
http://www.diva-portal.org

Preprint

This is the submitted version of a paper presented at VIII International Workshop on
Artificial Intelligence and Pattern Recognition, IWAIPR, Varadero, Cuba, September 27-29,
2023.

Citation for the original published paper:

Alonso-Fernandez, F., Hernandez-Diaz, K., Buades Rubio, J M., Bigun, J. (2023)
SqueezerFaceNet: Reducing a Small Face Recognition CNN Even More Via Filter
Pruning
In:
https://doi.org/10.48550/arXiv.2307.10697

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-51299



SqueezerFaceNet: Reducing a Small Face
Recognition CNN Even More Via Filter Pruning

Fernando Alonso-Fernandez1, Kevin Hernandez-Diaz1,
Jose Maria Buades Rubio2, and Josef Bigun1

1 School of Information Technology, Halmstad University, Sweden
feralo@hh.se, kevin.hernandez-diaz@hh.se, josef.bigun@hh.se

2 Computer Graphics and Vision and AI Group, University of Balearic Islands, Spain
josemaria.buades@uib.es

Abstract. The widespread use of mobile devices for various digital ser-
vices has created a need for reliable and real-time person authentication.
In this context, facial recognition technologies have emerged as a de-
pendable method for verifying users due to the prevalence of cameras
in mobile devices and their integration into everyday applications. The
rapid advancement of deep Convolutional Neural Networks (CNNs) has
led to numerous face verification architectures. However, these models
are often large and impractical for mobile applications, reaching sizes of
hundreds of megabytes with millions of parameters. We address this issue
by developing SqueezerFaceNet, a light face recognition network which
less than 1M parameters. This is achieved by applying a network prun-
ing method based on Taylor scores, where filters with small importance
scores are removed iteratively. Starting from an already small network
(of 1.24M) based on SqueezeNet, we show that it can be further reduced
(up to 40%) without an appreciable loss in performance. To the best of
our knowledge, we are the first to evaluate network pruning methods for
the task of face recognition.

Keywords: Face recognition · Mobile Biometrics · CNN pruning · Tay-
lor scores.

1 Introduction

The widespread use of smartphones as all-in-one platforms has led to more people
relying on them for accessing online services such as e-commerce and banking.
This makes it crucial to implement robust user authentication mechanisms to
ensure secure device unlocking and protected transactions. Here, we address face
recognition (FR) for mobile applications, where biometric verification is increas-
ingly employed for the mentioned purposes. As with many other vision tasks,
Convolutional Neural Networks (CNNs) have become a very popular tool for bio-
metrics, including FR [19]. Nevertheless, the high-performing models proposed
in the literature, e.g. [7], usually entail extensive storage and computational re-
sources due to their millions of parameters. This poses a significant challenge for
deploying them on resource-limited devices.



2 F. Alonso-Fernandez et al.

Table 1: Proposed lightweight models in the literature for face recognition.

Input Para- Vector Base
Network size meters Size Architecture

LightCNN (18) [21] 128×128 12.6M 256
MobileFaceNets (18) [6] 112×112 0.99M 256 MobileNetv2

MobiFace (19) [9] 112×112 n/a 512 MobileNetv2
ShuffleFaceNet (19) [15] 112×112 0.5-4.5M 128 ShuffleNet
SeesawFaceNets (19) [23] 112×112 1.3M 512
VarGFaceNet (19) [22] 112×112 5M 512 VarGNet
SqueezeFacePoseNet [2] 113×113 0.86-1.24M 1000 SqueezeNet

PocketNet (21) [4] 112×112 0.92-0.99 M 128-256 PocketNet
MixFaceNets (21) [3] 112×112 1.04-3.95M 512 MixNets

SqueezerFaceNet (ours) 113×113 0.65-0.94M 1000 SqueezeNet

Across the years, several light CNNs have been presented, mainly for com-
mon visual tasks in the context of the ImageNet challenge [17]. Examples include
SqueezeNet [11] (1.24M parameters), MobileNetV2 [18] (3.5M), ShuffleNet [25]
(1.4M), MixNets [20] (5M), or VarGNet [24] (13.23M). They employ different
techniques to achieve fewer parameters and faster processing, such as point-
wise convolution, depth-wise separable convolution, variable group convolution,
mixed convolution, channel shuffle, and bottleneck layers. Some works (Table 1)
have adapted these networks for FR purposes [6, 9, 15, 22, 2, 3]. Instead of adapt-
ing existing common architectures, the work [4] suggested applying Neural Archi-
tecture Search (NAS) to design a family of light FR models, named PocketNets.

In this paper, we follow another strategy, consisting of applying network
compression to existing architectures. Common techniques include knowledge
distillation, quantization, or pruning. A number of them have been used to reduce
the size of general image classification models, and some works recently started
to apply them for face detection [13] or ocular recognition [1]. Here, we use a
pruning method based on importance scores of network filters [16] to reduce an
already small FR network of 1.24M parameters that uses a modified SqueezeNet
architecture [11, 2]. Thus, we call our network SqueezerFaceNet. The importance
score of a filter is obtained considering its effect on the error if it is removed.
This is computed by first-order Taylor approximation, which only requires the
elements of the gradient computed during training via backpropagation.

To the best of our knowledge, we are the first to evaluate network pruning
methods for the task of FR. We test SqueezerFaceNet on a face verification
scenario over VGGFace2-Pose, a subset of the VGGFace2 database [5] with 11040
images from 368 subjects on three poses (frontal, three-quarter, and profile). We
show that the number of filters of the network can be reduced up to 15% without
a significant loss of accuracy in one-to-one comparisons for any given pose. If
we allow five images per user to build an identity template, accuracy is not
significantly affected until a 30-40% reduction in the number of filters.



Title Suppressed Due to Excessive Length 3

2 Network Pruning Method

We apply the method of [16], which iteratively estimates the importance scores
of individual elements based on their effect on the network loss. Then, elements
with the lowest scores are pruned, leading to a more compact network.

Given a network with parameters W = {w0, w1, ..., wM} and a training set
D of input (xi) and output (yi) pairs D = {(x0, y0) , (x1, y1) , ..., (xK , yK)}, the
aim of network training is to minimize the classification error E by solving
min
W

E(D,W) = min
W

E(y|x,W). The importance of a parameter wm can be
defined by its impact on the error if it is removed. Under an i.i.d. assumption,
the induced error can be quantified as the squared difference of the prediction
error E with and without the parameter:

Im =

(
E (D,W)− E(D,W|wm = 0)

)2

(1)

However, computing Im for each parameter using Eq. 1 would demand to
evaluate M versions of the network, one for each removed parameter, making
the process expensive computationally. This is avoided by approximating Im
in the vicinity of W by its first-order Taylor expansion I1

m(W) = (gmwm)
2,

where gm = ∂E
∂wm

are the elements of the gradient g. A second-order expansion
is also proposed [16], but it demands computing the Hessian of E, so we employ
the first-order approximation for a more compact and fast computation. The
gradient g is available from backpropagation, so Im can be easily computed. To
compute the joint importance of a set of parameters WS (e.g. a filter), we apply:

I1
S(W) ≜

∑
s∈S

(gsws)
2 (2)

The algorithm starts with a trained network, which is pruned iteratively
over the same training set. Given a mini-batch, the gradients are computed,
and the network weights are updated by gradient descent. Simultaneously, the
importance of each filter is computed via Eq. 2. At the end of each epoch, the
importance scores of each filter are averaged over the mini-batches, and the filters
with the smallest importance scores are removed. The pruning process is then
stopped after a certain number of epochs. The resulting network can be then
fine-tuned again over the training set to regain potential accuracy losses due to
filter removal.

3 SqueezerFaceNet Architecture and Database

As the backbone for SqueezerFaceNet, we employ SqueezeNet [11]. This is among
the smallest generic CNNs proposed in the context of the ImageNet challenge,
and one of the early networks designed to reduce the number of parameters and
size. It has only 18 convolutional layers, 1.24M parameters, and 4.6 MB in its
uncompressed version. To reduce the network size, it uses fire modules, which
first reduce the input channel dimensionality via 1×1 point-wise filters (squeeze



4 F. Alonso-Fernandez et al.

Fig. 1: Example images of the databases used. (a) MS1M from three users (by
row) and three viewpoints (column). (b) VGGFace2 training images with a ran-
dom crop. (c) VGGFace2 pose templates from three viewpoints (by column).

phase), to be then processed with a larger amount of (more costly) 3×3 and
1×1 filters in a lower dimensional space (expand phase). Another strategy is late
downsampling, so convolution layers are presented maps as large as possible.
According to its authors, it should lead to higher accuracy.

In the present paper, we adopt the SqueezeNet implementation previously
proposed for FR using light CNNs in [2], referred to as SqueezeFacePoseNet.
In particular, the network employs an input of 113×113, instead of the original
227×227 of SqueezeNet. This is achieved by changing the stride of the first
convolutional layer from 2 to 1, while keeping the rest of the network unchanged,
which allows to reuse ImageNet parameters as starting model. Such transfer
learning strategy from ImageNet has been shown to provide equal or better
performance than if initialized from scratch, while converging faster [14]. In the
present paper, we have also added batch normalization between convolutions and
ReLU layers. This is missing in the original SqueezeNet and in [2], but batch
normalization is commonly used before non-linearities to aid in the training of
deep networks [12]. Compared to [2], we observe that it also leads to increased
recognition accuracy, with a small overhead of parameters.

The database for training and evaluation is VGGFace2, with 3.31M images of
9131 celebrities (363.6 images/person on average) [5]. The images, downloaded
from the Internet, show significant variations in pose, age, ethnicity, lightning
and background. The protocol contemplates 8631 training classes (3.14M images)
and the remaining 500 classes for testing. For cross-pose experiments, a subset
of 368 subjects from the test set is defined (called VGGFace2-Pose), having 10
images per pose (frontal, three-quarter, and profile) and a total of 11040 images.

To further improve recognition performance, we also pre-train Squeezer-
FaceNet in the RetinaFace cleaned set of the MS-Celeb-1M database [10] (MS1M
for short), with 5.1M images of 93.4K identities. The release contains 113×113
images of MS1M cropped with the five facial landmarks provided by RetinaFace
[8]. While MS1M has a more significant number of images, its intra-identity
variation is limited due to an average of 81 images/person. Following previ-
ous research [5, 2], we first pre-train SqueezerFaceNet on a dataset with a large



Title Suppressed Due to Excessive Length 5

number of images (MS1M) and then fine-tune it with more intra-class diversity
(VGGFace2). This has been shown to provide better performance than training
the models only with VGGFace2. Some example images are shown in Figure 1.

4 Experimental Protocol

SqueezerFaceNet is trained for biometric identification using the soft-max func-
tion and ImageNet as initialization. We follow the training/evaluation protocol
of VGGFace2 [5]. For training, the bounding boxes of VGGFace2 images are
resized, so the shorter side has 129 pixels, and a random crop of 113×113 is
taken. A random crop is not possible with MS1M, since images are directly at
113×113. We also apply horizontal random flip to both databases. The opti-
mizer is SGDM with a mini-batch of 128. The initial learning rate is 0.01, which
is decreased to 0.005, 0.001, and 0.0001 when the validation loss plateaus. Two
percent of images per user in the training set are set aside for validation. Users
in MS1M with fewer than 70 images are removed to reduce the parameters of
the fully connected layer dedicated to under-represented classes and ensure at
least one image per user in the validation set. This results in 35016 users and
3.16M images. We train with Matlab r2022b and use the ImageNet pre-trained
model that comes with such release.

Frontal Frontal

SAME-POSE COMPARISONS

Frontal Three-quater Frontal Profile

CROSS-POSE COMPARISONS

Three-quaterThree-quater Profile Profile

ProfileThree-quater

Fig. 2: Same-pose (top) and cross-pose comparisons (bottom).

Verification experiments are done with VGGFace2-Pose following the pro-
tocol of [5]. A center crop of 113×113 is taken after the shortest image side is
resized to 129 pixels. Identity templates per user are created by combining five
faces with the same pose, resulting in two templates available per user and pose.
To test the robustness of the network and the pruning method in more adverse
conditions, we also do experiments using only one image as template. A tem-
plate vector is created by averaging the descriptors of the faces in the template
set, which are obtained from the layer adjacent to the classification layer (i.e.,
the Global Average Pooling). With SqueezeNet, this corresponds to a descriptor
of 1000 elements. To further improve performance against pose variation, we
also average the descriptor of an image and its horizontally flipped counterpart,
which is hypothesized to help to minimize the effect of pose variation [9]. The
cosine similarity is then used to compare two given templates.



6 F. Alonso-Fernandez et al.

Table 2: Face verification results on the VGGFace2-Pose database (EER %)
without pruning. F=Frontal View. 3/4= Three-Quarter. P=Profile.

One face image per template (1-1) Five face images per template (5-5)
Same-Pose Cross-Pose Over- Same-Pose Cross-Pose Over-

Network F-F 3/4-3/4 P-P F-3/4 F-P 3/4-P all F-F 3/4-3/4 P-P F-3/4 F-P 3/4-P all
SqueezerFaceNet (ours) 5.32 4.87 7.36 5.09 7.32 6.47 6.07 0.27 0.3 0.85 0.23 0.74 0.75 0.52

SqueezeFacePoseNet [2] 6.39 5.47 7.88 6.09 8.15 7.02 6.34 0.27 0.06 0.54 0.2 1.23 0.88 0.52

Table 3: Number of biometric verification scores.
SAME-POSE CROSS-POSE

Template Genuine Impostor Genuine Impostor
1 image (1-1) 368 × (9+8+...+1) = 16560 368 × 100 = 36800 368 × 10 × 10 = 36800 368 × 100 = 36800
5 images (5-5) 368 × 1 = 368 368 × 100 = 36800 368 × 2 × 2 = 1472 368 × 100 = 36800

5 Results

We first report the verification accuracy of SqueezerFaceNet without any pruning
in Table 2. This will be the baseline to which we will compare after pruning. We
also give the results of SqueezeFacePoseNet from [2]. We detail the results of both
same- and cross-pose experiments (Figure 2), as well as the overall performance
across all poses. Same-pose comparisons are made with only templates generated
with images of the same pose, while cross-pose experiments are done between
templates of different poses. Genuine (mated) scores are obtained by comparing
each template of a user to the remaining templates of the same user, avoiding
symmetric comparisons. For impostor (non-mated) scores, the first template of a
user is used as the enrolment template and compared with the second template
of the next 100 users. Table 3 shows the total number of scores.

One observation from Table 2 is that SqueezerFaceNet improves the results
of [2]. The main differences of the present paper are that we have added batch
normalization to the network, we apply random horizontal flip to the training
images, we use cosine similarity instead of χ2 distance to compare vectors, and

Fig. 3: Mini-batch loss and validation accuracy during the pruning of Squeez-
erFaceNet. One iteration removes 1% of the filters with the lowest importance
scores.



Title Suppressed Due to Excessive Length 7

0 10 20 30 40 50 60 70

% pruned filters

4

6

8

10

12

14

16

18

20

22

24

EE
R 

(%
)

One face image per template

After pruning

After pruning + retraining (0.01)

After pruning + retraining (0.001)

0 10 20 30 40 50 60 70

% pruned filters

0

1

2

3

4

5

6
Five face images per template

Fig. 4: Face verification results on the VGGFace2-Pose database (EER %) during
the pruning of SqueezerFaceNet (overall accuracy across all pose comparison
types). One iteration removes 1% of the filters with the lowest importance scores.

we compute an image descriptor by averaging the descriptor of the original
image and its horizontally flipped counterpart [9]. These modifications seem
to have an overall positive effect. Regarding pose comparison types, it can be
seen that the worst performance is given by the most difficult ones, either when
the image is only visible from one side (Profile vs. Profile) or when there is a
maximum difference between query and test templates (Frontal vs. Profile). It
is also worth noting the substantial improvement observed when five images are
used to generate user’s templates (5-5) in comparison to using one (1-1).

We then apply the pruning of Sect. 2 to SqueezerFaceNet. On each iteration,
we use a random 25% of the VGGFace2 training set to compute the importance
score of each convolution filter. After each iteration, we remove 1% of the filters
with the lowest scores. The optimizer is SGDM with a mini-batch of 128 and a
learning rate of 0.01. Figure 3 shows the mini-batch loss and validation accuracy
across different iterations. An interesting observation is that the loss decreases a
bit until ∼15% of the filters have been pruned and then increases again (the val-
idation loss shows the opposite behavior, as expected). However, after removing
just 1% of the filters (first iteration), the validation accuracy decreases sharply
from ∼80% to ∼60%, and then it is regained again as the network is pruned
up to ∼15% of the filters. Figure 4 (blue curves) shows the overall verification
accuracy of the pruned network on the VGGFace2-Pose database. The origin of
the x-axis (x=0) corresponds to SqueezerFaceNet without pruning. As can be
seen also here, after removing just 1% of the filters, there is a jump towards
a worse performance, after which performance is regained a bit until the net-
work is pruned approximately by 10-15%. In five-to-five comparisons (right plot),
performance is kept more stable until 30-40% of the network has been pruned,
suggesting that combining several face images to create a user template can be a
method to counteract the effect of eliminating convolution filters. In one-to-one
comparisons, however, accuracy decreases quicker.

After pruning the network with different percentages, we retrain it over VG-
GFace2 according to the same protocol of the original unpruned network (Sect. 4)



8 F. Alonso-Fernandez et al.

0 10 20 30 40 50 60 70

Iteration

1000

1500

2000

2500

3000

P
ru

n
a

b
le

 fi
lt

e
rs

Number of prunable filters

0 10 20 30 40 50 60 70

Iteration

0.2

0.4

0.6

0.8

1

1.2

1.4

Le
ar

n
ab

le
s 

(m
ill

io
n

s)

Amount of learnables

0 10 20 30 40 50 60 70

Iteration

200

300

400

500

600

700

800

900

1000

D
im

en
si
o
n
al
it
y

Size of embedding vector

0 10 20 30 40 50 60 70

Iteration

1

1.5

2

2.5

3

3.5

4

4.5

5

Si
ze

 (M
b

yt
es

)

Size of the network

Fig. 5: Effect of pruning in: number of filters (top left), learnables (top right),
embedding size (bottom left) and size (bottom right) of SqueezerFaceNet.

in order to regain the accuracy lost during pruning. Given the time that it takes
to train the network over the entire VGGFace2, we do the retraining only every
5 iterations of the pruning algorithm (starting at 1%). The results are given in
Figure 4 as well. The network is retrained either with a starting learning rate
of 0.01 (red curve) or 0.001 (orange). The rationale between these two options
is that even if the network is pruned, it has already been trained once over the
same database, so starting with a high learning rate may be counterproductive.
However, as seen in Figure 4, this is not the case. Indeed, in one-to-one compar-
isons, the best accuracy is given by starting with 0.01. Regarding the accuracy
lost after pruning, it can be seen that training the pruned network again is
able to recover the original accuracy up to a certain percentage of pruned fil-
ters. In one-to-one comparisons, performance remains stable until ∼15% of the
filters have been eliminated. Then, accuracy worsens exponentially. In five-to-
five comparisons, on the other hand, performance remains at the same level as
the unpruned network until about 30-40%. A remarkable result, in any case, is
that after 70% of the filters have been removed, the EER is less than double,
so a certain reduction in the number of filters does not translate to accuracy
in the same proportion. In five-to-five comparisons, the EER goes from 0.52%
(unpruned network) to 1.06% (network pruned at 71%).

We then analyze the effect on the network of the pruning process (Figure 5).
Obviously, the number of filters decreases linearly on each iteration (by 1%),



Title Suppressed Due to Excessive Length 9

0 10 20 30 40 50 60 70

% pruned filters

4

6

8

10

12

14

16

18

20

22

24
(1-1, after pruning + retraining)

0 10 20 30 40 50 60 70

% pruned filters

0

1

2

3

4

5

6
(5-5, after pruning + retraining)

0 10 20 30 40 50 60 70

% pruned filters

4

6

8

10

12

14

16

18

20

22

24

EE
R 

(%
)

(1-1, after pruning)

Frontal-Frontal

3/4-3/4

Profile-Profile

Frontal-3/4

Frontal-Profile

3/4-Profile

0 10 20 30 40 50 60 70

% pruned filters

0

1

2

3

4

5

6

EE
R 

(%
)

(5-5, after pruning)

Fig. 6: Face verification on VGGFace2-Pose (EER %) during the pruning of
SqueezerFaceNet per pose comparison type (retraining with a starting rate =
0.1). Each iteration removes 1% of the filters with the lowest importance scores.

since we have designed the experiments that way. However, the amount of learn-
ables or the size of the network first decreases slowly until about 10% of the
filters are removed. Between 10 and 15%, there is a significant drop in learn-
ables, and then the decrease is stabilized again at a slower pace. This suggests
that the filters that are removed first are not big and/or do not affect a high
amount of channels, but then, the pruning algorithm removes filters having a
larger amount of parameters. Regarding the size of the embedding vector, it
is maintained constant until a pruning of about 18%, indicating that the filters
that are removed first do not affect the last layer of the network. If we set 15% as
the optimal pruning (from Figure 4), it translates to a reduction in parameters
from 1.24M to 0.94M (by 24%) and in size from 4.6MB to 3.4MB (by 26%). This
is without losing accuracy significantly. In five-to-five comparisons, we could go
even higher and prune about 40% of the network, resulting in 0.65M parameters
and 2.35MB (a reduction of 48% and 49%, respectively).

We finally give the verification accuracy per pose comparison type after net-
work pruning (Figure 6), with and without retraining. Obviously, the same ac-
curacy gains after retraining are also observed here, and how the performance
is maintained until a certain percentage of the filters is removed. It is also more
evident the oscillations per iteration when SqueezerFaceNet is pruned but not



10 F. Alonso-Fernandez et al.

retrained (left column), an effect that is alleviated after retraining (right col-
umn). Table 4 also details the exact per-pose EER values for different degrees
of pruning. It can be observed that the combinations that do not involve profile
(P) images result in better performance. Still, in five-to-five comparisons, even
the difficult profile-profile (P-P) or frontal-profile (F-P) comparisons provide a
very competitive EER of 1% or less. The table also shows the results with two
variants of ResNet50 deployed by the authors of the VGGFace2 database [5]
having a much higher amount of parameters. They use input images of 224×224
and produce a feature vector of 2048 elements. These two networks clearly stand
out in comparison to our SqueezeNet model but at the cost of a larger number
of parameters and size (∼150MB), which is infeasible for mobile applications.

Table 4: Face verification results of SqueezerFaceNet on the VGGFace2-Pose
database (EER %) with different degrees of pruning (pruned networks retrained
with a starting rate = 0.01). F=Frontal View. 3/4= Three-Quarter. P=Profile.
Results with two large networks (ResNet50 variants [5]) are also shown.

One face image per template (1-1) Five face images per template (5-5)
Same-Pose Cross-Pose Over- Same-Pose Cross-Pose Over-

Network Parameters F-F 3/4-3/4 P-P F-3/4 F-P 3/4-P all F-F 3/4-3/4 P-P F-3/4 F-P 3/4-P all
No pruning 1.24M 5.32 4.87 7.36 5.09 7.32 6.47 6.07 0.27 0.3 0.85 0.23 0.74 0.75 0.52

Pruning 16% 0.91M 5.53 4.87 7.38 5.16 7.52 6.64 6.18 0.27 0.31 0.89 0.21 0.75 0.78 0.54
Pruning 31% 0.76M 6.19 5.3 8.2 5.71 8.13 7.26 6.80 0.27 0.33 1.08 0.2 0.81 0.83 0.59
Pruning 46% 0.58M 6.86 5.94 9.17 6.29 9.28 8.19 7.62 0.27 0.27 1.09 0.27 0.97 0.83 0.62
Pruning 51% 0.52M 7.21 6.27 9.63 6.74 9.7 8.48 8.01 0.32 0.29 1.08 0.29 1.03 0.95 0.66
ResNet50ft [5] 25.6M 4.14 3.13 5.16 3.68 4.99 4.25 4.23 0.01 0.02 0.27 0.07 0.14 0.14 0.11
SENet50ft [5] 28.1M 3.86 2.87 4.16 3.36 4.48 3.71 3.74 0.02 0.02 0.2 0.07 0.14 0.2 0.12

6 Conclusions

This paper deals with the task of developing SqueezerFaceNet, a lightweight deep
network architecture for mobile face recognition. For such purpose, we apply
a CNN pruning method based on Taylor scores which assigns an importance
measure to each filter of a given network. Such importance metric is based on
the impact on the error if the filter is removed, and it only requires the back-
propagation gradient for its computation. The method starts with a network
trained for the target task (here: face recognition). Then, it is iteratively pruned
by removing filters with the smallest importance. To regain potential accuracy
losses, the pruned network is finally retrained again for the target task. The
method is applied to an already light model (1.24M parameters) based on a
modified SqueezeNet architecture [11]. As training sets, we use the large-scale
MS-Celeb-1M (3.16M images, 35K identities) [10] and VGGFace2 (3.31M images,
9.1K identities) [5] datasets. We evaluate two verification scenarios, consisting
of using a different number of images to create a user template. In one case, a
template consists of five face images with the same pose, following the evaluation
protocol of [5]. In the second case, we consider the much more difficult case of



Title Suppressed Due to Excessive Length 11

only one image to generate a user template. Different pose combinations between
enrolment and query templates are tested too (Figure 2).

Our experiments show that the pruning method is able to further reduce the
number of filters of SqueezerFaceNet without decreasing accuracy significantly.
This is especially evident if we employ a sufficient number of images to create
a user template (five in our experiments). In such case, the number of filters
can be reduced up to 40% without an appreciable accuracy loss. In one-to-one
comparisons, a more difficult case, a reduction of up to 15% is also feasible. The
resulting network in each case has 0.65M and 0.94M parameters, respectively.
As future work, we are looking into evaluating the employed pruning method
in more powerful CNN architectures which are widely used in face recognition,
such as ResNet [7]. If the same effects as in the present paper are observed,
it would allow to lower error rates in comparison to the ones obtained in this
paper (Table 4), for a fraction of the size of such large networks. We are also
considering other alternatives for network compression to evaluate if they are
capable of producing even more reductions in network size [1].

Acknowledgements. This work was partly done while F. A.-F. was a visiting
researcher at the University of the Balearic Islands. F. A.-F., K. H.-D., and J. B.
thank the Swedish Research Council (VR) and the Swedish Innovation Agency
(VINNOVA) for funding their research. Author J. M. B. thanks the project EX-
PLAINING - "Project EXPLainable Artificial INtelligence systems for health
and well-beING", under Spanish national projects funding (PID2019-104829RA-
I00/AEI/10.13039/501100011033). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan V GPU used for this re-
search. The data handling in Sweden was enabled by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS).

References

1. Almadan, A., Rattani, A.: Benchmarking neural network compression techniques
for ocular-based user authentication on smartphones. IEEE Access 11 (2023)

2. Alonso-Fernandez, F., Barrachina, J., Diaz, K.H., Bigun, J.: Squeezefaceposenet:
Lightweight face verification across different poses for mobile platforms. In: Proc.
IAPR TC4 Workshop on Mobile and Wearable Biometrics, WMWB, in conjunction
with Intl Conf on Pattern Recognition, ICPR (2020)

3. Boutros, F., Damer, N., Fang, M., Kirchbuchner, F., Kuijper, A.: Mixfacenets: Ex-
tremely efficient face recognition networks. In: IEEE Intl Joint Conf on Biometrics,
IJCB (2021)

4. Boutros, F., Siebke, P., Klemt, M., Damer, N., Kirchbuchner, F., Kuijper, A.:
Pocketnet: Extreme lightweight face recognition network using neural architecture
search and multistep knowledge distillation. IEEE Access 10 (2022)

5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: A dataset for
recognising faces across pose and age. In: 13th IEEE Intl Conf on Automatic Face
and Gesture Recognition, FG (2018)

6. Chen, S., Liu, Y., Gao, X., Han, Z.: Mobilefacenets: Efficient cnns for accu-
rate real-time face verification on mobile devices. CoRR abs/1804.07573 (2018),
http://arxiv.org/abs/1804.07573



12 F. Alonso-Fernandez et al.

7. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss
for deep face recognition. In: IEEE/CVF Conf on Computer Vision and Pattern
Recognition, CVPR (2019)

8. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface:
Single-stage dense face localisation in the wild. CoRR abs/1905.00641 (2019),
http://arxiv.org/abs/1905.00641

9. Duong, C.N., Quach, K.G., Jalata, I.K., Le, N., Luu, K.: Mobiface: A lightweight
deep learning face recognition on mobile devices. In: IEEE 10th Intl Conf on Bio-
metrics Theory, Applications and Systems, BTAS (2019)

10. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1m: A dataset and benchmark
for large-scale face recognition. In: 14th European Conf Comp Vis, ECCV (2016)

11. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR abs/1602.07360 (2016), http://arxiv.org/abs/1602.07360

12. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: 32nd Intl Conf Machine Learn, ICML (2015)

13. Jiang, N., Xiong, Z., Tian, H., Zhao, X., Du, X., Zhao, C., Wang, J.: Prunefacedet:
Pruning lightweight face detection network by sparsity training. Cognitive Com-
putation and Systems 4(4), 391–399 (2022)

14. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In:
Proc IEEE/CVF Conf Computer Vision and Pattern Recognition, CVPR (2019)

15. Martinez-Díaz, Y., Luevano, L.S., Mendez-Vazquez, H., Nicolas-Diaz, M., Chang,
L., Gonzalez-Mendoza, M.: Shufflefacenet: A lightweight face architecture for ef-
ficient and highly-accurate face recognition. In: Proc IEEE/CVF Intl Conf Com-
puter Vision Workshop, ICCVW (2019)

16. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: IEEE/CVF Conf Computer Vision and Pattern
Recognition, CVPR (2019)

17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. Intl Journal Computer Vision 115(3) (Dec 2015)

18. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv2: Inverted
residuals and linear bottlenecks. In: IEEE/CVF Conf Computer Vision and Pattern
Recognition, CVPR (2018)

19. Sundararajan, K., Woodard, D.L.: Deep learning for biometrics: A survey. ACM
Comput. Surv. 51(3) (2018)

20. Tan, M., Le, Q.V.: Mixconv: Mixed depthwise convolutional kernels. In: 30th
British Machine Vision Conf, BMVC (2019)

21. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with
noisy labels. IEEE Trans Information Forensics and Security 13(11) (2018)

22. Yan, M., Zhao, M., Xu, Z., Zhang, Q., Wang, G., Su, Z.: Vargfacenet: An efficient
variable group convolutional neural network for lightweight face recognition. In:
IEEE/CVF Intl Conf Computer Vision Workshop, ICCVW (2019)

23. Zhang, J.: Seesawfacenets: sparse and robust face verification model for mobile
platform. CoRR abs/1908.09124 (2019), https://arxiv.org/abs/1908.09124

24. Zhang, Q., Li, J., Yao, M., Song, L., Zhou, H., Li, Z., Meng, W., Zhang, X., Wang,
G.: Vargnet: Variable group convolutional neural network for efficient embedded
computing. CoRR abs/1907.05653 (2020), https://arxiv.org/abs/1907.05653

25. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: IEEE/CVF Conf Computer Vision
and Pattern Recognition, CVPR (2018)


