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Abstract. Millions of vehicles are transported every year, tightly parked
in vessels or boats. To reduce the risks of associated safety issues like
fires, knowing the location of vehicles is essential, since different vehicles
may need different mitigation measures, e.g. electric cars. This work is
aimed at creating a solution based on a nano-drone that navigates across
rows of parked vehicles and detects their license plates. We do so via a
wall-following algorithm, and a CNN trained to detect license plates.
All computations are done in real-time on the drone, which just sends
position and detected images that allow the creation of a 2D map with the
position of the plates. Our solution is capable of reading all plates across
eight test cases (with several rows of plates, different drone speeds, or
low light) by aggregation of measurements across several drone journeys.

Keywords: Nano-drone · License plate detection · Vehicle location ·
UAV.

1 Introduction

The business of transporting vehicles is constantly expanding. Millions of cars
are transported in different ways, such as by truck, air, rail, or vessel [6]. The
most cost-effective method is by boat [15]. Today there are ocean vessels built
to carry up to 8000 vehicles. There are currently about 1400 vessels globally [5],
and an estimated 7 million cars carried on vessels around the world every year.

Due to the high density of packed vehicles on decks, finding and identifying
specific ones can be challenging. The mixed storage of combustion engines and
electric vehicles or vehicles of different sizes further complicates the situation.
Accurate knowledge of vehicle locations is crucial for safety reasons, such as in
the event of a fire, as different measures are needed with electric vehicle batteries.

A simple way to identify them is to detect the license plate or identification
number. This is possible via CCTV cameras, but plates are usually small and
maybe obstructed due to tightly parked vehicles. Therefore, a solution based
on a nano drone is investigated, since it can fit in narrow spaces. An onboard
camera can carry out plate detection simultaneously. The proposed solution uses
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a wall-following strategy for navigation, treating rows of packed vehicles as walls.
The images and drone position are sent to a remote client, which builds a 2D
map that depicts the drone’s path and detection results. This solution offers a
promising method for efficiently identifying vehicles in crowded storage areas.

Fig. 1. System overview.

2 Related Works

We describe existing methods for navigation and object detection with drones.
One gap is the limited size, weight, and computation onboard, making the use
of predominant deep learning solutions a challenge [9].

2.1 Navigation

Unmanned Aerial Vehicles (UAVs) or drones require a navigation system to
determine their position and trajectory. GPS navigation is feasible outdoors,
but not indoors. An indoor positioning system like Bitcraze’s Loco Positioning
system can be employed [3]. It includes anchors, similar to GPS satellites, and
a tag that acts as a receiver. It provides absolute positioning in 3D with a range
of 10 meters. However, in large areas like ship decks, with dozens/hundreds of
meters, equipping the entire space with anchors becomes costly.

When GPS or tags are not available, cameras can be used to navigate un-
known spaces. Simultaneous Localization and Mapping (SLAM) is a well-established
technique, researched for many years [4]. The first SLAM on a small drone was
achieved with a residual Convolutional Neural Network (CNN) called DroNet
[10], followed by PULP-DroNet [12], which enabled onboard computation on a
nano drone like ours. However, they only provide collision probability and rec-
ommended steering angle to avoid collisions. Additionally, they are trained with
outdoor data from car driving, as they are designed for autonomous navigation
on streets. For indoor environments, the swarm gradient bug algorithm (SGBA)
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Fig. 2. State diagram of the wall-following algorithm.

[11] was proposed. It is a minimal solution to explore an unknown environment
autonomously using a ’wall-following’ behavior. Unlike SLAM, SGBA requires
less processing power, making it more suitable for our requirements. A row of
vehicles can be considered walls, with the drone following along with the camera
facing them while scanning for plates. This simplifies the navigation while still
achieving the goal of identifying vehicles in a crowded storage area.

2.2 Object Detection

For object detection, the state-of-the-art is given by region proposal networks
(RPN), such as region-based Convolutional Neural Networks (R-CNN) [1], or
Single-Shot Detection networks (SSD), such as YOLO [14]. RPNs require two
stages, one for generating region proposals, and another for object detection.
SSDs predict position and object type in a single stage, making them faster and
more efficient, at the cost of less accuracy. However, the size of the networks
behind any of these models (e.g. Darknet or EfficientNet) is too large for a
nano drone. To address this, Greenwaves Technologies, the manufacturer of the
GAP8 processor used by our drone, offers several SSD classification CNNs based
on different architectures of the much lighter MobileNet [8].

Detection of objects such as vehicles, people, fruits, pests, etc., from UAVs, is
gaining attention [13]. However, it mostly involves drones of bigger size than ours.
Another difference is that studies mostly use aerial images taken from a certain
height and with the objects appearing small compared to the background. Here,
the problem is reversed. The UAV will fly relatively close to the target object,
making that, for example, vehicles do not fit entirely into the image.
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Fig. 3. Screenshot of system recording.

3 Methodology

3.1 Hardware

The system has several components (Figure 1). At the core is the CrazyFlie
drone, which utilizes an MCU (STM32) for autonomous flight control, position
estimation, sensor data collection, and communication with other components.
The CrazyFlie, manufactured by Bitcraze, is a nano quadrotor with a small 10
cm wingspan, classified as nano due to its small size and low power. Weighing 27
grams, it features low latency and long-range radio capabilities, Bluetooth LE,
onboard charging via USB, and expansion decks for additional features. The
flight time is 7 min, and the max recommended payload is 15g. Bitcraze offers a
range of expansions, with the relevant ones for this research described next.

An AI deck (of weight 4.4g) allows for AI computations onboard to man-
age, for example, autonomous navigation. It is equipped with a GreenWaves
Technologies GAP8 system-on-chip processor [7], featuring a CNN accelerator
optimized for image and audio algorithms. The AI deck also includes I/O pe-
ripherals to support devices such as cameras and microphones. Additionally,
an integrated ESP32 chip provides WiFi connectivity to stream images from a
grayscale ultra-low-power Himax camera. The AI deck sends the computation
result to the CrazyFlie, which relays the information along with the drone’s
estimated position to the CrazyFlie client’s console via radio.

A Flow deck keeps track of the drone’s movements. A VL53L1x ToF sensor
measures the distance to the ground and a PMW3901 optical flow sensor mea-
sures ground movement. These sensors allow the CrazyFlie to be programmed
to fly distances in any direction or hover at a certain altitude. The flow deck can
measure up to 4 meters and weights 1.6g.

A MultiRanger deck, of weight 2.3g, detects any object around the CrazyFlie.
It measures the distance to objects in 5 directions: front, left, right, back, and
up. The maximum distance is 4 meters with millimeter precision.
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Fig. 4. Collected images of license plates and background with HIMAX camera.

3.2 Software and Data

When creating a system that navigates and detects objects onboard a nano-
drone, the computing capabilities can be a challenge. The software components
of our system are divided into three tasks: navigation, detection, and mapping,
which are explained next.

Considering a row of parked cars as a wall due to their tight packing, we use
the SGBA’s wall-following algorithm [11] as a lighter and more power-efficient
navigation solution compared to SLAM. The original algorithm was modified
to have the drone face the walls while flying sideways, allowing the camera
to scan for license plates. The MultiRanger deck is used to detect obstacles,
while the Flow deck helps maintain the drone’s stability at a specific height
and measures the distance and direction of movement. The implemented wall-
following algorithm, shown in Figure 2, involves the drone moving forward until
a wall is detected in front. It then aligns itself with the wall and continues moving
forward along it. If the side range sensor loses sight of the wall, the drone seeks
a corner and rotates around it. The drone then aligns itself to the new wall and
moves forward along it. If it finds a wall from the front range sensor instead, it
will rotate in the corner, align with the new wall, and move along it.

For detection, a binary approach is followed, where the system outputs
either ’license plate’ or ’background’ as a result. Real-time computation is cru-
cial since the drone needs to simultaneously fly and perform classification. To
meet the computational constraints, MobileNet v2 is chosen as the classification
backbone, as it reduces complexity costs and network size compared to other
models, making it suitable for mobile devices like drones [16]. Bitcraze provides
a demo for classifying Christmas packets [2] using the AI deck of the CrazyFlie,
which serves as the basis for this research, although it needs adaptation to our
particular scenario and data. The provided model is trained for a different task
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Fig. 5. Setup of different flight test cases (Section 4.1).

(Christmas packets) and their data is collected from just one position. To use
it for our intended purposes, we captured our own customized database of ’li-
cense plates’ and ’background’ (Figure 4) with the HIMAX camera attached to
the AI deck. The dataset consists of training/validation images with 747/180
license plate samples and 743/183 backgrounds, all grayscale and at a resolution
of 320×320. The detection model is trained using the captured samples for 100
epochs. To deploy the deep learning model on the GAP8 processor, we use the
GAP flow tool provided by GreenWaves Technologies inside the GAP8 SDK [7].

Mapping plays a crucial role in monitoring the target objects and keeping
track of their positions. This is achieved by sending the drone position and the
classification result to a remote client console. When navigating, the CrazyFlie
captures images with the HIMAX camera at 2 Hz, which are classified in real-
time, generating a confidence score for each. The results, along with the drone’s
current position, are transmitted to a remote client (Figure 3). The client con-
nects to the CrazyFlie using a USB radio dongle. This allows the client to display
the classification results, drone position, and path on a scaled figure. The clas-
sification results can be color-coded for easier interpretation (e.g. Figure 7).

4 Experiments and Results

To evaluate the system, precision (P) and recall (R) are used to measure the
classification performance. Precision measures the proportion of positive classi-
fications (said to be a license plate), which are actually an image with a license
plate. Recall, on the other hand, measures the proportion of actual positive cases
(images with a license plate) which are correctly classified as positive (said to
have a license plate). A summarizing metric is the F1-score, the harmonic mean
of P and R, computed as F1=2*(P*R)/(P+R).

4.1 Test Cases

To simulate vehicles, we employ moving boxes with printed-out standard-size
license plates (Figure 5) on a garage of size 6 × 3.6 meters. A fixed start point will
be used so that the drone starts in the same position every time. We define four
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Fig. 6. Classification results and flying time of different test cases (Section 4.1).

different setups for testing with different paths and placements of the objects.
Each case will be evaluated three times (i.e. the drone will be deployed on three
different occasions). The test cases are set up to evaluate the performance of the
wall following algorithm and license plate detection, including when the drone
has to proceed across several walls. We also aim at evaluating situations where
the objects with license plates are not in a straight line. The following test cases
are thus considered, shown in Figure 5:

1. One row with 4 moving boxes in a straight line, with a gap of 25 cm between
each. The row is 2 m away from the starting navigation point.

2. The same previous setup, but the boxes were not placed in a straight line.
3. Two rows with 3 moving boxes each in a straight line and separated 25 cm,

leaving space for the drone to turn around. The first row is 2 m away from
the starting navigation point, and the second is 1.37 m behind the first one.

4. The same previous setup, but the boxes were not placed in a straight line.

Figure 6 gives the classification results and the flying time of each round
across the different tests cases, whereas Figure 7 shows the 2D grid with the
drone path and classification output of selected rounds during the journey (the
worst and the best round, based on the F1-score).

Since the drone classifies continuously, there are more true positives (TP)
than objects, because the same object is captured in different frames. TP indi-
cates how many true ’license plates detected’ the drone prints out when flying
past the boxes. For example, in test case 1, with four objects tested, there are
between 7 and 15 true positives (depending on the round). It can also be seen
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Fig. 7. Drone paths on different flight test cases (Section 4.1).

that in all tests, all objects are detected at least once in some of the rounds. This
means that all license plates are captured if the drone is allowed to do two or
three rounds of navigation. At the remote client, the actual plate number could
be extracted (not implemented in this work), making possible to consolidate the
different true positives of the same number into one single instance. These re-
sults indicate that the implemented system is able to work across the different
layouts and object alignment tested.

The system also shows false negatives (FN), meaning that the drone classifies
as ’background’ an image containing a license plate. On average, the false nega-
tives are less than the true positives in the single-row experiments (tests 1 and
2), but in the two-rows experiments (tests 3 and 4), it is the opposite. In tests 3
and 4, there are more objects to classify (six vs. four) and the drone is navigating
more time, which obviously results in more available images with positives. But
having to navigate and deal with wall/row corners (Figure 7) may produce many
of those images showing a license plate from a very difficult perspective, impact-
ing the capability to detect them. However, based on the previous considerations
about the true positives, this should not be an issue because the drone is able to
capture all license plates in several images across different journeys. The system
is not free of false positives (FP) either (i.e. background frames said to have a
license plate), an issue that could also be resolved at the remote client with a
more powerful classifier that concentrates only on the selected frames sent by
the drone and discards erroneous cases. The number of true negatives (TN) is
also usually higher than the false positives, meaning that a high proportion of
background images are labeled correctly.

When analyzing if boxes are in a straight line or not (case 1 vs. 2, and 3
vs. 4), it is interesting to observe that the performance is better when they are
not forming a straight line (observe P, R, and F1-score). The drone does not
seem to have difficulties in following the ’wall’ of boxes even if they are not
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Fig. 8. Classification results and flying time of speed test cases (Section 4.2).

completely aligned, as seen in the paths of Figure 7, and this indeed produces
better detection results overall. On the other hand, the two-row tests (cases 3
and 4) show worse performance overall than the single-row tests (cases 1 and 2),
an issue that could be attributed to the mentioned imaging perspective of the
two-rows navigation that causes a greater amount of false negatives and false
positives. Also, the flight time obviously differs. Two rows demand extra time
for the drone to turn around, find the way and navigate across a bigger amount
of objects. As seen in Figure 7, the drone navigates each row of boxes on the
two sides, as expected from the wall following algorithm, which increases flying
time to well beyond double.

When analyzing the drone paths in Figure 7, it can be seen that in several
cases, the drone has difficulties flying following a straight line. This is, very likely,
a limitation of employing a wall-following algorithm, since we use objects that
have some gap among them (25 cm). Sometimes, the drone has a tendency to
move toward the gap between the boxes, although it is not always the case.
In the two-row setup, it is capable of moving along wall corners and row ends
without issues. Together with the fact that the system does not miss any license
plate if several rounds are allowed, these results validate our overall approach.
In a few runs, the paths show that the drone flies over the boxes, but it did not
happen in any run. The drone was flying correctly, close to the boxes, but it
seems that it was estimating its position incorrectly.

4.2 Speed Factor

Three different speeds of the drone (0.1, 0.2, and 0.3 m/s) have also been tested
across two rounds per speed to see how it impacts performance. This experiment
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Fig. 9. Setup of the low light test case (garage door closed) (Section 4.3).

Fig. 10. Classification results and flying time of low light test cases (Section 4.3).

is carried out on scenario 1 of the previous sub-section (a single row of 4 boxes
in a straight line). Figure 8 gives the classification results and the flying time of
each round.

Also, here, all license plates are captured across the two rounds, regardless of
the speed. An interesting result is that the worst results are given at the slowest
speed, with the system missing many plates as false negatives, and producing
many false positives as well. At 0.2 or 0.3 m/s, the amount of false negatives
and false positives is significantly less, with a conversely higher amount of true
positives. Comparatively, a higher speed does not imply worse results in general.
This could be exploited to complete the expedition faster, counteracting the
battery issue mentioned in the previous sub-section.

4.3 Light Factor

This test was conducted with the garage door closed, so the environment is darker
and only illuminated by some ceiling lamps (Figure 9). The test is done over two
rounds with a single row of 4 boxes in a straight line. Figure 10 gives the results
and the flying time of each round. As in the previous cases, all license plates are
captured across the two rounds, so the evaluated light conditions do not have
an impact on the detection either. One possible effect of the lower light is the
dispar results between the two rounds in detecting plates. The first round has
many false negatives, whereas the second round has many true positives. Also,
in round two, no background is detected correctly (true negatives=0). It must
be stated as well that the navigation is not be affected by darkness, since the
sensors of the Flow and MultiRanger decks are not based on visible illumination.
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Only the classification would need cameras and software adaptation capable of
working in very low light conditions, such as infrared cameras.

5 Conclusions

This work has presented a system that makes use of a camera on-board a nano
drone to navigate across rows of vehicles tightly parked and find their license
plate. We apply a navigation solution based on wall-following, and a MobileNet-
based CNN trained to detect license plates. The solution is fully executed on-
board a CrazyFlie drone, with just 10 cm wingspan. The drone position and
images are used on a remote client to build a 2D map of the path and license
plates detected without relying on positioning systems (e.g. GPS) or tagging.
Our application scenario is transportation, where vehicles are packed closely to-
gether, and knowing the exact position of each one and its features (e.g. electric
or combustion) can help to mitigate security issues, such as fires.

We have carried out several tests simulating objects with license plates. Dif-
ferent scenarios are considered, such as several rows (demanding the drone to
turn around and find the next row), objects not stacked across a straight line,
different drone speeds, or lightning. In any of them, even if the plates are not de-
tected in every frame, all are captured by aggregation after the drone carries out
2-3 rounds of navigation. This is feasible e.g. on-board vessels after all vehicles
have been parked. The wall-following algorithm, which is less computationally
demanding than SLAM [4], correctly navigates across all objects despite a small
gap between them. It also works well if the objects are not perfectly aligned.

Our solution assumes that the rows of objects are connected to a wall. It
would need extra tweaking if, for example, they do not have a wall on any of
their ends. Also, we only send the drone position and image with a plate de-
tected, but the actual number could be read, either at the drone with additional
software or at the remote console. Processing or sending only images with high
detection confidence would allow to save resources at the drone while completing
the navigation mission. The drone path with color codes (Figure 7) would also
allow obtaining a map with the exact position of each object, as long as at least
one image per object is sent eventually. When several true positives of a license
plate are captured, the actual number could be used to group them and filter
multiple detections. In the same manner, checking the extracted number against
a list of expected vehicles (a manifesto) would also allow to filter out errors.

Our garage is of size 6 × 3.6 m and the drone covers it in 1-3 min, depending
on the number of rows (Figure 6). The maximum flying time declared by the
CrazyFlie is 7 min, so one single charge is able to cover the three rounds of tests
1 and 2, but not of tests 3 and 4. This must be considered when deploying a
system like this to a larger space like garages or ships, either by stocking several
batteries or more than one drone. Adding more tasks to the drone itself (e.g.
reading the license plate number) would also have an impact on the battery
time. However, if the drone is capable of filtering out several true positives or
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other errors (at the cost of extra processing), it would transmit fewer images to
the remote client, which would reduce battery consumption as a contraposition.

Another possibility is to relieve the drone of detecting plates, and just send
the camera stream and position. Detection and number reading would then be
done in a more powerful remote client, which could include a larger CNN detector
[14] for a more precise result.
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