

Bachelor thesis
Computer Science and Engineering, 300 credits.
Computer Engineer, 180 credits.

Java Auto Grader

Computer Science and Engineering, 15 credits.

Halmstad May/2023

Shahm Abdulrazzak, Tor Mattsson

Sammanfattning

Processen för att bedöma kodinlämningar i programmeringskurser är vara

tidskrävande. För att lösa problemet, vill vi automatisera testerna och

generera en testrapport för Javainlämningar vid Högskolan i Halmstad. Vi

tillhandahåller ett verktyg som med hjälp av Property-Based Testing och

JUnit Quick-check biblioteket underlättar denna process för lärarna.

Verktyget är utformat för att kunna ge studenterna direkt återkoppling på

deras inlämningar. Genom att automatiskt generera tester och testrapporter

säkerställer vi att inlämningarna uppfyller de krav som läraren specificerar.

Detta projekt har potential att förbättra rättningsprocesser i programmerings-

kurser genom att testa inlämningar på ett systematiskt och likvärdigt sätt och

genom att vara ett mer effektivt sätt att bedöma studenternas inlämningar.

Verktyget skulle kunna integreras med en Learning Management System för

att även automatisera nerladdning av inlämningar och uppladdning av

resultat.

Keywords:

Property-based Testing. JUnit Quick-Check. Automation. Auto grader. Test

generator. Programming. Java.

Abstract

The process of grading code submissions in programming courses is time-

consuming and error-prone. To address this issue, we propose a project that

automates the testing and grading process for Java code submissions at

Halmstad University. Our approach leverages property-based testing using

the JUnit Quick-Check library to generate tests and test reports automatically.

The tool we demonstrate in this project is designed to provide students with

immediate feedback on their code submissions and reduce the workload for

instructors. By automatically generating tests and test reports, our approach

ensures that code submissions meet the required specifications and are free

from common errors. The com.pholser library is utilized to implement the

property-based testing approach.

We believe that our project has the potential to improve the grading process

for programming courses and provide a more efficient and effective way of

assessing student code submissions. Our implementation can be easily

extended to support other programming languages and can be integrated with

existing learning management systems to provide a seamless experience for

instructors and students alike.

Keywords:

Property-based Testing. Testing. White Box Testing. JUnit Quick-Check.

Automation. Auto grader. Test generator. Programming. Java.

Acknowledgments

We would like to express our sincere gratitude to the individuals who have

made significant contributions to the completion of this project:

First and foremost, we extend our thanks to our supervisor, Veronica Gaspes,

for her invaluable insight, guidance, and unwavering support throughout the

entire project. Her expertise and continuous assistance have been instrumental

in shaping the direction and quality of our work.

Additionally, we would like to acknowledge and express our appreciation to

Professor Wojciech Mostowski for his exceptional teaching in object-

oriented programming. The knowledge and skills imparted during his classes

have proved to be immensely valuable, playing a pivotal role in the successful

execution of this project.

Table of contents

1. Introduction .. 7

2. Background .. 9

2.1 Property-based Testing Libraries ... 9

2.2 Similar Tools .. 10

2.2.1 CodeCheck ... 10

2.2.2 Nb-grader ... 11

3. Methods .. 13

3.1 Theory .. 13

3.1.1 White- and black box testing ... 13

3.1.2 Property-based Testing .. 13

3.1.3 JUnit QuickCheck .. 14

3.2 Methodology .. 15

3.2.1 Sub-goals ... 15

3.2.2 Project management tools .. 15

3.2.3 User-friendly environment using APIs .. 17

3.2.4 Class Generator<T> ... 18

3.2.5 Optimizing for Scalability and Performance 19

3.2.6 Visualization of the test results .. 19

3.2.7 @Annotaions ... 20

3.2.8 Support classes ... 21

3.2.9 Object-oriented Programming ... 22

3.2.10 API and integration of LMS .. 22

4. Result ... 23

4.1 Breaking down the project ... 23

4.2 Retrieving data from the LMS .. 23

4.3 Handling the zip files and compilation ... 23

4.4 Running the PBT .. 24

4.5 Creating the text report. .. 26

4.6 Plagiarism ... 27

4.7 Final product summary ... 28

4.8 Limitations .. 29

5. Discussion .. 31

5.1 Technical Achievements .. 31

5.1.1 Implementation of PBT ... 31

5.1.2 Customization of the Testing Framework 31

5.1.3 Scalability of testing .. 31

5.1.4 Effective bug detection .. 31

5.1.5 Support classes ... 31

5.2 Results Related to the Research Questions .. 31

5.3 Societal Aspects ... 32

6. Conclusion ... 35

References ... I

7

1. Introduction

Code submissions are the most common way to test a student's knowledge in

programming courses at universities. Hence, there are a lot of hand-ins to go

through for the teachers. Teachers need to manually review or run scripts to

test each student's code submission to ensure that it meets the assignment's

requirements. This is a time-consuming task, especially when dealing with a

large number of submissions.

Marking code submissions involves making sure that the code compiles, that

the code calculates what is expected, and that the students do not share code.

At Halmstad University code submissions are made through the University's

learning platform (LMS) Blackboard. It takes a long time for teachers to

download student submissions, compile them, execute them, and review the

code for each student submission. The purpose of the project is to create a

tool that will speed up the correction process of student submissions so the

teachers can save time and focus on more important things. This project is

relevant since an auto-correcting tool for submissions would facilitate the

teacher's work.

The software produced in this project will be used to test the Java submissions

of students at Halmstad University. The software will take the student's code

and generate a set of test cases based on the properties specified by the

instructor. The software will compile all students’ code, run the tests, possibly

check for plagiarism among submissions and report any compilation errors,

failed test cases, and possibly identified plagiarism to the instructor. This will

allow the instructor to identify any bugs quickly and easily in the student's

code and provide feedback to the student. The instructor will be able to

download all submissions and the software will check all of them and

generate reports for each of them.

By communicating with the customer, in this case, the teachers of the courses,

the project can be created to satisfy their needs to accelerate the correction

process of student submissions.

The problem statements to answer are how can property-based testing be

integrated into an auto-grading system, and what are the benefits and

limitations of this approach?

8

9

2. Background

When marking code submissions teachers must make sure that the code

submitted by the students compiles, that the code calculates what is expected,

and that the students do not share code. Automating parts of this process is

what this project attempts. In particular, the project explores how to use

Propery-based testing to help automatize the process of checking that the code

submitted by the students calculates what is expected. This section reviews

the tools that can be used to leverage Property-based testing and some tools

that have already been implemented to aid in the process of marking code.

2.1 Property-based Testing Libraries
JUnit-QuickCheck [1], QuickCheck [2, 3, 4], ScalaCheck [5], Hypothesis [6],

and JQwik [7] are all libraries for property-based testing. They all generate

random inputs for a test and check that the output of the test satisfies certain

properties.

QuickCheck was originally implemented in Haskell. PBT has historically

been “The thing that QuickCheck does”. It was created by Koen Claessen and

John Huges in 2000 and has since been used and spread to many languages

such as Erland, C#, and Scala. It introduced and provided automatic ways of

shrinking test cases, making it easier to understand and debug the cause of the

failure. Other similar libraries that are used for different languages are JUnit-

QuickCheck, ScalaCheck, Hypothesis, and JQwik.

ScalaCheck is a library for Scala and junit-quickcheck integrates the

quickcheck library with JUnit in Java. QuickCheck and ScalaCheck have

been around for longer and have a more mature ecosystem, while JQwik and

Hypothesis are relatively newer. QuickCheck and ScalaCheck are more

similar, as they both use a similar approach to property-based testing and have

similar syntax. The hypothesis has a different approach, and its syntax is more

different from the first two, junit-quickcheck is an integration of quickcheck

with JUnit and allows for quickcheck tests to be run within JUnit.

Hypothesis is a library from the programming language Python. It’s used for

creating unit tests that are simpler to write compared to other PBT libraries.

Even though it’s simpler, hypothesis is still powerful when run, finding edge

cases in the code that one wouldn’t have thought to look for. Hypothesis is

stable, powerful, and easy to add to any existing test suite. QuickCheck and

ScalaCheck focus on generating random inputs, while Hypothesis focuses on

generating inputs that are as small as possible while still revealing bugs.

JQwik is a Java library for property-based testing, while QuickCheck and

Hypothesis are libraries for Haskell and Python, respectively. The main

purpose of JQwik is to bring PBT to the Java virtual machine. The library’s

focus is mainly on Java and Kotlin.

The use of JUnit-QuickCheck allows for seamless integration with JUnit,

which is the most widely used Java testing framework. This means that

10

developers who are already familiar with JUnit can easily get started without

learning a new framework. It allows for customizable generators, i.e.

developers can create their custom generators for properties, which can be

useful for testing specific types of data or edge cases. Furthermore, it’s one

of the most used within the area, hence has a strong contributing community.

This means that plenty of resources and help are available if issues occur. For

these reasons, it was decided to proceed to use the library JUnit-Quick-Check

in the development of this project.

There are however some downsides and limitations to using JUnit-

QuickCheck. Unlike ScalaCheck, it does not have as robust support for

shrinking. This can make it more difficult to find the minimal input that

causes the program to fail. Lastly, it’s less expressive compared to other

property-based testing frameworks, which can make it more difficult to

express the properties and supposedly behavior of a function. By the looks of

it, this does not seem to limit us in this project.

2.2 Similar Tools
Grading programming assignments manually is a very time-demanding

process, which is why auto-grading tools for programming submissions are

being developed. Some of these auto-grading tools are CodeCheck [8, 9] and

nb-grader [10].

2.2.1 CodeCheck
CodeCheck is an anonymous, author-friendly auto-grader. It is optimized for

simple programming assignments that provide practice and build confidence.

This software allows the teacher to specify a function and properties for the

given function. It's an educational tool that easily makes it clear what part of

the code for a given function should be visible to the students, and where they

should write their code. This is done by some simple “//Commands”,

i.e.//HIDE and //EDIT. The //HIDE command makes specific parts of the

code invisible to the students, and the //EDIT command creates specific areas

where they’re supposed to write their code. Moreover, it makes it clear where

the teacher is supposed to write her code. This is a way of pointing out or

highlighting parts of the relevant code to the students. It provides support for

the existing PBT libraries and allows for user-friendly interfaces. It can be

integrated into different learning management systems (LMS) such as

CANVAS, Moodle, and Blackboard.

The teacher can then choose if they want to use unit testing, auto-generated

tests, or other testing options and how the results are presented to the students.

After the students submit their code they will receive instant feedback on the

performance of their code, and how many of the criteria they fulfilled.

When a teacher uses CodeCheck to assess students' code assignments, they

typically must perform the following tasks:

1. Create assignments: The teacher has to create assignments that

contain instructions and requirements for the students' code

assignments.

2. Release the assignments.

11

3. Collect the assignments.

4. Set up the code check tool: The teacher has to set up the code check

tool with the requirements and tests specified in the assignment. This

involves creating test cases that check whether the students' code

meets the requirements and produces the expected output.

5. Run the tests: The teacher can then run the tests using the code check

tool to assess the students' code assignments. The tool will provide

feedback on whether it meets the requirements and produces the

expected output.

6. Provide feedback: Once the testing is complete, the teacher can

provide feedback to the students by releasing the test results and any

additional feedback.

The tool developed in our project will have some similarities with

CodeCheck, mostly when it comes to the teacher creating test cases that check

if the students’ programs pass the assignment.

2.2.2 Nb-grader
Nb-grader is a command line tool and web application for creating and

grading Jupyter Notebook assignments. It allows instructors to assign and

grade notebooks, while also allowing the students to submit their work and

receive feedback on their progress. It includes functionality for creating

assignments, distributing them to students, collecting submissions, and

providing feedback to students. It also provides support for automated testing

of code and integration with other tools such as code coverage and style

checkers.

The order nb-grader works in are as follows:

1. Write the instructor version (with answers)

2. Auto-generate student version (without answers)

3. Release The assignment to students.

4. Collect submissions from students.

5. Auto-grade submissions.

6. Manually grade submissions.

7. Generate feedback.

When a teacher is using nbgrader, they typically have to perform the

following tasks:

1. Create assignments: The teacher has to create assignments in Jupyter

notebooks that contain instructions and questions for the students.

2. Convert the notebooks: The teacher then has to convert the notebooks

into a format that the nbgrader can grade. This has parts like removing

the solutions to the questions and replacing them with code cells that

grade the student's answers.

3. Release the assignments.

4. Collect the assignments.

5. Grade the assignments: The teacher can then use nbgrader to grade

the notebooks submitted by the students. This involves running the

grading code cells that check the students' answers against the

expected solutions.

12

6. Provide feedback: Once the grading is complete, the teacher can

provide feedback to the students by releasing the graded notebooks

with the solutions and feedback.

13

3. Methods

3.1 Theory

3.1.1 White- and black box testing
There are two major approaches to generating test cases for testing software:

white-box testing and black-box testing.

White Box Testing involves examining the code and picking test cases that to

some extent execute interesting parts of the code. Based on knowledge of the

code structure, tests are identified so that when applied different code

segments get tested. Some upsides are that: the method is useful for

identifying internal flaws, such as coding errors and logical faults.

It’s more comprehensive to write tests to cover the complete program since

the tests are easier to apply to individual segments of the code. However, there

are some downsides: it requires a deep and thorough understanding of the

structure of the program, and trying to cover most of the code segments

requires enormously many test cases [11].

Black Box Testing involves understanding the specification and the input and

output domains to generate test cases. Without having any insight into how

the code to be tested is built, tests are created from the outside. In other words,

testers treat the software as a ‘black box’. Only focusing on the inputs and

outputs of the program. Some upsides are that it is more suitable for testers

who lack knowledge of how the software works. It tests the software system

based on a user’s perspective. There are however some negative aspects of

black box testing: testers might miss issues that could have been identified by

looking at the code. It tests the program as a whole, which means it’s harder

to isolate the cause of defects in the code. And finally, tests may be redundant

if the conditions that are being tested are overlapping [11].

Overall, the differences between the two testing methodologies make them

effective when applied to different projects depending on the purpose of the

testing and the program itself.

3.1.2 Property-based Testing

A technique that is used in this project is Property-based testing, which will

later be referred to as PBT [12]. PBT is a technique where test cases are

generated automatically, based on properties that the code under test should

satisfy. These properties can be seen as partial specifications of what the

software is expected to do. PBT tries to combine the intuitiveness of tests with

the effectiveness of randomized, generated test data. This is done by

specifying properties that the code should satisfy, and then the testing library

generates random inputs that should satisfy those properties. The advantage

of this approach is that it can find bugs that would be difficult to find with

traditional manual testing, as it can generate inputs that are unlikely to be

considered by a human tester.

14

Property-based testing is a software testing technique where instead of testing

a specific input-output combination, you test the behavior of the system or

program under a set of properties or rules that it should follow [2].

In PBT, one can define a set of properties that the system should satisfy, and

then generate random inputs that are used to test a piece of software against

these properties. The test framework generates many test cases, often in the

order of thousands, to test the properties and find potential edge cases and

bugs that would be difficult to find using traditional unit testing techniques.

The approach is useful for testing complex systems or systems with many

possible input combinations. By testing properties instead of specific input-

output pairs, PBT can often uncover subtle issues or edge cases that might be

missed with traditional testing methods.

PBT is commonly used in functional programming languages such as

Haskell, but it can be used in other programming languages such as Java and

Python as well. In this project, PBT in Java is of the most interest. There are

several popular libraries and tools for property-based testing, including

QuickCheck, Hypothesis, and ScalaCheck.

An example where PBT can be used is when one might want to test a function

that sorts integers in ascending order. Instead of giving specific input integers

to be sorted by the function and expecting a specific output, PBT generates

random input integers to be sorted by the function, and the output is then

tested to make sure that it’s in ascending order to make sure that the function

does what it is intended to do.

3.1.3 JUnit QuickCheck

One of the important tools used in this project is JUnit-QuickCheck. JUnit-

QuickCheck is a library for the JUnit testing framework that allows the user

to generate and execute randomized test cases for the program to be tested. It

is based on Property-based testing, which involves specifying the properties

that a Java program should have and then generating test cases to check those

properties.

With JUnit-QuickCheck, the tester can define a set of constraints and

properties that the code must satisfy, and then let the library generate random

input values to test those constraints and properties. In our project, we

imagine the teacher producing the properties for the code that the students

must write. This can help the teachers discover bugs and edge cases that they

might not have thought of when manually writing test cases.

The library provides a set of annotations and utilities that allow the teachers

to easily integrate randomized testing into their JUnit test suite. For example,

they can annotate a test method with “@Property” to indicate that it is a

Property-based test, and use the Gen class to generate random input values.

15

JUnit-QuickCheck is a useful tool for testing complex and difficult-to-reason-

about code, as well as for finding edge cases and unexpected behavior in the

code.

An example where JUnit QuickCheck is used in a tool is Apache Cassandra

which is a distributed NoSQL database. The tool uses the PBT library JUnit

QuickCheck to test its data access layer. The data access layer is responsible

for writing data to the disk and reading it. The PBT library helps the

developers at Cassandra ensure that their code can handle a wide range of

input values, and edge cases and that it satisfies the properties defined for its

data access layer.

3.2 Methodology

3.2.1 Sub-goals
The project was broken down into multiple sub-goals so that it’s easier to

develop and test.

The sub-goals of what the tool should include are things such as being able to

handle zip folders and unzipping them, iterating through a folder, detecting

Java classes, compiling them, and running PBT tests on the Java classes that

successfully compile. The last optional sub-goal that should be included in

detecting plagiarism between students is to be able to know if students have

copied each other’s code. Another important sub-goal that must be included

in this tool is to create a Txt file that includes details of the results of how the

correction process went.

Since assignments can be different, it is not meant to include written tests and

data generators in the tool but to give the teachers the chance to easily write

and implement their own tests and data generators for whatever assignments

they’re expecting the students to submit. It should be easy for the teachers to

implement those tests and generators to save as much time as possible.

The tool is developed to automate parts of the correction process of

programming assignments which will also reduce the time spent on manually

checking and correcting these assignments.

Another optional sub-goal is to integrate the tool with the university’s LMS

(learning management system) so the teachers can automatically grade the

submissions without needing to download them locally on their machines

first.

3.2.2 Project management tools

To be able to facilitate the use of existing libraries and keep structure between

source code and test code a management tool was needed. Maven is a build

automation and project management tool [13]. It helps and provides ways to

test, package, and deploy Java libraries as well as to manage the different

dependencies. Dependencies in a Java project are external libraries that the

project’s code depends on to run or compile. Maven manages the project

16

dependencies by downloading them from remote repositories and placing

them on the classpath. To know which dependencies to use, examples were

followed from JUnit Quick-Checks official page together with other JUnit

Quick-Check examples. The “com.pholser” library was most widely used in

this project [14].

Different packages were created to maintain a structure between the test code

and the main code. Within these folders, subdirectories for different types of

code and resources were used.

Overall, for someone with no previous experience with Maven or PBT, the

setup for everything to work might not be effortless. To facilitate the

threshold of creating these PBT, a ‘ContentCreator’-class was created. Its’

purpose is to serve as an adaptable template. When instantiating the class

object, it takes as in arguments: generatorType, packageName, className,

GeneratorClass, and Trials. By creating an object of the class, the user can

seamlessly create a test class, create a generator or set up the pom file by using

these methods: ‘.createTestClass’, ‘.createGeneratorClass’

‘.createaPomFile’.

As a user of the auto grader, what is left to do? After the “contentCreator”

class creates the .jav-files: testClass and generatorClass, all that’s left is to

specify the tests themselves inside the testClass and to specify the behavior

of the tested class in the generatorClass. By passing ‘generatorType’,

‘packageName’, ‘ClassName’. ‘generatorClass’, and ‘trials’ as arguments

to the ‘ContentCreator’- object, it will generate the test files and Java code

necessary The areas left to change are pointed out and, notable is also that all

necessary libraries are dynamically imported. See code example 1,2,3.

public static void main(String[] args) throws IOException {

 ContentCreator example = new ContentCreator(...);

 example.createGeneratorClass();

 Example.createTestClass(...)

}

Code example 1: How to set up all tests using content creator.

17

public class ClassName extends Generator<generatorClass> {

...

@Override

public ClassName generate(SourceOfRandomness

random, GenerationStatus status) {

 //Customize the behavior of your Generator

 return new ClassName();

}

}

Code example 2: Visualization of how the created generator file looks like.

@Property(trials = 100)

public void test3hugo(@From(ClassName.class) ClassName obj) {

 //Customize the behavior of your test

 Boolean test = false /* Replace false with your test

here*/);

...

}

}

Code example 3: Visualization of how the created Test file looks like.

3.2.3 User-friendly environment using APIs

In terms of a user interface for JUnit Quick-Check, there is not a graphical

user interface (GUI) per se, but rather a set of APIs that provides a

programmatic interface for defining properties and generating test data.

To define a property in JUnit QuickCheck, you simply annotate a method

using the ‘@Property’ annotation, followed by the test logic in the body of

the method. Junit QuickCheck provides a set of built-in generators for

generating test data, and you can also define custom generators if needed. See

3.1.4.

To generate and run property-based tests, you can simply run the test class

containing the annotated properties as you would with any other Junit test

class. By passing the ‘@From’ annotation followed by the

GeneratorClass.class and then the Class c as arguments of the testFunction,

Junit QuickCheck will use the given generator and automatically generate

random test data and execute the property-based tests. See code example 3:

Using the ‘@SuiteClasses’ annotation simplifies things by allowing multiple

tests to be run at once by a single command. Rather than having to run each

test class separately, they can be grouped and executed all at once. This saves

time and makes it easier to manage your test, particularly when the amount

of tests increases. Additionally, using a test suite allows for structural support.

The tests can be organized into local groups, such as by functionality or

18

module, making it easier to understand and maintain structure within the

project.

When using the ‘com.pholser’ library for PBT, you can create a suite of tests

by defining multiple test classes and annotating them with

‘@RunWirth(PropertyTestRunner.class)’ and ‘@TestProperties’

annotation. Once you have defined your test classes you can use the

‘@SuiteClasses’ annotation to group them and run them as a suite. In this

example, the ‘MyPropertyTestSuite’ class serves as a container for the three

test classes which are specified in the ‘@SuiteClasses’ annotation. When you

run this test suite, JUnit will execute all the tests in the three classes. See code

example 4.

@RunWith (Suite.Class)

@SuiteClasses({
 PropertyTest1.class
 …
 PropertyTestN.class
})

...

Code example 4, How Property tests are integrated into one SuiteClass.

So, while JUnit QuickChest does not provide a GUI per se, it does provide a

convenient and intuitive programmatic interface for defining properties and

generating test data which can be considered a form interface for the

framework [16].

3.2.4 Class Generator<T>

Generators are a crucial component of PBT because they enable the

automated generation of inputs that conform to the properties being tested.

Generators can make testing more reusable and optimized for scalability in

several ways [17].

Firstly generators allow for a wider range of input values, compared to when

creating objects manually. This is particularly important when testing

complex programs or testing edge cases that may be difficult to identify

manually. By restricting and defining the generator, it generates a diverse set

of inputs and ensures that the program behaves correctly across a wide range

of scenarios.

Secondly, by defining a generator, it can improve the scalability of testing by

automating the process of generating inputs. This is particularly useful when

testing a large or complex program, where manually generating inputs may

be impractical and tedious. By automating the input generation process,

generators can significantly reduce the time and effort required to test a

program.

Finally, generators make the testing more reusable by allowing the reuse of

the same test inputs across multiple tests. This is particularly useful when

19

testing multiple properties of a program, as it allows testing of each property

with the same set of inputs, thereby reducing the risk of introducing errors or

inconsistencies between tests.

An example of where the class generator can be used is for instance when

testing a Java class that represents a complex number. In that class, the

students could submit different functions such as functions that add, multiply

or subtract two complex numbers. To test these functions, data that represents

complex numbers must first be created, and by using the generators class,

these complex numbers can be created automatically and then the functions

can then be tested with PBT.

In summary, understanding how generators work and function is crucial to

make the PBT more reusable and optimizing it for scalability.

3.2.5 Optimizing for Scalability and Performance

To optimize the performance, one of the key factors is to have effective

generators [3]. Once the property test begins running, each iteration produces

a new class object via the generator. Hence, the code complexity has a big

compact over the overall runtime. The property tests of course also have an

impact on the performance, however, the functionality is of greater interest.

In John Hugestalk's "How to Specify It" [1], John Hughes emphasizes the

importance of focusing on the functionality of the software being developed,

rather than on the complexity of the tests that verify the correctness of that

software. He argues that if the tests themselves become too complex, they can

become a maintenance burden and may even introduce bugs, defeating their

purpose. Instead, he suggests that tests should be kept as simple as possible

while still providing good coverage of the desired functionality.

3.2.6 Visualization of the test results

The com.pholser library doesn’t have support for any tool to present data or

results after the execution of the test classes. However, this meant a custom-

made TestReporter class had to be created instead. A combination of

TestReport-, TextFileHandler- and WriteTofile- classes was used to create

and write a TestReport.txt file.

To find potential errors, expressions such as ‘assertTrue’ and ‘assumeThat’

were imported ‘import static org.junit.Assert…’.

The ‘assumeThat’ method is used in PBT to conditionally include or exclude

test data based on a given predicate. With the generators, test data is generated

automatically based on the properties of the generator. However, not all

generated test data may be valid or relevant for the particular test case being

executed. The ‘assumeThat’ method provides a way to filter out unwanted

test data by specifying a predicate that must be satisfied for the test to continue

executing with the data.

20

The ‘assertTrue’ method in JUnit is used to assert that a given condition is

true. When used in PBT, ‘assertTrue’ can be used to validate generated test

data by checking if certain properties hold. It can be used to validate various

properties of the generated test data, such as range, inequalities, or specific

values. By asserting that these properties hold for the generated data, the

confidence increases the correctness of the tested code.

Once all trials have been executed, the test report is generated in a text file.

Due to the number of trials, the test reporter will generate results in the text

file equal to the number of trials. However, this is not a suitable or visually

appealing approach to a result report. To fix this, a textFileHandler-Class was

implemented, to scan through the first text-file, and interpret the outcome of

the tests. The results are then presented as the number of completed tests out

of the total amount of tests, and if any of them fail, the argument with the

failed values is also presented in the visual report.

3.2.7 @Annotaions
To find potential errors, expressions such as ‘assertTrue’ and ‘assumeThat’

were imported ‘import static org.junit.Assert…’.

The ‘assumeThat’ method is used in PBT to conditionally include or exclude

test data based on a given predicate. With the generators, test data is generated

automatically based on the properties of the generator. However, not all

generated test data may be valid or relevant for the particular test case being

executed. The ‘assumeThat’ method provides a way to filter out unwanted

test data by specifying a predicate that must be satisfied for the test to continue

executing with the data.

The ‘assertTrue’ method in JUnit is used to assert that a given condition is

true. When used in PBT, ‘assertTrue’ can be used to validate generated test

data by checking if certain properties hold. It can be used to validate various

properties of the generated test data, such as range, inequalities, or specific

values. By asserting that these properties hold for the generated data, the

confidence increases the correctness of the tested code.

There are however a lot more ways of restricting and managing the test data

to behave in certain ways. Some examples are: ‘@Assume’, ‘@Seed’,

‘@With’, ‘@NotEmpty’, ‘@NotNull’, and ‘@InRange’. [13, 18, 19]

After the ‘@Property” annotation in a property-based test, the “(trial = x)”

statement indicates the number of generations from the given generator class

by changing the value of x. This means that the number of times the test will

be run also equals x. To avoid x- iterations of reports in the final visual

representation, a scrap file is used. The scrap file contains all information

about each iteration and the test results. A scanner then scans through the

scrap file analyzing and finalizing a visual representation of the test output.

See Figure 1.

21

Figure 1: Final Txt file containing the result of the operations.

3.2.8 Support classes

When teachers download students’ submissions from the LMS, they are all

downloaded as zip folders. For that reason, the tool must be able to unzip

folders before anything else. To do that, a ZipInputStream is used.

ZipInputStream is a Java class that implements an input stream filter for

reading files in the ZIP format. To extract files correctly from a ZIP folder, a

ZipEntry is used. ZipEntry is a class that is used to represent a ZIP file entry.

After unzipping all submissions, the tool has to compile all programs. To

compile Java programs, a ProcessBuilder is used. ProcessBuilder is a class

that is used to create operating system processes. When a program has a

compilation error, that error is caught with a BufferedReader. BufferedReader

is a Java class that simplifies reading text from a character input stream.

BufferedReader buffers characters for efficient reading of characters, arrays,

and lines.

After the program is done compiling all the Java files, they are ready for the

PBT. However, to run the correct PBT on the correct submission class

everything needs to be in the right place. The tests are based on generating

multiple class objects, which is based on the class generator, which itself is

based on the class submission. For the generator class to find the correct

submission class, a placeholder class has been created. The submission

classes will then be copied over to the place holder and the generator will

22

attempt to create objects of the given class. It’s those class objects which the

tests will be invoked upon.

Those tests will generate a text file containing information on how the whole

process went. The text file will contain the student’s name, information on

how the compilation process went, and if the students’ programs passed or

failed the tests and which tests were invoked. If a failure occurs, it’s shown

with which arguments it failed.

To maximize the efficiency and let the PBT serve its’ purpose, a lot of trials

have to be done. This means that the text file previously mentioned will

contain information about each single trial. This means that the text file will

work as a scrap file.

To create and edit the text file, a FileWriter is used. FileWriter is a Java

convenience class for writing character files. FileWriter is meant for writing

streams of characters. This combined with a TextFileHandler which scans the

scrap file and analyzes its content works as a complete functional text file

reporter.

3.2.9 Object-oriented Programming
It’s important to have some knowledge about object-oriented programming

(OOP) when developing the tool in this project. OOP offers multiple benefits

such as modularity, which means that OOP helps to divide a large program

into smaller, more manageable pieces (objects) that can be developed and

tested separately. This was heavily useful in the development so far.

Examples of objects that have been created so far are a folder unzipper and a

compiler.

3.2.10 API and integration of LMS
By directly retrieving the data from the LMS, the work from the teachers' side

would become even easier. Retrieving data from the LMS would only require

GET functions for the zip files from the eventual Rest API. The LMS used by

Halmstad University is blackboard. Furthermore, they provide documentation

to their Rest API [20]. However, to access the specific zip file you either need

authentication or an admin login. This could technically still be done, by using

a test environment. This would nevertheless not objectively help the work for

the users.

23

4. Result

4.1 Breaking down the project

The project can be broken into different segments, and by looking at them

one by one, it is easier to visualize the results of the project. Breaking down

the project also helped with developing the project and easily finding errors

and bugs in the code. The project was developed with the object-oriented

programming aspect in mind. The tool was broken down into many different

classes that have different functions. These classes include a class that

compiles Java classes, another class that unzips a folder, a third class that

iterates through the contents of a folder, and a fourth class that creates a Txt

file.

Another way that this project was broken down was into different packages

that contained different kinds of classes. These packages include a package

that has all the exercises that the teacher is expecting to be submitted by the

students, another package that has all the different data generators, and a third

package that includes all the test classes that will be edited by the teacher to

test students’ submissions.

4.2 Retrieving data from the LMS
As mentioned earlier in 3.2.10, there are no APIs included in this project. In

other words, the data must manually be downloaded from the given LMS.

There was work done towards creating a Rest API but was restricted by the

LMSs (Learning Management Systems) authentication.

4.3 Handling the zip files and compilation
After the data is retrieved, the zip files must be handled. The program takes

two string inputs, one for the path of the zip folder containing all students’

submissions, and the second one for the direction of the unzipped folder. After

the program receives the inputs, it unzips the first folder containing the

submissions, and then iterates through the unzipped folder and unzips all

students’ folders (one for each student). The tool then iterates through all

student submissions’ folders and compiles all Java programs. At the end of

all this, the tool generates one text file that contains information about how

this entire process went. The text file includes all students’ names and states

how the compilation went for every Java program that is submitted.

By looking at Figure 2 one could see what the text file would look like. Figure

2 shows an example of the text file when the students’ programs compile

successfully. In this example, each student has 3 different programs, E1.java,

E2.java, and E3.java. The text file shows the student’s name (that’s

represented by the first 3 characters of the student’s name plus the first 3

characters of the student’s last name and the year the student started studying

at the university) and all submitted programs by the student compiled

successfully and that is presented with the message “Compilation successful

for file: “ followed by the file name and path.

24

Figure 2: auto-generated text file with no compilation errors.

By looking at Figure 3, one could see how the text file would look when one

of the submitted programs has a compilation error. The text file still shows

the name of the student and shows the programs that compile successfully.

When one (or more) program doesn’t compile, it shows where the program

failed to compile and what the syntax error is. In the example in Figure 3, the

students wrote “asdfasdf” in their program and the compiler returned that this

is not a statement and that it expected a semicolon at the end of the statement.

Figure 3: auto-generated text file with compilation errors.

4.4 Running the PBT
After a Java file is successfully compiled, it’s copied to the project and tested

with the PBT test for that specific Java class.

25

To test the test environment itself, an example class with properties had to be

created, in this case: Complex Number. The class is a class representation of

a complex number that imitates a student submission. It is

presented as a real part number and an imaginary part number and has some

methods or operations which apply to the Complex Number.

When testing properties for the complex number, the absolute value of vectors

presented on the complex table was tested. One property in particular, for any

combination of values of the real and imaginary part, all vectors must have a

length that is greater than one. Moreover, all vectors multiplied by the

complex number I are supposed to rotate counterclockwise by 90 degrees.

Hence, the length or absolute value of the vector should remain the same. To

ensure the performance of our complex number they were put up for the

following tests. The latter test behaves incorrectly. See code example 5,

figures 4, 5. It becomes clear which test failed and which passed, and with

what arguments it fails. A way to develop this further could be bypassing the

shrunken version of the failed test case. See the source for more information

about shrinking [16].

@Property(trials = 10)

public void

testComplexNumberNorm(@From(ComplexNumberGenerator.class)

ComplexNumber c) {

ComplexNumber I = ComplexNumber.I;

//Correct way of testing norm

Boolean test = (c.norm() == c.times(I).norm());

//Incorrect way of testing norm

Boolean test = (c.norm() == c.times(I).norm()+1);

...

}

Code Example 5: Ways of testing.

Figure 4: Report generated from the first test in Code Example 5 ‘correct way

of testing norm’, test passed.

26

Figure 5: Report generated from the second test in Code Example 5.

4.5 Creating the text report.

Two text files are created during the PBT. One temporary text file, see Figure

6, and the other containing the summary of the temporary file, see Figure 7.

When appending the string from the summary text file combined with

compilation messages you get the complete report for all submissions, see

Figure 8.

Figure 6: the temporary file containing all information about each trial.

Figure 7: the final visual representation of all trials on one test after scanning

the temporary file.

27

Figure 8: the final visual representation combined with the compilation

messages, appended to one big complete report.

4.6 Plagiarism
Due to a lack of time, plagiarism detection is not explicitly implemented in

this project. However, a K-gram plagiarism detection tool [21] is available

and can be used manually.

The k-gram plagiarism detection algorithm is a text similarity detection

method that works by comparing k-length sequences, or k-grams, of two

texts. It is often used to detect cases of plagiarism in documents, where one

author may have copied part of another author's work without proper citation

or attribution. However, the tool can still be used to compare Java classes.

The algorithm works by breaking each document into smaller sequences of

characters of length k that often overlap. These sequences are then compared

between two documents and the number of matching sequences is counted.

The more matching sequences, the higher the probability of plagiarism.

Since there wasn’t enough time to develop the plagiarism detection tool for

this project, a finished implementation was downloaded and used [21]. To

optimally use this tool, the user has to use the best numbers for “k” and “d”.

To find the best suitable numbers for “k” and “d” for this project, a small

experiment was done. First, two identical documents were compared with

different k- and d-values, all different values gave the same answer of 100%

match between the two documents. When copying code, students often

change the order in which functions are written. For that reason, the second

part of this experiment was to compare two identical documents but move the

functions around in one of the two documents and test it with different k- and

d-values. The result was still the same 100% match with different values. The

third test that was made was to delete some of the functions in the first

document and compare it to the second document. In this test, it was obvious

that the result was more accurate when the k-value was set to 3 and the d-

value was set to 1000. The test result was reasonable since these documents

that are being compared are rather short and a smaller k-value may be more

effective for shorter documents while a larger k-value may be more

appropriate for longer documents.

28

The value of k can vary depending on the application and the length of the

compared text. Larger values of k may be more suitable for longer documents,

while smaller values of k may be more effective for shorter documents. That’s

why, to detect plagiarism between Java classes, it’s advised to set the k value

to 3.

In this context, “d” stands for “document distance” or “edit distance” between

two documents.

The document distance is often used as a metric to compare the similarity of

two documents that have been represented as vectors of k-gram frequencies.

By calculating the document distance between two documents, we can

determine how closely related they are in terms of their content and structure.

A lower document distance indicates greater similarity between the two

documents, which is why it’s suitable for this project to use the d-value of one

thousand.

The tool developed in this project will sort all student submissions into

folders, so it is easier to test them for plagiarism. For example, if each student

submits “E1.java”, “E2.java” and “E3.java”, the tool will create a folder

named “E1” that contains all “E1.java” classes submitted by the students,

another folder named “E2” that contains all “E2.java” classes, and a last

folder named “E3” containing all “E3.java” classes. This makes it easier for

the teacher to manually compare these documents with each other using the

K-gram plagiarism detection algorithm to flag the student that has possibly

copied code from each other.

By looking at Figure 9, one could see an example of 10 students’ assignments

being compared to each other. In this specific example, 9 of the 10 students

have the same code. The first student had an 81% match with the other

students while students 2-10 had a 100% match with each other. This will

help the teacher to easily spot the students that have possibly copied each

other’s code.

Figure 9: Result matrix when running plagiarism detection tool.

4.7 Final product summary
Due to security authentication reasons, the tool can’t retrieve students’

submissions directly from the school’s LMS. After manually downloading

the students’ submissions from the school’s LMS, teachers will have to write

their own tests and data generators for their tests. This is implemented so that

the teachers have to spend as little time as possible writing these tests and

generators. In the case of writing tests, the teachers must edit one line of code

to test a specific function.

29

In the case of data generators, teachers might have to write a couple of lines

of code depending on what they want to generate. How many lines of code

the teachers have to write depends on how much data they want to generate.

After downloading the data, and writing the tests and generators, the tool is

ready to be used. After all of that is done, the teacher only needs to give the

path of the zip folder containing the submissions, and the tool will unzip all

the folders and iterate through each student’s submission. When the iterator

finds a Java file, it compiles it and if the operation succeeds, the tool runs the

necessary test on the Java class. The result of the compilation process and test

process is printed in the final text file with the correct student name who

submitted these classes.

In Figure 1, in 3.2.7 one can see what the final text file might look like. In

this example, the student has submitted 5 classes where 2 of them didn’t

compile. When the compilation process is not successful, the tests are not run.

However, when the compilation process is successful, the tests are run and a

small report of how the test went is shown.

4.8 Limitations
The auto grader has some limitations when using it, this includes that it can’t

test extremely simple programs such as programs written in the main function

in Java. This is because these simple programs don’t require any kind of auto-

generated data to correct them. These programs are primarily about learning

how to use simple functions such as printing information to the console or

understanding the differences between “int”, “string” and “double” for

instance. While the auto grader is great for testing submitted programs such

as “complex numbers”, “doubly linked list”, “node”, “stack” and so on, it is

unable to correct more complex programs such as programs with a graphical

user interface (GUI) or programs that use threads such as setting up a chat

server with clients that can connect to the server and chat with other users.

These classes don’t require data sets to be generated and tested and can’t be

corrected using this auto-grading tool. Another limitation is when it comes to

some students who name their functions something different than what the

teacher specified, this could lead to the function not getting tested or corrected

by the auto-grader. Another example where a function might be excluded

from grading is if some students decide to change the type of data that the

function returns (different than what was specified in the instructions).

30

31

5. Discussion

5.1 Technical Achievements

5.1.1 Implementation of PBT

Our project successfully implemented PBT using the .com pholser library in

Java. This allowed us to automatically generate a large number of test cases

based on a set of properties or specifications, rather than manually writing

test cases and expecting a single output for a given input.

5.1.2 Customization of the Testing Framework
We were able to customize the .com pholser library to meet our specific

testing requirements. For example, we developed custom generators.

Customizable generators can be used for specific types of input.

5.1.3 Scalability of testing
Our project demonstrated the scalability of PBT, as we were able to generate

and execute thousands of test cases in a relatively short period. This allowed

us to test edge cases and find previously unknown bugs.

5.1.4 Effective bug detection
Demonstrating the feasibility and effectiveness of a new testing tool is

challenging. One reason for this is that it can be difficult to compare the

results obtained using different testing methods, as different methods have

different strengths and weaknesses. The project was developed with

consideration of object-oriented programming and that helps us and future

users and developers to easily detect bugs in the code.

5.1.5 Support classes
The support classes that are needed for this project (described in sub-goals

3.2.1) such as unzipping folders, compiling classes, and creating a Txt file

that contains the result of the operation are successfully implemented and are

a crucial part of this tool. One thing that could have been done better is the

way the students’ submissions are retrieved. Instead of having to manually

retrieve the data, it could have been smoother to let the tool automatically

retrieve the data from the school’s LMS. However, due to limitations when it

comes to access and authentication, this was not possible to implement.

5.2 Results Related to the Research Questions

The problem statement lay: “How can property-based testing be integrated

into an auto-grading system, and what are the benefits and limitations of this

approach?”.

One thing to acquire and strive for is effectiveness and efficiency. It is hard

to generalize the results obtained from the testing of an auto grader with PBT.

The effectiveness of the approach greatly depends on factors such as the

32

complexity of the software being tested, the quality of the property

specification, and the generators.

As previously stated, specifying accurate and relevant properties for a given

program can be challenging, and incorrect or incomplete specifications can

lead to inadequate testing. In other words, the limitation lies in the user's

capability to specify the tests and generators. Moreover, since the testing is

entirely automated, it may lack the ability to capture certain edge cases that a

human tester might be able to identify quite easily.

Although it’s hard to measure ‘the success’ of a testing tool, by generating

thousands of test cases you greatly increase the odds of finding potential bugs

and detecting errors. With a high enough number of trials, automated testing

surpasses the human capability of identifying errors.

When it comes to the results, one could argue that the number of tests is

insufficient to ensure a fully functional Auto grader. However, a wider range

of tests would indeed further test the class which is of testing. But, it would

not test the auto grader itself. The tests are there to demonstrate that testing

the properties of a class is possible. This means that the limitation lies in the

boolean test, which tests the properties, and not the Auto grader itself.

Testing one class in this case is enough to ensure that the auto grader works

as intended. It’s also enough to know what is needed to be provided by the

teacher to correctly use the tool.

Overall, these technical achievements demonstrate the effectiveness and

value of property-based testing in software development. They also highlight

the key contributions of our project to the field of software engineering,

including the development of a scalable and customizable framework for

property-based testing in Java.

5.3 Societal Aspects

When correcting submissions, fairness is of the highest importance. Auto

grading would help reduce the risk of human bias in the grading process.

Since the tests are done by pre-determined criteria, it can ensure that all

students are evaluated equally.

The grading should not be determined by who you are, or which teacher is

correcting. The grading must only be based on the code submitted by the

student. Furthermore, when the grading process becomes standardized, this

would help to improve the consistency of the grading process, which means

that it doesn’t matter which teacher grades which assignment, and all students

will have to meet the same criteria that are set.

Standardization could help ensure consistency and fairness in the grading.

This will prove to be even more important in high-stakes contexts, i.e. when

the students’ future opportunities depend on the grading.

33

To be able to utilize the auto grader, the data of the submissions need to be

collected. Whenever data is collected, there is potential for privacy concerns.

E.g if the auto-grader collects data on the student's performance, there may

be concerns about how this data is used. Even more, who has access to it, and

for what purposes it’s being used? It is important to address these issues, to

protect the students’ privacy. This tool is developed for teachers and when

they use it and get results back, they’re asked to not share the results with

anyone who doesn’t have authority.

From an environmental aspect, the auto grader might be energy efficient.

When grading manually, that may require a significant amount of computer

power or other devices used by the grader. Reducing the time it takes for the

grading process, most likely reduces the overall energy usage associated with

grading.

Similarly, automating the grading process and digitally providing feedback

might reduce the overall amount of papers being used. This could have a

positive effect on the environment by reducing the number of trees that need

to be cut down.

The same thing goes for the transportation aspect. By being able to work

remotely, one could potentially reduce the amount of transportation required

to physically transport assignments between students and graders.

34

35

6. Conclusion

The question remains: Is this a successful project?

Strengths:

• The auto grader uses property-based testing and contributes to the

overall goal of improving software quality by enabling automated

testing of software properties.

• The auto grader uses built-in methods and functions to provide an

easy-to-use interface for the user.

• The auto grader using property-based testing contributes to the goal

of reducing software development time by automating the testing

process.

• The tool can handle zip folders and unzip them.

• The tool can also iterate through folders and compile Java classes that

it detects.

• The tool will help teachers save time by automatically compiling and

testing the students’ programs.

• The tool also brings a new fairness aspect to correcting students’

submissions since it will always test the same properties in the

different students’ programs.

Demonstrating the feasibility and effectiveness of a new testing tool is

challenging. One reason for this is that it can be difficult to compare the

results obtained using different testing methods, as different methods have

different strengths and weaknesses.

Furthermore, it is hard to generalize the results obtained from the testing of

an auto grader with PBT. The effectiveness of the approach greatly depends

on factors such as the complexity of the software being tested, the quality of

the property specification, and the generators.

These are some of the weaknesses we were not able to prove but believe we

managed to achieve.

Weaknesses:

• We were unable to prove that the auto-grader using property-based

testing contributes to the goal of increasing software reliability by

providing a more thorough and automated testing process.

• We were unable to prove that the auto-grader could successfully

identify previously unknown software bugs, demonstrating the

feasibility of the approach.

• We were unable to prove that the auto-grader testing increased the

overall software reliability by catching more software defects,

demonstrating its contribution to the project's goal of improving

software quality.

36

• To detect plagiarism, the algorithm must be run manually. This part

could have been automated if we had more time.

In conclusion, we would argue that the project fulfilled most of the sub-goals.

Moreover, we were able to point out the weaknesses where future projects

may continue the development of a property-based testing auto-grader. This

is why we consider this project a success!

I

References

1. Pivotal Software, (2022). Junit-quickcheck. [Web page]. Retrieved from:

https://github.com/pholser/junit-quickcheck

2. Fink, G., & Bishop, M. (1997). Property-based testing: a new approach to

testing for assurance. ACM SIGSOFT Software Engineering Notes, 22(4), 74-

80. Retrieved from: https://dl.acm.org/doi/abs/10.1145/263244.263267

3. Haskell. (n.d) QuickCheck: QuickCheck: Automatic testing of Haskell

programs. [Web page]. Retrieved from:

https://hackage.haskell.org/package/QuickCheck

4. Claessen, K., & Hughes, J. (2000, September). QuickCheck: a lightweight

tool for random testing of Haskell programs. In Proceedings of the fifth ACM

SIGPLAN international conference on Functional programming (pp. 268-

279). Retrieved from: https://dl.acm.org/doi/abs/10.1145/351240.351266

5. ScalaCheck. (n.d.). ScalaCheck - The Scala library for automated testing.

[Web page]. Retrieved from: https://scalacheck.org/

6. Hypothesis. (n.d.). Hypothesis: A library for property-based testing. [Web

page]. Retrieved from: https://hypothesis.readthedocs.io/en/latest/

7. jqwik.net. (n.d.). Jqwik - A property-based testing library for the JVM.

[Web page]. Retrieved from: https://jqwik.net/

8. Horstmann, C. (2021). CodeCheck. Retrieved from:

https://horstmann.com/codecheck

9. Nicole Hite (2022). Creating Autograded Problems with CodeCheck

Youtube. Retrieved from:

https://www.youtube.com/watch?v=7cPcq6ENsjY&ab_channel=NicoleHite

10. Nbgrader. (n.d). Notebook-grader. [Web page]. Retrieved from:

https://nbgrader.readthedocs.io/en/stable/

11. Verma, Akanksha & Khatana, Amita & Chaudhary, Sarika. (2017). A

Comparative Study of Black Box Testing and White Box Testing.

International Journal of Computer Sciences and Engineering. 5. 301-304.

10.26438/ijcse/v5i12.301304.

12. Hughes, J. (2020). How to Specify It! In: Bowman, W., Garcia, R. (eds)

Trends in Functional Programming. TFP 2019. Lecture Notes in Computer

Science(), vol 12053. Springer, Cham. https://doi.org/10.1007/978-3-030-

47147-7_4

https://github.com/pholser/junit-quickcheck
https://dl.acm.org/doi/abs/10.1145/263244.263267
https://hackage.haskell.org/package/QuickCheck
https://dl.acm.org/doi/abs/10.1145/351240.351266
https://scalacheck.org/
https://hypothesis.readthedocs.io/en/latest/
https://jqwik.net/
https://horstmann.com/codecheck/
https://www.youtube.com/watch?v=7cPcq6ENsjY&ab_channel=NicoleHite
https://www.youtube.com/watch?v=7cPcq6ENsjY&ab_channel=NicoleHite
https://nbgrader.readthedocs.io/en/stable/
https://doi.org/10.1007/978-3-030-47147-7_4
https://doi.org/10.1007/978-3-030-47147-7_4

II

13. Junit 5 (n.d) JUnit 5 user guide [Web Page], Retrieved from:

https://junit.org/junit5/docs/current/user-guide/#writing-tests-annotations

14. Javacodegeeks (n.d) JUnit QuickCheck examples [Web Page], Retrieved

from: https://examples.javacodegeeks.com/core-java/junit/junit-quickcheck-

example/#code

15. Maven. (Last Published: 2023-02-24). Documentation for Maven [Web

page]. Retrieved from https://maven.apache.org/

16. Shrinking (n.d) JUnit Quick-Check documentation about shrinking [Web

Page], Retrieved from: https://pholser.github.io/junit-

quickcheck/site/1.0/usage/shrinking.html

17. Pholser Github (n.d) Dependency management [Web Page], Retrieved

from: http://pholser.github.io/junit-quickcheck/site/0.7/dependency-

management.html

18. Hackage (n.d) Quick Check documentation [Web Page], Retrieved from:

https://hackage.haskell.org/package/QuickCheck-2.14.2/docs/Test-

QuickCheck-Gen.html

19. Com.Pholser GitHub (n.d) Documentation of the com.pholser library.

[Web Page], Retrieved from: https://github.com/pholser/junit-quickcheck

20. API for BB (n.d) Api for Black Board [Web page], Retrieved from:

https://developer.blackboard.com/portal/displayApi

21. Sedgewich, R., & Wayne, K. (2016). Computer Science An

Interdisciplinary Approach. (1st edition). Addison-Wesley Professional.

Retrieved from: tps://introcs.cs.princeton.edu/java/home/

https://junit.org/junit5/docs/current/user-guide/#writing-tests-annotations
https://examples.javacodegeeks.com/core-java/junit/junit-quickcheck-example/#code
https://examples.javacodegeeks.com/core-java/junit/junit-quickcheck-example/#code
https://maven.apache.org/
https://pholser.github.io/junit-quickcheck/site/1.0/usage/shrinking.html
https://pholser.github.io/junit-quickcheck/site/1.0/usage/shrinking.html
http://pholser.github.io/junit-quickcheck/site/0.7/dependency-management.html
http://pholser.github.io/junit-quickcheck/site/0.7/dependency-management.html
https://hackage.haskell.org/package/QuickCheck-2.14.2/docs/Test-QuickCheck-Gen.html
https://hackage.haskell.org/package/QuickCheck-2.14.2/docs/Test-QuickCheck-Gen.html
https://github.com/pholser/junit-quickcheck
https://developer.blackboard.com/portal/deeeisplayApi
https://introcs.cs.princeton.edu/java/home/

	1. Introduction
	2. Background
	2.1 Property-based Testing Libraries
	2.2 Similar Tools
	2.2.1 CodeCheck
	2.2.2 Nb-grader

	3. Methods
	3.1 Theory
	3.1.1 White- and black box testing
	3.1.2 Property-based Testing
	3.1.3 JUnit QuickCheck

	3.2 Methodology
	3.2.1 Sub-goals
	3.2.2 Project management tools
	3.2.3 User-friendly environment using APIs
	3.2.4 Class Generator<T>
	3.2.5 Optimizing for Scalability and Performance
	3.2.6 Visualization of the test results
	3.2.7 @Annotaions
	3.2.8 Support classes
	3.2.9 Object-oriented Programming
	3.2.10 API and integration of LMS

	4. Result
	4.1 Breaking down the project
	4.2 Retrieving data from the LMS
	4.3 Handling the zip files and compilation
	4.4 Running the PBT
	4.5 Creating the text report.
	4.6 Plagiarism
	4.7 Final product summary
	4.8 Limitations

	5. Discussion
	5.1 Technical Achievements
	5.1.2 Customization of the Testing Framework
	5.1.3 Scalability of testing
	5.1.4 Effective bug detection
	5.1.5 Support classes

	5.2 Results Related to the Research Questions
	5.3 Societal Aspects

	6. Conclusion
	References

