
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at International Joint Conference on
Neural Networks (IJCNN 2023), Gold Coast, Australia, 18-23 June, 2023.

Citation for the original published paper:

Vettoruzzo, A., Bouguelia, M-R., Rögnvaldsson, T. (2023)
Meta-Learning from Multimodal Task Distributions Using Multiple Sets of Meta-
Parameters
In: 2023 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8).
Piscataway, NJ: IEEE
https://doi.org/10.1109/IJCNN54540.2023.10191944

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-51352

Meta-Learning from Multimodal Task Distributions
Using Multiple Sets of Meta-Parameters

Anna Vettoruzzo, Mohamed-Rafik Bouguelia, Thorsteinn Rögnvaldsson
Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden

{anna.vettoruzzo, mohamed-rafik.bouguelia, thorsteinn.rognvaldsson}@hh.se

Abstract—Meta-learning or learning to learn involves training
a model on various learning tasks in a way that allows it to
quickly learn new tasks from the same distribution using only a
small amount of training data (i.e., few-shot learning). Current
meta-learning methods implicitly assume that the distribution
over tasks is unimodal and consists of tasks belonging to a
common domain, which significantly reduces the variety of task
distributions they can handle. However, in real-world appli-
cations, tasks are often very diverse and come from multiple
different domains, making it challenging to meta-learn common
knowledge shared across the entire task distribution. In this
paper, we propose a method for meta-learning from a multimodal
task distribution. The proposed method learns multiple sets of
meta-parameters (acting as different initializations of a neural
network model) and uses a task encoder to select the best
initialization to fine-tune for a new task. More specifically,
with a few training examples from a task sampled from an
unknown mode, the proposed method predicts which set of
meta-parameters (i.e., model’s initialization) would lead to a fast
adaptation and a good post-adaptation performance on that task.
We evaluate the proposed method on a diverse set of few-shot
regression and image classification tasks. The results demonstrate
the superiority of the proposed method compared to other state-
of-the-art meta-learning methods and the benefit of learning
multiple model initializations when tasks are sampled from a
multimodal task distribution.

Index Terms—Meta-Learning, Few-Shot Learning, Transfer
Learning, Task Representation, Multimodal Distribution

I. INTRODUCTION

Human learning relies on accumulating knowledge across
different experiences and taking advantage of this knowledge
to solve new tasks efficiently. To do so, the human mind selects
only the relevant information and adapts it to the specific
task. Inspired by this approach, meta-learning methods aim to
acquire general knowledge from multiple tasks to efficiently
adapt to new, unseen tasks. This is typically achieved with
neural networks by learning a representation that is easily
adaptable for new tasks using a limited amount of labeled
samples. Most existing methods (such as [1]–[3]) learn a
single representation globally shared across all tasks, implicitly
assuming that the task distribution is unimodal or that tasks
are all closely related to the same application domain (e.g.,
classifying digits from different alphabets). However, real-
world tasks are generally diverse and sampled from a more
complex task distribution consisting of multiple unknown
modes (either overlapping or far apart), thus requiring different
representations. As an analogy, humans can learn a new
task, e.g., a novel ice skating skill, exploiting not only the

fundamental ice skating knowledge (i.e., tasks from the same
mode) but also previous experience from roller skating, skiing,
and dancing (i.e., related tasks from other modes); however,
they may not benefit from knowledge gained through tasks
related to singing or cooking (i.e., modes that are disjoint from
the previous ones).

Model-Agnostic Meta-Learning (MAML) [1] is one of the
most successful meta-learning methods. It learns a represen-
tation by optimizing the parameters of a neural network such
that adapting (or fine-tuning) them on any training task would
yield a good generalization on this latter. As such, the learned
representation consists of a parameters’ initialization that is
easily adaptable to new tasks. Other methods, such as Reptile
[2], follow a similar principle by finding an initialization
that is close to each task’s optimal parameters. While these
methods work well when tasks are sampled from a unimodal
distribution, they lose efficiency when dealing with hetero-
geneous tasks drawn from a multimodal task distribution.
Indeed, learning a single model initialization, shared across
the entire task distribution, may not be sufficient to capture
the heterogeneity in the tasks and to achieve fast and efficient
adaptation to new tasks. This is also true for other meta-
learning methods such as [3]–[11]. One general way to address
this issue is to learn a distinct initialization for tasks within
each separate mode. This could lead to improved results
compared to using one single global initialization. However,
this requires knowing the mode of each task (i.e., the ground-
truth task mode label), which is not feasible in real-world
scenarios. Furthermore, this method hinders the transfer of
useful information between tasks from related modes.

This paper proposes extending traditional meta-learning
approaches to address meta-learning in cases where tasks
are sampled from a multimodal distribution with unknown
modes. To do so, the proposed method trains multiple sets of
meta-parameters (hence the name MUSE), which would, for
example, correspond to multiple model initializations in the
case of MAML and Reptile. The proposed method also trains
a task encoder network that takes training examples from a
task, learns an embedding of the task, and uses it to predict
the best initialization to fine-tune on that task (i.e., it selects
the initialization that leads to the lowest generalization error
after being adapted for that task).

Recently, a few approaches have been proposed to address
meta-learning from multimodal task distributions. Some of
these approaches [12], [13] learn to cluster tasks (based on

some similarity measure between tasks) or perform clustering
in the parameter space [14], [15], while others [16], [17] learn
to directly modulate the model parameters based on the task
at hand. However, these approaches are difficult to train and
highly dependent on the selection of various hyperparameters.
Some hybrid methods [18]–[23] have also been proposed to
solve few-shot classification problems by learning a universal
representation that works well for tasks drawn from different
datasets (corresponding to different modes) and using different
techniques to specialize it towards each new task. However,
learning such a representation beforehand is challenging and
may lead to poor performance on completely different datasets.

Our main contribution is a framework that learns multiple
model initializations and, when presented with a few training
examples from a new task, selects the initialization that will
result in a good performance after adaptation to that task.
This approach allows the model to only consider relevant
information for the task at hand, thereby speeding up the
learning process and improving the accuracy of predictions.
The experimental evaluation shows that the proposed approach
outperforms traditional approaches where a single initializa-
tion is learned across all tasks. Despite its simplicity, it also
outperforms other existing methods designed for meta-learning
from multimodal task distributions.

II. BACKGROUND AND RELATED WORK

Meta-learning, or learning-to-learn, has gained significant
attention recently due to its effectiveness in solving few-shot
classification, regression, and reinforcement learning prob-
lems. To perform meta-training, a collection of training tasks
{Ti}Ti=1 is sampled from a task distribution P(T). Each task
Ti ∼ P(T) corresponds to data generating distributions Ti ≜
{pi(x), pi(y|x)}. The data generated from a training task Ti
are split into a small set of K training examples called support
set or D(sp)

i , and a test set called query set or D(qr)
i which is

typically large. At meta-test time, a completely new task Tnew
is sampled from P(T), and only a few training examples are
observed in the form of a support set D(sp)

new ≜ {xk, yk}Kk=1.
The goal is to train a model on D(sp)

new while leveraging and
adapting the prior knowledge gained during meta-training in
order to achieve a good generalization performance on unseen
test examples from Tnew.

Optimization-based meta-learning methods (such as MAML
[1]) use a bi-level optimization process to embed learning pro-
cedures, such as gradient descent, into the meta-optimization
problem. By doing so, MAML meta-learns an initial set of
parameters θ that can be efficiently adapted (or fine-tuned) on
new tasks. Specifically, MAML meta-trains a model parame-
terized by θ via a two-stage procedure consisting of an inner
and outer loop. For each training task Ti, the inner loop adapts
the initial set of parameters θ to obtain a set of task-specific
parameters ϕi, by taking Q ≥ 1 (i.e., one or a few) gradient
descent steps on the support set D(sp)

i . This is illustrated in
Eq. 1 when a single gradient step is used:

ϕi = θ − α∇θL(θ,D(sp)
i), (1)

where L(., .) denotes the loss function. Then, the outer loop
optimizes the initial parameters θ to minimize the post-
adaptation loss (achieved by task-specific parameters ϕi) on
the query sets. This is illustrated in Eq. 2:

θ ← θ − ϵ∇θ

∑
Ti∼P(T)

L(ϕi,D(qr)
i). (2)

The result is a model initialization θ that can effectively be
adapted to new tasks using only a few (K) training examples
and a few gradient updates.

One simpler and less computationally expensive variant is
Reptile [2], which aims to learn an initial set of parameters
θ that is close to each task’s optimal parameters, thus, easily
adaptable to new tasks. To do so, Reptile repeatedly samples
a training task Ti ∼ P(T), performs Q > 1 gradient descent
steps on Ti (starting with parameters θ and resulting in
task-specific parameters ϕi), then moves θ closer to ϕi by
interpolating between the two as shown in Eq. 3:

θ ← θ + ϵ(ϕi − θ). (3)

Despite their success, the ability of these methods to han-
dle more general meta-learning problems has recently been
questioned, as a single initialization θ may not be enough,
especially when tasks are sampled from a diverse, wide, or
multimodal task distribution P(T). This has led to the devel-
opment of variants that incorporate task-specific information
[12]–[17]. One such approach, MMAML [16] tries to identify
the mode of tasks sampled from a multimodal task distribution
P(T) and modulates the meta-parameters θ according to the
identified mode. However, training such a model end-to-end
is challenging, and its performance highly depends on the
number of modes. Another approach, TSA-MAML [15] uses
a vanilla MAML and clusters task-specific parameters by
applying k-means in the parameters space, with the number of
clusters being the same as the number of modes. Each cluster
centroid serves as a group-specific initialization. However, this
centroid-based clustering fails to take advantage of negative
correlations between tasks (e.g., w and -w may be assigned to
different clusters) and fails to handle tasks that are distant
from all clusters. CAVIA [17] separates the initial set of
parameters into parameters that are shared across all tasks
and context parameters that are specific to individual tasks.
At meta-test time, only the context parameters are adapted
for each new task. This approach has inspired a series of
related works aiming to build a “universal representation”,
i.e., a set of robust features that lead to strong performance
across multiple datasets in a multi-task learning setup [24].
Building on this, the authors in [18]–[20] propose to use meta-
learning to specialize the universal representation towards each
new task. However, learning such a representation in advance
is challenging and may result in overfitting. To overcome
these issues, SUR [21] and URL [22] train a separate feature
extractor for each dataset (or mode) and combine the learned
representations to solve a new task at test time. Similarly,
FLUTE [23] aims to learn a shared model across all datasets
while allowing for specialization to each individual dataset by

learning a small set of parameters specific to each dataset.
However, these approaches are implemented only for few-
shot classification problems, and they don’t benefit from meta-
learning to adapt fast, i.e., using a few adaptation steps at test
time.

Inspired by these ideas, we introduce in the following
section a method that addresses the scenario where the distri-
bution over tasks is multimodal, i.e., consists of tasks derived
from different datasets (corresponding to the modes). Our
proposed method operates under the general assumption that
the mode from which each task is sampled is unknown,
both during meta-training and at meta-test time. This problem
is closely related to the one addressed by MMAML [16]
and TSA-MAML [15], hence the comparison with these two
methods in the experiments. It is also worth noting that this
is different from multimodality in data type [25], where tasks
represent the same concept but in different modalities, such as
a combination of images and text.

III. PROPOSED APPROACH

As previously discussed, the proposed MUSE approach
considers tasks sampled from a multimodal task distribution
P(T) and trains N distinct sets of meta-parameters {θn}Nn=1

that serve as initializations for the base model. Therefore, the
question arises: Given a task T with support set D(sp), which
one of the N initializations is best suited for adapting to task
T ? At meta-training time, a large enough query dataset D(qr)

i

can be generated from each training task Ti. These data can be
used to evaluate each initialization θn by adapting it on D(sp)

i

and computing the post-adaptation loss on D(qr)
i , as described

in subsection III-A. However, at meta-test time, only a small
support set D(sp)

new is available from a task Tnew, and it can’t
be used to compute a reliable post-adaptation loss (e.g., using
cross-validation) due to its small size. To address this issue and
answer the previous question, the proposed approach trains a
task encoder that learns a task embedding and uses it to predict
which one of the N initializations is the best to fine-tune for
the given task. Figure 1 presents a conceptual illustration of the
task encoder, which is further explained in subsection III-B.

A. Meta-learning multiple model initializations

Algorithm 1 meta-trains N sets of meta-parameters
{θn}Nn=1 with the purpose of using them as initializations1

of the model parameters at meta-test time. At lines 3-4 of
Algorithm 1, a training task Ti (or a mini-batch of training
tasks) is sampled from a multimodal distribution P(T), with
its associated support set D(sp)

i and query set D(qr)
i . At line 5,

the RANK function (Algorithm 2) is called to assign a rank rn
to each set of meta-parameters θn with respect to the current
task Ti. Each rank2 rn represents how good the corresponding
θn is if we fine-tune it on a small dataset from task Ti. This

1Therefore, the terms “initialization” and “set of meta-parameters” will be
used interchangeably to refer to θn.

2 Normally, an additional subscript i is used in rn and ϕn to indicate that
these are specific for task Ti. However, here, the subscript i is omitted for
simplicity.

is done in Algorithm 2 by adapting θn on D(sp)
i via a small

number, L, of gradient descent steps. The generalization loss
of the adapted parameters on D(qr)

i is then computed and
used to assign a rank rn to each θn (with the best being
at rank 0 and the worst at rank N − 1). At this stage, one
alternative is to only pick the top-ranked θn (having rank
rn = 0) to update it. However, a more general approach is
to update all N meta-parameters to different degrees using
different step sizes εn. To do so, at line 7 of Algorithm 1, we
define εn = ε·e−rn/λ, where ε is a fixed number, and λ > 0 is
the so-called neighborhood range as in Neural Gas [26]. The
specific approach that picks only the top-ranked set of meta-
parameters, can be obtained by setting λ close to 0. This results
in a nearly zero value for εn for all sets of meta-parameters
except for the top-ranked one, which would have εn = ε. At
line 8, task-specific parameters2, ϕn, are computed for each θn
independently with a few, i.e., Q, adaptation steps, and each
set of meta-parameters θn is updated at line 9 similarly to the
standard approach (according to Eq. 2), using εn instead of ϵ.

It is worth noting that Algorithm 1 outlines the case in
which the proposed approach is applied on top of MAML,
but the same concept can be easily applied to Reptile with
the following minor changes: (1) calculating the task-specific
parameters in line 8 starting from the best-ranked set of meta-
parameters θ∗ as ϕ ← ADAPT(Q,Di, θ

∗); and (2) updating
each θn in line 9 according to Eq. 3 using εn instead of ϵ.
Using the best initialization θ∗ at line 8 is desirable; however, it
can be done with Reptile but not with MAML since the latter
involves second-order derivatives, requiring backpropagating
through the gradient operator computed in the adaptation
phase.

Algorithm 1 Training Multiple Sets of Meta-Parameters
Require: Number of sets of meta-parameters N , adapta-
tion steps to rank the meta-parameters L, adaptation steps
Q

1: Randomly initialize {θn}Nn=1

2: while not done do
3: Sample a task Ti ∼ P(T) (or a mini-batch of tasks)
4: Sample data Di = D(sp)

i ∪ D(qr)
i from Ti

5: {rn}Nn=1 ← RANK(L,D(sp)
i ,D(qr)

i , {θn}Nn=1)
6: for each set of meta-parameters θn do
7: Define a step size εn = ε · e−rn/λ

8: Compute ϕn ← ADAPT(Q,D(sp)
i , θn)

9: Update θn ← UPDATE(D(qr)
i , εn, θn, ϕn)

10: end for
11: end while
12: return {θn}Nn=1

B. Task-encoder training
At meta-training time, we have access to support sets (small

training sets of size K) but also to query sets (large enough
test sets) generated from the training tasks. These are used
in Algorithm 2 to evaluate and rank the N sets of meta-
parameters with respect to each task. However, this is not

(a) Illustration of MUSE. (b) Task encoder architecture

Fig. 1: (a) Illustration of MUSE. (Top) The task encoder takes in input K training examples from a new task Tnew (i.e., D(sp)
new)

and predicts as output ξ̂new indicating which of the N meta-parameters (e.g., θ2) constitutes the best initialization to adapt on
task Tnew. (Bottom) The model’s parameters are then initialized to θ2 and adapted with D(sp)

new using Q adaptation steps. The
adapted parameters can then be used to make accurate predictions on new test examples xnew. (b) Task encoder architecture
which consists of a feature extractor (A), an averaging layer (B), and a classifier (C).

Algorithm 2 RANK(L, D(sp)
i , D(qr)

i , {θn}Nn=1)
Require: Adaptation steps to rank the meta-parameters L,
support and query sets of task Ti, sets of meta-parameters
{θn}Nn=1

1: for each set of meta-parameters θn do
2: Compute ψn ← ADAPT(L,D(sp)

i , θn)

3: Compute post-adaptation loss: ln = L(ψn,D(qr)
i)

4: end for
5: Sort {ln}Nn=1 in ascending order
6: Assign a rank rn to each θn based on sorted losses
7: return {rn}Nn=1

Algorithm 3 ADAPT(Q, D, θ)
Require: Adaptation steps Q, dataset D, initial parameters θ,
learning rate α

1: ϕ← θ − α∇θL(θ,D)
2: for q = 1, . . . , Q− 1 do
3: ϕ← ϕ− α∇ϕL(ϕ,D)
4: end for
5: return ϕ

possible to do at meta-test time since only K examples are
observed from a completely new test task. To address this
issue, a task encoder network, parameterized by ρ, is trained
to predict which set of meta-parameters provides the lowest
generalization error on the target task. As shown in Figure 1b,
the task encoder architecture consists of three parts: a feature
extractor (A), an averaging layer (B), and a classifier (C).

Specifically, the feature extractor takes as input a sup-
port set D(sp)

i = {xk, yk}Kk=1 consisting of inputs xk and

labels yk (represented as one-hot-vectors in classification)
sampled from a task Ti. It then transforms them to get
Zi = {g(gx(xk) ⊕ gy(yk))}Kk=1, where gx(.) denotes an
input-specific feature extractor, gy(.) a label-specific feature
extractor, and ⊕ denotes the concatenation operator. In other
words, it transforms each sample xk = gx(xk) and label
yk = gy(yk), then concatenates and transforms them as
g(xk⊕yk). The averaging layer simply performs an averaging
of the transformed data Zi along the K examples to produce
a vector representation zi corresponding to an embedding of
the task Ti. Finally, the last part of the task encoder network
acts as an N -class classifier with a softmax activation at the
final layer. It takes as input a task’s embedding zi and outputs
an N -dimensional vector ξ̂i ∈ [0, 1]N indicating which one of
the N initializations is the best for task Ti (i.e., ranked at the
top).

The task encoder uses the meta-learned initializations
{θn}Nn=1 (returned by Algorithm 1) and is trained as described
in Algorithm 4. At lines 3-7, a mini-batch of training tasks
{T1, T2, . . . } is sampled, and new labels {ξ1, ξ2, . . . } are
computed and assigned to them. Each label ξi ∈ {1, . . . , N}
corresponds to the index of the top-ranked initialization for
the task Ti (i.e., the one ranked at the top according to
Algorithm 2). The mini-batch used to train the task encoder
is then presented at line 9, with inputs corresponding to the
support sets {D(sp)

1 ,D(sp)
2 , . . . } and outputs corresponding to

the labels {ξ1, ξ2, . . . }. The task encoder’s parameters ρ are
then updated at line 10 by minimizing a classification loss
computed using the outputs {ξ̂1, ξ̂2, . . . } predicted by the task
encoder and the actual labels {ξ1, ξ2, . . . }. Here, any optimizer
of choice, e.g., Adam, can also be used (not necessarily
gradient descent).

Algorithm 4 Task Encoder Training
Require: Learning rate η, adaptation steps to rank the meta-
parameters L, meta-learned initializations {θn}Nn=1 (returned
by Algorithm 1)

1: Randomly initialize ρ
2: while not done do
3: Sample a mini-batch of tasks {T1, T2, . . . } from P(T)
4: for all Ti do
5: Sample disjoint datasets D(sp)

i ,D(qr)
i from Ti

6: {rn}Nn=1 ← RANK(L,D(sp)
i ,D(qr)

i , {θn}Nn=1)
7: Assign a label ξi = arg minn{rn}
8: end for
9: Mini-batch of training data for the task encoder:

D = {(D(sp)
1 , ξ1), (D(sp)

2 , ξ2), . . . }
10: Update ρ← ρ− η∇ρL(ρ,D)
11: end while
12: return ρ

C. Meta-test time

At meta-test time, only a set D(sp)
new of K training examples,

is observed from a completely new task Tnew ∼ P(T). The
goal is to efficiently train a model that would generalize well
to future unseen examples from that task. To do so, the task
encoder takes D(sp)

new as input and predicts the label ξ̂new cor-
responding to the best initialization (θbest) for the task Tnew.
The ADAPT function (Algorithm 3) is then called using a few
(i.e., Q) adaptation steps as follows ADAPT(Q,D(sp)

new, θbest),
to get the task-specific parameters. These latter can then be
used to make accurate predictions on unseen data from this
new task.

IV. EXPERIMENTS

In this section, the proposed MUSE approach, applied
on top of MAML (MUSE-M) and Reptile (MUSE-R), is
evaluated using tasks from various few-shot regression and
image classification problems. The proposed MUSE-M and
MUSE-R are compared against various methods listed below:

• MAML [1] and Reptile [2]: The respective unimodal
counterparts of MUSE-M and MUSE-R.

• MMAML [16] and TSA-MAML [15]: Two existing
methods for meta-learning from multimodal task distri-
butions.

• Multi-MAML and Multi-Reptile: A trivial extension of
MAML and Reptile for multimodal task distributions.
This baseline consists of meta-training a distinct model
(using MAML or Reptile) for tasks within each separate
mode. At meta-test time, the mode of each new task is
also assumed to be known, and it is used to select the cor-
responding initial model. Note that directly comparing the
previous approaches to Multi-MAML (or Multi-Reptile)
is not fair as this latter uses additional information
(mode label of each task) that is usually unavailable in
real-world situations. However, this baseline can provide

useful insights into whether or not it is helpful to transfer
knowledge across different modes.

• “Scratch”: A naive approach that consists of training a
model on each new task from scratch, i.e., with a random
parameters’ initialization instead of meta-learning it. This
baseline is used as a lower bound on the performance.

• “Oracle”: A baseline proposed to verify the performance
of MUSE in the ideal case in which the task encoder
always predicts the best model initialization (among the
N initializations) for any given task. This oracle baseline
is not intended to be compared against the proposed
approach, but it serves as an upper bound for its per-
formance.

All methods are evaluated using 20 test tasks from each
mode, and the average performance is computed after fine-
tuning the meta-learned initializations for 100 adaptation steps.
To ensure a fair and consistent comparison, we used similar
hyperparameters and model architectures for all methods. The
final reported results are the average over three full runs of all
the algorithms (including meta-training and meta-testing).

A. Regression Problem

As a proof of concept, we start with a simple regression
problem where a multimodal task distribution is constructed
considering five different families of functions from which
tasks are generated. These families are: (1) sinusoidal y(x) =
a sin(x − b), where a ∼ U [0.1, 5.0], b ∼ U [0, π]; (2) linear
y(x) = ax + b, where a ∼ U [0, 1], b ∼ U [0, 5]; (3)
quadratic y(x) = ax2 + bx + c, where a, b, c ∼ U [0, 0.5];
(4) l1 norm y(x) = a|x − c| + b, where a, b, c ∼ U [0, 0.5];
(5) hyperbolic tangent y(x) = a tanh(x − c) + b, where
a, b, c ∼ U [0, 0.5]. Each task is randomly sampled from
one of the five underlying families and consists of inputs x
sampled uniformly in [−5, 5]. We tried different combinations
of hyperparameters and selected the ones that provided the
best results on a validation set across all methods. As in [1],
the base model for this experiment is a neural network with
two hidden layers of size 40 and ReLU nonlinearities. The
adaptation phase (line 8 of Algorithm 1) consists of Q = 8
gradient descent steps with a fixed learning rate α = 0.005.
The ranking procedure (line 5 in Algorithm 1) is performed
with L = 8 and the step size εn is computed with ε = 0.1 and
λ = 10−5. The task encoder architecture comprises a total of
6 layers, 3 for the feature extractor part and 3 for the classifier
part, with sizes of 32 and 128, respectively. The training of
the task encoder network (as described in Algorithm 4) is
performed with a mini-batch size of 35 tasks using the Adam
optimizer with η = 10−4, and the cross-entropy loss function.

The quantitative results showing the average MSE (mean
squared error) are reported in Table I (for MUSE-M) and
Table II (for MUSE-R). As expected, usual meta-learning
approaches (e.g., MAML and Reptile) have high errors when
the distribution over tasks is multimodal, and they require
more steps to adapt to the new tasks. This is confirmed
by Figure 2, where the result of MUSE-R (MUSE on top
of Reptile) is compared against Reptile when adapting to a

test task consisting of a new sine wave with five training
examples (shown as red triangles). After a few adaptation
steps (Q = 10) using only these five data-points, MUSE-
R was able to adapt much more effectively, as indicated by
the predictions represented by the dashed green line. This
enhanced adaptation is a result of the task encoder’s ability
to select the most suitable model initialization for the task
at hand. Moreover, TSA-MAML shows poor performance in
this regression setting, likely due to the limitations related to
directly applying k-means clustering in the parameters space
and the fact that parameters specific to various tasks might
not constitute clearly separable clusters (e.g., when tasks from
various modes are similar or related). The proposed approach,
instead, achieves a good performance (low MSE) both when
applied on top of MAML (MUSE-M) and Reptile (MUSE-
R). In the 10-shot learning scenario (K = 10), MUSE-
M (resp. MUSE-R) demonstrates comparable results to the
Multi-MAML (resp. Multi-Reptile) baselines. This suggests
that MUSE can effectively generalize across a multimodal
task distribution, even in the absence of ground-truth task
mode labels. Besides, it may seem, in this experiment, that
the performance of MUSE is better with a larger number of
initializations N . Nevertheless, Figure 3 shows that there is
a wide range of values (between N = 4 to 15) that lead
to good results, demonstrating the flexibility in the choice
of N . However, as we further increase N , the performance
tends to decrease (i.e., MSE increases) due to the increased
difficulty for the task encoder to correctly predict the best
model initialization.

Fig. 2: Few-shot adaptation (with K = 5 training points) for a
new task consisting of a sine wave, after Q = 0, Q = 10, Q =
100 adaptation steps at meta-test time. Results are presented
for Reptile and MUSE-R.

B. Image Classification

For the image classification problem, a task is defined by
randomly selecting N classes and K labeled images per class
from a given dataset, i.e., an N -way K-shot classification
problem. To create a multimodal task distribution, multiple
well-established datasets, each representing a different mode,
are combined (including Omniglot [27], Mini-Imagenet [5],
FC100 [9], Aircraft [28], FGVCx Fungi [29], CUB Birds
[30]) and the images are converted to RGB format with
a resolution of 84 × 84 pixels. The classes within each

TABLE I: Regression results (average MSE) with MUSE-M
using tasks sampled from 3 (sinusoidal, linear, quadratic) and
5 (sinusoidal, linear, quadratic, l1norm, hyperbolic tangent)
modes. The results are reported in the 5-shot (K = 5) and
the 10-shot (K = 10) learning scenarios. The number of
initializations (N = 3 or 5) is shown between brackets. For
simplicity, standard deviations are not reported in the table,
but they are in the order of 10−2 for all methods.

3 modes 5 modes
Method 5-shot 10-shot 5-shot 10-shot
Scratch 1.88 1.2 1.06 0.74

MAML 1.03 0.26 1.13 0.20

MMAML 0.56 0.26 0.98 0.18

TSA-MAML 3.05 1.14 1.98 1.31

MUSE-M (3) 0.61 0.20 0.65 0.16

MUSE-M (5) 0.47 0.08 0.44 0.09

Multi-MAML 0.27 0.07 0.22 0.03

MUSE-M oracle (3) 0.45 0.22 0.55 0.16

MUSE-M oracle (5) 0.29 0.07 0.37 0.11

TABLE II: Regression results (average MSE) with MUSE-R
using tasks sampled from 3 (sinusoidal, linear, quadratic) and
5 (sinusoidal, linear, quadratic, l1norm, hyperbolic tangent)
modes. The results are reported in the 5-shot (K = 5) and
the 10-shot (K = 10) learning scenarios. The number of
initializations (N = 3 or 5) is shown between brackets. For
simplicity, standard deviations are not reported in the table,
but they are in the order of 10−2 for all methods.

3 modes 5 modes
Method 5-shot 10-shot 5-shot 10-shot
Scratch 1.88 1.2 1.06 0.74

Reptile 2.23 0.41 1.32 0.45

MMAML 0.56 0.26 0.98 0.18

TSA-MAML 3.05 1.14 1.98 1.31

MUSE-R (3) 0.65 0.18 0.74 0.11

MUSE-R (5) 0.63 0.14 0.55 0.05

Multi-Reptile 0.56 0.13 0.65 0.16

MUSE-R oracle (3) 0.61 0.13 0.52 0.10

MUSE-R oracle (5) 0.34 0.09 0.38 0.05

dataset are split into two sets, one used to generate tasks
for meta-training and the other to generate tasks for meta-
testing, following the train/test splits outlined in [31]. On this
benchmark, the base model is composed of four modules, each
consisting of a convolutional layer with 32 filters, followed by
batch normalization, ReLU nonlinearities, and max-pooling, as
described in [5]. Additionally, two linear layers with a size of
128 are used to complete the classification model. The number
of adaptation steps (used in line 8 of Algorithm 1) is set to
Q = 5 and the learning rate α = 0.005. The step size εn is
computed in line 7 of Algorithm 1 with ε = 0.1 and a value
of λ that iteratively decreases from 0.5 to 0.05, as suggested
in [26], for training MUSE-R. For MUSE-M, the value of λ
is set to a small value, i.e., 10−5. Also in this setting, we
tried different sets of hyperparameters and we selected the
one that provided the best performance on the validation set.

TABLE III: Classification results (average accuracy) with MUSE-M when tasks are sampled from multimodal task distributions
with three modes. One distribution consists of a combination of Omniglot, Mini-Imagenet, and FC100, while the other consists
of Aircraft, FGVCx Fungi, and CUB Birds. The columns “All Datasets” report the average performance when tasks are
randomly sampled from all datasets, while “Average” contains the average result over the six datasets. For simplicity, standard
deviations are not reported in the table, but they are in the order of 10−2 for all methods.

Omniglot + Mini-Imagenet + FC100 Aircraft + FGVCx Fungi + CUB Birds Average
Method Omniglot Mini-Imagenet FC100 All Datasets Aircraft Fungi Birds All Datasets
Scratch 0.89 0.48 0.44 0.63 0.43 0.33 0.49 0.46 0.51

MAML 0.95 0.52 0.58 0.66 0.53 0.39 0.52 0.51 0.58

MMAML 0.90 0.42 0.54 0.63 0.48 0.45 0.61 0.51 0.56

TSA-MAML 0.92 0.39 0.46 0.57 0.60 0.48 0.66 0.58 0.59

MUSE-M (3) 0.97 0.59 0.66 0.72 0.68 0.42 0.58 0.54 0.65

MUSE-M (5) 0.96 0.60 0.68 0.73 0.67 0.41 0.55 0.51 0.65

Multi-MAML 0.97 0.50 0.59 0.66 0.61 0.40 0.60 0.51 0.61

MUSE-M oracle (3) 0.98 0.60 0.67 0.73 0.68 0.40 0.56 0.51 0.65

MUSE-M oracle (5) 0.98 0.62 0.69 0.74 0.61 0.41 0.59 0.54 0.65

TABLE IV: Classification results (average accuracy) with MUSE-R when tasks are sampled from multimodal task distributions
with three modes. One distribution consists of a combination of Omniglot, Mini-Imagenet, and FC100, while the other consists
of Aircraft, FGVCx Fungi, and CUB Birds. The columns “All Datasets” report the average performance when tasks are
randomly sampled from all datasets, while “Average” contains the average result over the six datasets. For simplicity, standard
deviations are not reported in the table, but they are in the order of 10−2 for all methods.

Omniglot + Mini-Imagenet + FC100 Aircraft + FGVCx Fungi + CUB Birds Average
Method Omniglot Mini-Imagenet FC100 All Datasets Aircraft Fungi Birds All Datasets
Scratch 0.89 0.48 0.44 0.63 0.43 0.33 0.49 0.46 0.51

Reptile 0.91 0.48 0.54 0.64 0.44 0.43 0.61 0.49 0.56

MMAML 0.90 0.42 0.54 0.63 0.48 0.45 0.61 0.51 0.56

TSA-MAML 0.92 0.39 0.46 0.57 0.60 0.48 0.66 0.58 0.59

MUSE-R (3) 0.96 0.49 0.55 0.65 0.50 0.41 0.61 0.51 0.59

MUSE-R (5) 0.94 0.50 0.56 0.65 0.54 0.42 0.67 0.54 0.61

Multi-Reptile 0.95 0.48 0.54 0.64 0.45 0.44 0.63 0.49 0.58

MUSE-R oracle (3) 0.96 0.51 0.56 0.66 0.51 0.43 0.64 0.52 0.60

MUSE-R oracle (5) 0.96 0.52 0.58 0.66 0.54 0.45 0.67 0.54 0.62

Fig. 3: Average test error (MSE) after adapting to new test
tasks, with respect to various values of N (the number of
initializations). The result is obtained for MUSE-R in the 10-
shot regression scenario with three modes.

Results showing the average accuracy are presented in Tables
III and IV. Overall, considering the average result over all
six datasets, MUSE demonstrates superior performance com-

pared to other meta-learning approaches. Additionally, MUSE
outperforms the Multi-MAML (or Multi-Reptile) approach,
highlighting the importance of sharing knowledge across tasks
from various modes. This intuition is particularly evident
when looking at the results obtained with the combination of
Omniglot, Mini-Imagenet, and FC100. Indeed, Mini-Imagenet
and FC100 have some commonalities (e.g., similar types of
images and some classes in common), which allows MUSE
to learn an initialization using tasks generated from both
datasets. In other words, the same initialization θn can be
shared between some tasks generated from Mini-Imagenet,
but also some other tasks generated from FC100. This helps
MUSE achieve a better result on new tasks generated from
these two datasets (or modes) as opposed to other methods
(like Multi-MAML and Multi-Reptile) that try to learn a
separate initialization using only tasks from the same dataset
(or mode). However, when applied to Aircraft, FGVCx Fungi,
and CUB Birds, MUSE’s performance is not always better
than TSA-MAML, but still generally better than Multi-MAML
and Multi-Reptile. This could be due to the fact that tasks
generated from these datasets represent completely different
concepts with no overlap between classes. For this reason,

applying clustering in the parameters’ space (as in TSA-
MAML) may better capture the differences between tasks than
learning to do so via tasks’ embeddings. To statistically assess
whether the proposed approach significantly outperforms the
best-performing baseline (i.e., MMAML for Omniglot, Mini-
Imagenet, and FC100 and TSA-MAML for Aircraft, FGVCx
Fungi, and CUB Birds), a t-test was conducted comparing the
performance of MUSE-M (5) to that of MMAML and TSA-
MAML. The results of the t-test indicate that MUSE-M (5)
performs significantly better than MMAML with a p-value
of approximately 0.03 (less than the significance level 0.05),
indicating that the difference in performance is unlikely to
be due to chance alone. In other words, the results suggest
that the proposed approach is superior to the best-performing
baseline on Omniglot, Mini-Imagenet, and FC100 datasets. In
contrast, there was no significant difference in performance
between TSA-MAML and MUSE-M (5) on Aircraft, FGVCx
Fungi, and CUB Birds (i.e., p-value ≈ 0.06), indicating that
TSA-MAML was not significantly better than MUSE-M (5)
in this case.

V. CONCLUSION AND FUTURE WORK

We presented a meta-learning approach that handles tasks
sampled from a multimodal distribution with unknown modes.
Our method uses a task encoder to learn an embedding of the
target task and predict which of the meta-trained model initial-
izations will lead to the best post-adaptation performance. Our
experiments showed that the proposed method outperforms
existing meta-learning methods designed for unimodal and
multimodal task distributions. While the approach is simple,
it highlights the importance of leveraging relevant past experi-
ence to make accurate predictions on new tasks. Future work
could include incorporating the task encoder into the meta-
training process or allowing the meta-learner to directly learn
the best initialization for each task.

REFERENCES

[1] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[2] A. Nichol and J. Schulman, “Reptile: a scalable metalearning algorithm,”
arXiv preprint arXiv:1803.02999, vol. 2, no. 3, p. 4, 2018.

[3] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Advances in neural information processing systems, vol. 30,
2017.

[4] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching net-
works for one shot learning,” Advances in neural information processing
systems, vol. 29, 2016.

[5] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learn-
ing,” International Conference on Learning Representations (ICLR),,
2017.

[6] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” International Conference on Learning
Representations (ICLR), 2017.

[7] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1199–1208.

[8] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,”
arXiv preprint arXiv:1807.05960, 2018.

[9] B. Oreshkin, P. Rodrı́guez López, and A. Lacoste, “Tadam: Task
dependent adaptive metric for improved few-shot learning,” Advances
in neural information processing systems, vol. 31, 2018.

[10] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[11] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning
with implicit gradients,” Advances in neural information processing
systems, vol. 32, 2019.

[12] H. Yao, Y. Wei, J. Huang, and Z. Li, “Hierarchically structured meta-
learning,” in International Conference on Machine Learning. PMLR,
2019, pp. 7045–7054.

[13] W. Jiang, J. Kwok, and Y. Zhang, “Subspace learning for effective meta-
learning,” in International Conference on Machine Learning. PMLR,
2022, pp. 10 177–10 194.

[14] G. Jerfel, E. Grant, T. Griffiths, and K. A. Heller, “Reconciling meta-
learning and continual learning with online mixtures of tasks,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[15] P. Zhou, Y. Zou, X.-T. Yuan, J. Feng, C. Xiong, and S. Hoi, “Task
similarity aware meta learning: Theory-inspired improvement on maml,”
in Uncertainty in Artificial Intelligence. PMLR, 2021, pp. 23–33.

[16] R. Vuorio, S.-H. Sun, H. Hu, and J. J. Lim, “Multimodal model-
agnostic meta-learning via task-aware modulation,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[17] L. Zintgraf, K. Shiarli, V. Kurin, K. Hofmann, and S. Whiteson, “Fast
context adaptation via meta-learning,” in International Conference on
Machine Learning. PMLR, 2019, pp. 7693–7702.

[18] J. Requeima, J. Gordon, J. Bronskill, S. Nowozin, and R. E. Turner, “Fast
and flexible multi-task classification using conditional neural adaptive
processes,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[19] P. Bateni, R. Goyal, V. Masrani, F. Wood, and L. Sigal, “Improved few-
shot visual classification,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 14 493–14 502.

[20] L. Liu, W. Hamilton, G. Long, J. Jiang, and H. Larochelle, “A universal
representation transformer layer for few-shot image classification,” Pro-
ceedings of the International Conference on Learning Representations,
2021.

[21] N. Dvornik, C. Schmid, and J. Mairal, “Selecting relevant features from
a multi-domain representation for few-shot classification,” in European
Conference on Computer Vision. Springer, 2020, pp. 769–786.

[22] W.-H. Li, X. Liu, and H. Bilen, “Universal representation learning
from multiple domains for few-shot classification,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
9526–9535.

[23] E. Triantafillou, H. Larochelle, R. Zemel, and V. Dumoulin, “Learning a
universal template for few-shot dataset generalization,” in International
Conference on Machine Learning. PMLR, 2021, pp. 10 424–10 433.

[24] H. Bilen and A. Vedaldi, “Universal representations: The missing
link between faces, text, planktons, and cat breeds,” arXiv preprint
arXiv:1701.07275, 2017.

[25] Y. Ma, S. Zhao, W. Wang, Y. Li, and I. King, “Multimodality in
meta-learning: A comprehensive survey,” Knowledge-Based Systems, p.
108976, 2022.

[26] B. Fritzke, “A growing neural gas network learns topologies,” Advances
in neural information processing systems, vol. 7, 1994.

[27] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot
learning of simple visual concepts,” in Proceedings of the annual
meeting of the cognitive science society, vol. 33, no. 33, 2011.

[28] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” arXiv preprint arXiv:1306.5151,
2013.

[29] Y. C. beejisbrigit, “2018 fgcvx fungi classification challenge,” 2018.
[Online]. Available: https://kaggle.com/competitions/fungi-challenge-
fgvc-2018

[30] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” California Institute of Technology,
Tech. Rep. CNS-TR-2011-001, 2011.

[31] E. Triantafillou, T. Zhu, V. Dumoulin, P. Lamblin, U. Evci, K. Xu,
R. Goroshin, C. Gelada, K. Swersky, P.-A. Manzagol et al., “Meta-
dataset: A dataset of datasets for learning to learn from few examples,”
in Meta-Learning Workshop at Neural Information Processing Systems,,
2018.

