noise augmented CWT
images have more resemblance to the real CWT images compared to
the STFT images.
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(a) Real CWT spectrogram images. (b) Fake generated CWT spectrogram im-
ages.

Figure 8: Example of real (a) and fake generated (b) CWT images using DC-
GAN.

(a) Real STFT spectrogram images. (b) Fake generated STFT spectrogram im-
ages.

Figure 9: Example of real (a) and fake generated (b) STFT images using DC-
GAN.

The evaluation of the generated images from DCGAN was done
through visualized evaluation. From Figure 8 and Figure 9, the DC-
GAN generates similar images as the real images visually. The traditional-
and intelligent augmented images are then evaluated by the perfor-
mance of the various pre-trained CNN models trained on these aug-
mented images. The augmented images from the various methodolo-
gies were stored in different directories where each folder contained
the augmented images that belonged to a specific label to ensure that
the generated images were set to their corresponding label. The vari-
ous data augmentation methods produced the same number of aug-
mented data, approximately 4900 labeled spectrogram images.

6.4 pre-trained cnn models

When all the parts of experiments 2-7 were done, the various pre-
trained CNN models were initialized for each task. This part of the
thesis took the most time because of the number of images to be clas-
sified. Various learning rates were tested during this part. However,
the models performed best on a learning rate set to 0.001. Table 5,
representing the STFT spectrogram images, and Table 6, representing
the CWT spectrogram images, the performance and results of the var-
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ious models with and without augmentation are shown along with
running time and accuracy. Each CNN classifier’s accuracy reveals
whether it can differentiate between the images successfully. The pre-
trained CNN models that achieve an accuracy level of over 70 % are
more reliable compared, according to Sulaiman and Larsson, if the
models only have an accuracy of 50 % or lower [54]. By analyzing the
tables, it’s clear that the models perform best on CWT spectrogram
images compared to the STFT spectrogram images. Some models per-
form equally or poorly compared to the baseline classifiers in Table 4.
However, the accuracy acquired from the baseline classifiers and the
various pre-trained CNN models with noise augmentation and with-
out augmentation is unreliable. On the other hand, intelligent data
augmentation significantly increases the accuracy of the CNN mod-
els and can differentiate greater between the spectrogram images.

Evaluation of Experiments 2, 4, and 6 for STFT spectrograms

Pre-Trained
model

Data Augmented Learning Rate Run Time Accuracy

AlexNet - 0.001 9 min 42.7 %

AlexNet Noise 0.001 33 min 52.7 %

AlexNet DCGAN 0.001 26 min 71.8 %

VGG16 - 0.001 14 min 42.1 %

VGG16 Noise 0.001 54 min 51.2%

VGG16 DCGAN 0.001 58 min 81 %

DenseNet - 0.001 11 min 42.7 %

DenseNet Noise 0.001 42 min 52.9 %

DenseNet DCGAN 0.001 44 min 71.9 %

InceptionV3 - 0.001 12 min 41 %

InceptionV3 Noise 0.001 47 min 52.8 %

InceptionV3 DCGAN 0.001 46 min 68.3 %

Table 5: Data augmentation, run time, and accuracy of the different pre-
trained models for STFT spectrograms.
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Evaluation of Experiments 3, 5, and 7 for CWT spectrograms

Pre-Trained
model

Data Augmented Learning Rate Run Time Accuracy

AlexNet - 0.001 9 min 43.4 %

AlexNet Noise 0.001 24 min 50.8 %

AlexNet DCGAN 0.001 29 min 84.5 %

VGG16 - 0.001 13 min 43.3 %

VGG16 Noise 0.001 43 min 51 %

VGG16 DCGAN 0.001 59 min 89.9 %

DenseNet - 0.001 11 min 44.6 %

DenseNet Noise 0.001 32 min 50.7 %

DenseNet DCGAN 0.001 43 min 89.9 %

InceptionV3 - 0.001 12 min 42.7 %

InceptionV3 Noise 0.001 36 min 50.7 %

InceptionV3 DCGAN 0.001 48 min 82.8 %

Table 6: Data augmentation, run time, and accuracy of the different pre-
trained models for CWT spectrograms.
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In figures 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21 the learning
curves and the confusion matrices of the various models with and
without data augmentation is shown.

(a) AlexNet (b) VGG16 (c) DenseNet (d) InceptionV3

Figure 10: Training and validation learning curve for STFT without data aug-
mentation.
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Figure 11: Confusion matrix for STFT without augmentation.
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(a) AlexNet (b) VGG16 (c) DenseNet (d) InceptionV3

Figure 12: Training and validation learning curve for CWT without data
augmentation.
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Figure 13: Confusion matrix for CWT without augmentation.

(a) AlexNet (b) VGG16 (c) DenseNet (d) InceptionV3

Figure 14: Training and validation learning curve for STFT with noise aug-
mentation.
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(d) InceptionV3

Figure 15: Confusion matrix for STFT with noise augmentation.

(a) AlexNet (b) VGG16 (c) DenseNet (d) InceptionV3

Figure 16: Training and validation learning curve for CWT with noise aug-
mentation.
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(d) InceptionV3

Figure 17: Confusion matrix for CWT with noise augmentation.

(a) AlexNet (b) VGG16 (c) DenseNet (d) InceptionV3

Figure 18: Training and validation learning curve for STFT with DCGAN
augmentation.
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Figure 19: Confusion matrix for STFT with DCGAN augmentation.

(a) AlexNet (b) VGG16 (c) DenseNet (d) InceptionV3

Figure 20: Training and validation learning curve for CWT with DCGAN
augmentation.
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Figure 21: Confusion matrix for CWT with DCGAN augmentation.

The confusion matrices present an overview of how the pre-trained
CNN models perform where true positives, true negatives, false pos-
itives, and false negatives are illustrated, showing the types of errors.
The learning curve plots show the performance of the various pre-
trained CNN models depending on learning rate, data size, spectro-
gram technique, and data augmentation method.
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The experiments in Figure 3 were successfully implemented and per-
formed during this thesis. The results indicated that intelligent data
augmentation using the DCGAN method outperformed traditional
data augmentation using noise for the task of classifying the jump
height difference. The images generated by the DCGAN during the
augmentation process exhibited similarity to real images, leading to
better predictions during the fine-tuning and training of pre-trained
CNN models. In contrast, the images generated by adding noise to
the signals resulted in high variability and less informative represen-
tations, affecting prediction accuracy. This observation highlights the
importance of generating high-quality augmented data to improve
model performance.

The results of the transfer learning part show that training pre-
trained CNN models with CWT spectrograms has a better perfor-
mance compared to using STFT spectrograms. Despite the increased
computational time required for the conversion from signals to CWT
spectrograms, the improved performance justified this additional com-
putational cost. The CWT spectrograms captured more detailed and
informative frequency representations due to their time-frequency lo-
calization properties, enabling the CNN models to extract more dis-
criminative features. In contrast, the STFT spectrograms, despite their
computational efficiency, provided less precise frequency informa-
tion, resulting in decreased prediction accuracy. The results highlight
the importance of intelligent data augmentation and the use of CWT
spectrograms for enhancing model performance in our specific appli-
cation domain. The combination of intelligent data augmentation us-
ing DCGAN-generated images, which closely resemble real images,
and the utilization of CWT spectrograms, with their enhanced fre-
quency representation capabilities, leads to improved predictions by
the pre-trained CNN models.

The accuracy of the baseline classifier shown in Table 4 proves that
the machine learning models Decision Tree, Random Forest, and SVM
do not manage to classify the data to the right label and indicate poor
performance of the models with the limited EMG dataset and the
need for an automated signal processing that represents the time and
frequency content of the signal in an image. This is why representing
the signal using spectrograms is beneficial for this task. However, the
results acquired from the baseline classifiers are similar or better com-
pared to the pre-trained CNN models, despite noise augmentation
and architecture. This indicates that the adaption of transfer learning

49



50 discussion

requires more data samples and an augmentation technique that can
produce similar images to be beneficial. As shown in Table 5 and Ta-
ble 6, reliable accuracy was achieved when adapting the intelligent
data augmentation technique, DCGAN, which implies that DCGAN
augmented images is easier to learn. On the other hand, the CNN
models with noise augmented data acquire an accuracy similar to the
baseline classifier. Nonetheless, the accuracy is unreliable enough to
be considered a well-performing model.

According to our experiments, our research questions could be an-
swered, further discussed in Section 7.7. The pre-trained models do
not perform better than the baseline classifier without and with noise
augmentation. This is due to the amount of data necessary for CNN
models to be beneficial, and the introduction of images with high vari-
ability leads to bad accuracy. The only noticeable change in accuracy
was achieved from DCGAN. However, the downside of intelligent
data augmentation is the vast amount of time necessary to structure
and train the models.

7.1 comparison of the spectrogram methods

As mentioned, the signals were converted to STFT and CWT spectro-
gram images. Both methods represent the signal in the time-frequency
domain described in Section 4.1.1.3. The frequency represented in the
STFT spectrograms is calculated using a linear scale which results in
a constant resolution of the frequency, while the CWT uses a logarith-
mic scale which allows for capturing a better representation of the
low and high frequencies. Despite the efficient computation of the
STFT method compared to the intensive computation of CWT when
converting the EMG signal to spectrogram images, the CWT images
have been proven to acquire better results when validating the fine-
tuned and trained CNN models.
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7.2 learning plots and confusion matrices analysis

As shown in the various figures and matrices in Section 6.4, the learn-
ing plots and confusion matrices were used to analyze how the dif-
ferent models perform and how different test points are predicted to
which class. The training learning curve is a measure of the model’s
learning efficiency derived from the training dataset, and the vali-
dation learning curve is used to measure the generalization perfor-
mance of a model. Analyzing the learning curves of the training loss
can reveal an underfit model. If the model is completely unable to
learn the training dataset, it may display a flat line or noisy val-
ues with a significant loss. The situation described below is typical
when the model is unable to adequately handle the complexity of the
dataset. These characteristics are presented in the experiments where
no data augmentation or noise augmentation method was used, as
shown in figures 10, 12, 14, and 16. However, the InceptionV3 model
in the mentioned figures and AlexNet with DCGAN augmentation in
Figure 18 and Figure 20, the validation dataset is not representative of
the classes. Suggesting that there is insufficient data to assess the gen-
eralizability of the model. This could happen if there aren’t enough
instances in the validation dataset compared to the training dataset.
A learning curve for training loss that seems to be a good match and
a learning curve for validation loss that exhibits noisy movements
around the training loss can both be used to identify these charac-
teristics. A validation loss that is less than the training loss may also
be used to identify it. In this instance, it suggests that the validation
dataset could be simpler to forecast than the training dataset for the
model. The models in Figure 18 and Figure 20 where the best accu-
racy was acquired, the learning plots show a good fit. The learning
algorithm aims for a good fit, which may be found between an over-
fit and an underfit model. A training and validation loss that lowers
to a point of stability with a small difference between the two final
loss values indicates a good match. Accordingly, there will likely be
a discrepancy between the train and validation loss learning curves.
This discrepancy is known as the "generalization gap."

The confusion matrices are used to calculate the acquired accuracy
for the various models presented in Table 5 and Table 6. It displays
the number of accurate and wrong predictions made for each class.
It aids in clarifying the classes that models mistake for other classes.
The learning curves have a relation with the confusion matrices for
each model. The models with the underfitting characteristics, shown
in figures 11, 13, 15, and 17, have a confusion matrix which indicates
poor performance. In a case of underfitting, the confusion matrix may
indicate significant numbers of misclassifications for different classes,
reflecting the model’s inability to accurately identify instances from
any class. However, Figure 19 and Figure 21 consist of the highest true
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positives and true negatives prediction for each class while having the
lowest number of false positives and false negatives, which explains
the high accuracy acquired by these models.

7.3 improvement of accuracy using data augmentation

There are various factors that can affect the huge accuracy improve-
ment of the models. One of the most significant factors was the qual-
ity of the images produced by the DCGAN. Noise augmentation only
adds random variations to the existing data, but it does not provide
new information or different data structures. While DCGANs pro-
vide new samples that closely match the original data after learning
the underlying data distribution. The model learns more about the
semantic features and data structure through this approach. As a re-
sult, the model improves its ability to identify crucial patterns and
its ability to distinguish between various classes [41]. The images pro-
duced from our DCGAN were visually evaluated and by running
the pre-trained CNN models on the synthetic images. This proved
that our DCGAN had an excellent performance in producing syn-
thetic images that signify the real spectrogram images. Due to the
minimal diversity of the samples, the initial dataset used to train the
pre-trained CNN models was small, which might cause poor gener-
alization. The effective size of the dataset was greatly expanded by
data augmentation. The pre-trained CNN model was given a wider
variety of examples in this enhanced dataset, which helped it better
understand the underlying patterns and correlations between vari-
ous classes. Pre-trained CNN models are effective feature extractors.
However, the features may not be completely explored if the mod-
els are fine-tuned on a limited dataset [41]. While noise augmenta-
tion can help a model be more resilient and generalize better, it may
not fully utilize the CNN model’s feature learning potential. On the
other hand, DCGAN-generated synthetic data exposes the models to
additional variations and complicated data patterns, allowing it to en-
hance and expand its gained characteristics. Improved discriminative
abilities followed, which improved accuracy on unobserved data [41].
The uncertainty present in DCGAN-generated synthetic data could
be utilized as a form of regularisation during training. Regularisa-
tion encourages the model to emphasize more generalizable features
rather than memorizing the training data, which helps prevent over-
fitting. The model improved in terms of the ability to generalize to
new and unseen data [45].
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7.4 comparison of traditional- and intelligent data
augmentation

The data augmentation methods were intended to produce different
types of images. The DCGAN was implemented to produce a fake im-
age that does not exist while resembling the real images, while noise
was intended to add noise to the frequency component of the real sig-
nal in which the dataset is upsampled. The images produced by the
DCGAN, shown in Figure 8 and Figure 9, were visually evaluated
and evaluated by implementing the pre-trained CNN models. The
noise augmented images, shown in Figure 6 and Figure 7, show that
high variability is introduced to the images leading to poor results.
Even if the produced images from DCGAN can fool the human eye,
the CNN models have been trained on millions of images and man-
age to extract more information from an image compared to a human.
When comparing our result with the literature, it shows that multiple
articles achieve a relatively same difference in accuracy when imple-
menting traditional- and intelligent data augmentation [6][39]. Chen
and others state that the implementation of Gaussian Noise results
in particles of various sizes interfering with noise generated pixels.
The variability pixel points alter the distribution of the texture, this
lead to a negative result in feature learning, extraction of features,
and achieving a reliable accuracy [6]. Therefore, the noise augmen-
tation methodology is not suitable for our task of increasing data
samples. This signifies the DCGAN produced images of high quality,
significantly enlarged the dataset, and introduced diversity, allowing
the CNN models to classify the images with various labels. As men-
tioned earlier, the DCGAN performs significantly better compared to
noise. Thus, intelligent data augmentation techniques should be pre-
ferred over traditional data augmentation techniques. However, the
implementation of DCGAN is much more complicated and needs
two well-built networks, which require hyperparameter tuning until
high quality images are generated. A model’s hyperparameter tuning
and training take significant time, but the results are redeemed and
validated.

7.5 comparison of the pre-trained cnn models

The models that should achieve the highest and most reliable accu-
racy were mentioned in Section 3.4 and Section 4.4.1. The results of
this thesis proved that pre-trained DenseNet and VGG16 models were
the best performed CNN models when running the different experi-
ments. The deep architecture of DenseNet and VGG16 enables them
to identify more complex patterns and representations in the data.
These models can learn complex characteristics from the input data
due to many layers and parameters, allowing them to capture more
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details from the input data [18][50]. This has been proven to be ben-
eficial for our tasks which required capturing more details from the
spectrograms used.

7.6 dataset

The data samples and the processing of the signals using the com-
pany’s MatLab script during this thesis were time-consuming. The
script did not allow the processing of all data samples due to most
faulty samples being deleted. Hence, using augmentation techniques
and transfer learning was crucial during this thesis. When the data
samples were gathered, the labeling of the jump exercises was com-
puted by calculating the height difference that allowed a specific tar-
get variable. The dataset was limited, creating a challenge in training
machine learning algorithms. Acquiring new EMG measurements is
a time-consuming process, and the proven results from the intelligent
data augmentation DCGAN by generating augmented CWT spectro-
gram images show that adapting and fine-tuning pre-trained CNN
models can solve the problem of the limited data to utilize machine
learning techniques to predict muscle fatigue. This combination of
state-of-the-art techniques looks promising to be adapted for differ-
ent tasks.

7.7 adressing the research questions

Can state-of-the-art methods, such as transfer learning, STFT and CWT
spectrogram techniques, and traditional- and intelligent data augmentation
methods, be combined and introduced to the EMG field, if they can, how do
they perform compared to each other and to the baseline methods?
The initial assumption was that it would be challenging to introduce
state-of-the-art methods to the EMG field due to the lack of data com-
pared to using baseline classifiers, such as Decision Tree, Random
Forest, and SVM. This was the case, the pre-trained CNN models did
not outperform the baseline classifier without additional assistance
to upsample the data. However, neither the baseline classifier nor the
CNN models achieved reliable accuracy on the limited dataset.

How do various pre-trained models perform when using traditional- and
intelligent data augmentation techniques on time-series data?
The traditional- and intelligent data augmentation techniques affected
the CNN models differently. The idea is that the models will perform
better with augmented data. However, it was proven that intelligent
data augmentation outperforms traditional data augmentation by a
margin. On the other hand, the implementation of the data augmenta-
tion methods differs. While noise is less computationally heavy com-
pared to the implementation of DCGAN, the DCGAN allows the pre-
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trained CNN models to generalize the unseen data well and achieve
astonishing results.

How do the pre-trained models perform on different spectrogram methods?
As discussed in Section 7.1, spectrogram technology allows the pro-
cess of raw EMG signals to images. The images contain various types
of information, depending on what spectrogram technique is used.
The original hypothesis was that the CNN models would perform
better when the spectrogram methods STFT and CWT were utilized.
This turns out to be the case. The accuracy of the models increased.
However, CWT outperformed STFT spectrogram because the method
store and contains more information by capturing a high resolution
of low and high frequencies.

7.8 future works

Because the EMG and methodology field is broad, multiple works
and methods can be implemented to acquire more results. During this
thesis, more experiments could be implemented to compare various
state-of-the-art methods. Still, it was not possible due to the constraint
imposed by the timeframe. To fully extend our work, the necessary
steps in subsections 7.8.1, 7.8.2, 7.8.3, 7.8.4, and 7.8.5 needs to be done.

7.8.1 The choice of target variable

For this thesis, the chosen target variable was the difference in jump
heights of the subjects when performing the squat jump exercise. This
target variable contained specific information about the tired- and
newly activated muscles explained in the jump height of each sub-
ject. The values were achieved before and after the intensive session
and 15 minutes after the muscles started to recover. Interesting re-
search could be done on combining this target variable with another
general target variable, such as the Maximum Voluntary Contraction
(MVC), which includes more general information about the muscle
contractions during the training and indicates the fatigue in the mus-
cle. Combining these two target variables could be an interesting re-
search question to explore if this information could improve the accu-
racy of the pre-trained CNN models.

7.8.2 Choice of datasets

The dataset chosen for this task was limited, allowing us to try var-
ious state-of-the-art methods to determine the performance of their
introduction within the EMG field. The conducted experiments were
successful, and the methodologies were compared. On the other hand,
implementing a similar dataset would further confirm our contribu-
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tion and novelty. Thus, the implementation of another dataset would
be necessary to evaluate the achieved result, but this could not be
accomplished due to limited hardware and timeframe.

7.8.3 Hyperparameter tuning

Due to the limited hardware, the hyperparameter tuning could not be
done to a full extent. Hyperparameter tuning is crucial when training
deep learning models, meaning that the DCGAN could generate even
better images to acquire a better accuracy or that the pre-trained CNN
models that did not achieve a reliable accuracy could acquire one. The
result of these changes could have beneficial or negative outcomes;
thus, more hyperparameter tuning could be necessary for this task.

7.8.4 Other spectrogram methods

The spectrogram methodologies were proved to work well with EMG
signals were implemented. The implementation of more spectrogram
methods could change the outcome of the results, the Mel spectro-
gram has been shown to perform well with a combination of pre-
trained CNN models, but Mel spectrograms are commonly used for
voice or sound tasks [34] [46]. However, comparing the result with
the already implemented spectrograms within the EMG field would
be interesting to see if a potential improvement could be made.

7.8.5 Transfer learning methodologies

During this thesis, some of the most common pre-trained CNN mod-
els were implemented. However, pre-trained models, such as GoogleNet,
ResNet, and SqueezeNet, could have potential in the EMG field. GoogleNet
is one of the CNN models that perform well on spectrogram images.
An investigation of the mentioned CNN models could be further ex-
plored to compare with the CNN models achieving high accuracy
during this thesis.
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C O N C L U S I O N

The goal of surveying and exploring state-of-the-art methods and sys-
tematically, theoretically, and practically testing the applicability and
performance of more recent machine learning methods on an exist-
ing EMG to muscle fatigue pipeline was achieved. A comparison of
the baseline methods and state-of-the-art methods was made, and
reliable accuracy was achieved by conducting seven different experi-
ments. The suggested future works and implementation are raised in
Chapter 7.

The EMG signals were converted to STFT and CWT spectrograms.
CWT spectrograms are more computationally heavy than STFT. Still,
CWT contains more information by capturing a high resolution of
low and high frequencies allowing the pre-trained CNN models from
mentioned literature to perform better with CWT images as input.
The pre-trained CNN models do not perform well without or with
noise augmentation compared to the baseline classifier on limited
data. Regardless, none of the models managed to achieve reliable
accuracy. However, the implementation and utilization of intelligent
data augmentation resulted in an astounding performance for the pre-
trained models. DenseNet and VGG16 reached the highest overall ac-
curacy of 89.9 % on augmented CWT images. The well-performed
CNN models are qualified to learn features that can generalize un-
seen data. The DCGAN performed well when generating images to
resemble the authentic ones but is more computationally heavy and
takes significant time to hyperparameter tune and train.
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