

Examensarbete
Dataingenjör, 180 HP

Implementing NETCONF and YANG on
custom embedded systems

Halmstad 08-05-2023

Per Jahnstedt, Krister Georges

UNIVERSITY OF HALMSTAD

Halmstad University

Bachelor in COMPUTER SCIENCE ENGINEERING

Department of INFORMATION TECHNOLOGY

IMPLEMENTING NETCONF AND YANG ON CUSTOM
EMBEDDED SYSTEMS

Thesis of

Georges, Krister

&

Jahnstedt, Per

Supervisor: E. K. Duarte

Examiner: M. Fazeli

Graduation Session 20th May 2023

Academic Year 2022/2023

June 4, 2023

Abstract

Simple NetworkManagement Protocol (SNMP) has been the traditional approach for con-

figuring and monitoring network devices, but its limitations in security and automation

have driven the exploration of alternative solutions. The Network Configuration Protocol

(NETCONF) and Yet Another Next Generation (YANG) data modeling language signif-

icantly improve security and automation capabilities. This thesis aims to investigate the

feasibility of implementing a NETCONF server on the Anybus CompactCom (ABCC)

Industrial Internet of Things (IIoT) Security module, an embedded device with limited

processing power and memory, running on a custom operating system, and using open-

source projects with MbedTLS as the cryptographic primitive library. The project will

assess implementing a YANG model to describe the ABCC’s configurable interface, con-

necting with a NETCONF client to exchange capabilities, monitoring specific attributes

or interfaces on the device, and invoking remote procedure call (RPC) commands to con-

figure the ABCC settings. The goal is to provide a proof of concept and contribute to

the growing trend of adopting NETCONF and YANG in the industry, particularly for the

Industrial Internet of Things (IIoT) platform of Hardware Meets Software (HMS).

Keywords: NETCONF, MbedTLS, YANG, Embedded, SNMP, XML, HMS, IETF, IIoT,

ABCC

ii

Acknowledgements

Wewant to express our heartfelt gratitude to Eduardo, who gave us continuous feedback on

our thesis. His thorough reading and valuable suggestions have significantly contributed to

shaping this technical report into what it is today. Eduardo has always been approachable,

and his willingness to help has been an asset to our thesis. We greatly appreciate his open-

door policy, both figuratively and literally.

We would also like to thank Jonathan Johansson and Johan Gunnarsson from HMS. Their

unwavering support and guidance throughout our journey have kept us on track and mo-

tivated. Their invaluable assistance in porting NETCONF to the ABCC and their recom-

mendations for future steps have been immensely helpful.

We extend our sincere gratitude to our Examiner, Mahdi Fazeli. His relentless pursuit of

academic rigor and his challenging feedback have been instrumental in our journey. His

insistence on excellence from the outset not only pushed us beyond our perceived limits,

but also instilled in us a heightened sense of ambition. We thank him for helping us to

strive for more and to reach new heights in our work

iii

Contents

1 Introduction 1

1.1 Purpose . 2

1.2 Goals . 3

1.3 Boundaries . 4

2 Background 6

2.1 Network management protocols . 6

2.1.1 SNMP . 6

2.1.1.1 SNMPv1 . 6

2.1.1.2 SNMPv2 . 7

2.1.1.3 SNMPv3 . 7

2.1.2 NETCONF . 7

2.2 Using YANG and XML for Data Modeling 9

2.2.1 YANG . 9

2.2.2 XML . 9

2.3 Evolution of Secure Communication Protocols 9

2.3.1 Overview of OpenSSL . 10

2.3.2 Introduction to MbedTLS . 10

2.4 Hardware and Software . 10

2.4.1 Segger: J-Link . 10

2.4.2 Anybus CompactCom M40 Module IIoT Secure 11

2.4.3 HMS IPconfig . 11

2.4.4 Employing VMware Workstation Player and Ubuntu 11

3 Methodology and Implementation 12

3.1 Research on NETCONF implementations 13

3.1.1 NETCONF servers employed in other research 13

3.1.2 Overview of Open-Source NETCONF server 14

3.1.2.1 libnetconf2 and libyang 14

3.1.2.2 Netopeer2 and Sysrepo 15

3.1.2.3 POCO NETCONF . 15

3.1.2.4 Yenca . 15

3.1.2.5 Summary . 16

iv

Contents

3.1.3 NETCONF client implementations 17

3.1.3.1 Segue-Soft: NETCONFc 17

3.1.3.2 MG-SOFT: NETCONF Browser 17

3.1.3.3 YumaWorks: YumaBench 17

3.1.3.4 NETCONF Client Comparison and Selection 18

3.2 Yenca . 18

3.2.1 Yenca Problems with Outdated Architecture 19

3.2.2 Memory Leaks and Undefined Behaviour 19

3.2.3 File Dependency . 19

3.2.4 Testing and Validation for Yenca Refactoring 19

3.3 MbedTLS-Based Secure Communication 20

3.3.1 Initial Research and Familiarization 20

3.3.2 Developing the MbedTLS Server 20

3.3.3 Client Connections and Certificate Management 21

3.3.4 Integration with YumaBench for Testing and Validation 21

3.3.4.1 Client and Server Interaction 21

3.3.4.2 Testing NETCONF and YANG Functionality 21

3.3.4.3 Validation and Analysis of Requests 21

3.4 Implementation of NETCONF and YANG server 22

3.4.1 Data Structure . 23

3.4.2 Parsing . 23

3.4.3 Network Layer . 23

3.5 Unit testing . 24

3.5.1 Wireshark for packet capture . 25

3.6 Modelling ABCC to a YANG model . 25

3.7 Porting the NETCONF server to the ABCC 26

4 Results 27

5 Discussion 31

6 Conclusion 35

Glossary 37

Bibliography 38

Appendix A Overview of NETCONF I

Appendix B AnyBus CompactCom IIoT Security Profinet Datasheet II

Appendix C Valgrind analysis of Yenca and our implementation VI

v

Contents

Appendix D Access to Source Code VII

Appendix E Example of parsing a YumaBench <get> request VIII

Appendix F Example of parsing a YumaBench <edit-config> request IX

Appendix G KeyValuePairArray API functions X

Appendix H Parsing API functions XII

Appendix I MbedTLS Server Flowchart XIV

Appendix J Yang Model of ABCC Network Configuration settings XV

Appendix K Diagram of TLS Handshake with Wireshark Packet Analysis XVII

Appendix L Graph of Yenca memory leak XVIII

vi

1

Introduction

Simple NetworkManagement Protocol (SNMP) has been the traditional approach for con-

figuring andmonitoring network devices in networkmanagement [1]. However, SNMPv1

and SNMPv2 are considerably limited in security as they run over User datagram proto-

col (UDP) and feature no encryption within the transport layer [2]. The lack of security

poses a significant flaw. Furthermore, automation is a major component of standardized

protocols that need improvement regardless of the SNMP version. Therefore, alternate

solutions to address the issues associated with SNMP have been sought [3]. One such

solution is the Network Configuration Protocol (NETCONF), a standardized network de-

vice configuration and management protocol [4, 5], and the Yet Another Next Generation

(YANG) modeling language used to define data models for NETCONF operations [6, 7].

There is ample research comparing the network performance and security of SNMP, NET-

CONF, andYANG [8, 9, 10]. Much of the existing literature focuses on Cisco-related tech-

nologies or on porting NETCONF server features to embedded devices that support Unix

operating systems using Secure Shell Protocol (SSH) and Open Secure Sockets Layer

(OpenSSL). To our knowledge, no published studies have explored NETCONF servers

running on MbedTLS, a variant of the more popular OpenSSL designed primarily for em-

bedded devices [11].

The most recent SNMP, SNMPv3, includes its security model, the User Security Model

(USM), which provides authentication and privacy features that were absent in earlier ver-

sions [8]. One primary concern regarding SNMPv3’s security is that it relies on its SNMP-

specific implementation, as opposed to widely known and standardized encryption proto-

cols for transport layer security, such as SSH or TLS, which NETCONF uses. SNMPv3’s

specific implementation could make it more challenging for network administrators to set

up and manage the security features effectively, as it is less familiar than widely adopted

protocols like SSH or TLS. This may result in a higher risk of improper configuration,

potentially leading to vulnerabilities in the system. However, the actual security of each

protocol depends on network administrators’ proper implementation, configuration, and

management.

1

1. Introduction

The Anybus CompactCom (ABCC) family of industrial Ethernet switches provides plug-

and-play functionality and Layer 2 features for industrial networks. ABCC products en-

able easy and secure configuration and monitoring through theAnybus Connect platform.

Instead of employing NETCONF, Hardware Meets Software (HMS) relies on SNMP and

the command line interface (CLI) for managing and configuring their ABCC PROFINET

devices[12].

This thesis aims to fill the identified research gap by investigating the use of MbedTLS in

NETCONF server implementations. The project’s primary objective is to explore whether

it is possible to implement a proof of concept NETCONF server on an embedded de-

vice, namely the ABCC, running on a custom operating system with limited processing

power and memory. The implementation will utilize open-source projects running over

MbedTLS.

1.1 Purpose

Currently, only SNMPv2c is utilized by HMS on their embedded device, theABCC. Using

SNMP can cause security issues as SNMPv1 and SNMPv2 do not feature encryption [2].

NETCONF and YANG, on the other hand, feature built-in security measures such as en-

cryption and message signing that ensure integrity and confidentiality. Although SNMPv3

allows for encryption, NETCONF remains more secure [8].

YANGnatively supports SNMP, CommaSeparatedValues (CSV), ExtensiveMarkup Lan-

guage (XML), and JavaScript Object Notation (JSON) as data formats, unlike SNMP,

which does not support them. Furthermore, configuring a device with SNMP requires

multiple steps, whereas, with NETCONF, only one request achieves all necessary config-

urations.

SNMP has limited capacity to support automation and is primarily used as a monitoring

tool. In contrast, NETCONF and YANG support the use of scripts and automation tools,

which can improve the efficiency and automation of network infrastructure. The Internet

Engineering Steering Group has issued a statement addressing the use of writableManage-

ment Information Base modules. The Internet Engineering Task Force (IETF) advocates

employing NETCONF and YANG standards for configuration purposes, particularly in

newly established charters [13]. This endorsement emphasizes the industry trend toward

utilizing NETCONF and YANG over SNMP for configuration tasks.

By integrating a NETCONF server with the PROFINET features of the ABCC m40 mod-

ule, it can better adapt to the changing requirements of Industry 4.0 and digital transfor-

mation. PROFINET is an open industrial Ethernet standard that enables communication

and data exchange between automation devices in the manufacturing industry. Notably,

2

1. Introduction

the PROFINETV2.4 specification update incorporates requirements from the NETCONF

and YANG configuration model and the IETF security configuration model, further em-

phasizing the growing industry trend towards NETCONF and YANG [14].

In conclusion, adopting NETCONF and YANG for HMS’s embedded device, the ABCC,

would address the security and configuration issues associated with SNMP, enhance au-

tomation capabilities, and align with industry trends and recommendations.

1.2 Goals

The main objective of this project is to implement NETCONF and YANG on the ABCC,

ensuring compatibility with HMS Networks’ IIoT platform. The implementation must

support TLS as the transport layer and use theMbedTLS cryptographic library [15]. MbedTLS

is chosen because the ABCC exclusively supports it, unlike alternatives such as SSH or

OpenSSL.Additionally, the existingABCC codebase is developed in C, so the implemen-

tation should preferably be written in C for compatibility.

The project will investigate open-source NETCONF and YANG implementations, aim-

ing to port them to the ABCC using a suitable NETCONF protocol stack for embedded

devices. Upon successful completion, the developed implementation should meet the fol-

lowing criteria:

• Running a NETCONF server on the ABCC is feasible.

• AYANG model is developed for the ABCC’s configurable interface.

• Connecting to a NETCONF client and exchanging capabilities is achievable.

• Monitoring specific attributes or interfaces on the ABCC is possible.

• Supporting remote procedure call (RPC) commands to configure at least 1 ABCC

attribute.

A visual depiction of the goals and the communication of the protocol can be shown in

Figure 1.1.

3

1. Introduction

PC
ABCC40

Connect on port 6513

TLS Handshake

Exchange capabilities

Send <get> request

Reply with configuration

Send <edit-config> request

Reply with <ok>

Update
configuration

datastore

Figure 1.1: NETCONF communication diagram.

1.3 Boundaries

The aim of this thesis is to evaluate the feasibility of implementing NETCONF over

MbedTLS on the ABCC, an embedded device running a custom operating system. How-

ever, it should be noted that this implementation will not be complete and will only comply

with some of the RFC requirements for an official NETCONF server. This is due to time

constraints. Additionally, ensuring full RFC compliance with conformance testing or ob-

taining validation from the IETF will not be part of this thesis. Instead, it will serve as a

proof of concept to determine if it is possible to establish a NETCONF implementation on

a non-Unix/Windows device using existing literature. The aim is to be RFC-compliant in

the following areas:

• TLS handshake, as specified in the RFC 7589 [16], utilizing the MbedTLS crypto-

graphic library to establish a secure client-server connection.

• Adhering to the handshake as specified in the RFC 6241 [4], which delineates the

initiation of a NETCONF session following the TLS handshake.

4

1. Introduction

• Implementing the <get> operation as specified in the RFC 6241, outlining the man-

ner in which a client requests the state and configuration data and the corresponding

server response.

• Implementing the <get-config> operation as per the RFC 6241, detailing how a

client solicits the server for the current configuration and the expected server re-

sponse.

• Implementing the <edit-config> operation according to the RFC 6241, which details

how a client manipulates device configuration via NETCONF.

• Implementing a delimiter to indicate the conclusion of a request, as specified in the

RFC 7589 [16].

It is essential to clarify that this thesis will not provide a general comparison of NETCONF

andYANG against SNMP. There is already a substantial amount of literature investigating

the advantages and disadvantages of each protocol in different areas [3, 8, 9, 10, 17].

Utilizing the groundwork laid by this thesis, a complete implementation of the proposed

NETCONF over MbedTLS on the ABCC will be possible in the future.

5

2

Background

This section provides an overview of key topics relevant to this thesis. It covers SNMP

and its versions, the NETCONF protocol, YANG and XML for data modeling, Secure

Sockets Layer (SSL)/TLS, and the hardware and software components involved in the

implementation.

2.1 Network management protocols

This section introduces this thesis’ two central networking protocols, SNMP and NET-

CONF. The SNMP subsection will outline the historical development of SNMP, some of

its features, and its various associated versions. The NETCONF subsection will focus on

introducing NETCONF and describing its basic operations.

2.1.1 SNMP

SNMP was introduced in 1988 to manage IP devices in a standardized way remotely. It

allows administrators to control the state of devices like routers, power supplies, Unix

and Windows systems, printers, and modem racks [1, pp. 1-2]. SNMP uses UDP as its

transport layer, and its reliability depends on the SNMP application’s ability to detect lost

data and retransmit it if necessary. The author states that using a protocol that attempts to

transmit data but abandons the effort upon failure is better than continuously retransmitting

data to ensure reliability [1, pp. 19-20].

2.1.1.1 SNMPv1

SNMPv1 is the first version of the SNMP protocol, defined in RFC 1157 [18]. Its security

system is based on communities, which are plain-text passwords that grant access to a

device’s management information for any SNMP application that possesses the strings.

SNMPv1 typically consists of three communities: read-only, read-write, and trap [1, p. 2].

A trap is an asynchronous notification sent from an SNMPagent to a network management

station [1, p. 182]. SNMPv1 continues to be widely supported by numerous vendors and

remains the primary SNMP implementation [1, p. 2].

6

2. Background

2.1.1.2 SNMPv2

SNMPv2, or community-string-based SNMPv2 or SNMPv2c [1, p. 2], enhances SNMPv1

by delivering more robust error responses from SNMP operations like get and set. It in-

troduces the getbulk operation and the inform mechanism. The getbulk operation enables

the management application to retrieve a large portion of a table simultaneously [1, p. 53],

while the inform mechanism allows acknowledged transmissions to be sent back to an

agent from the Network Management System [1, pp. 62, 69].

2.1.1.3 SNMPv3

SNMPv3 emphasizes providing security for network management. Multiple RFCs define

it and address the security vulnerabilities in SNMPv1 and SNMPv2, which rely on clear-

text passwords for authentication. The protocol in SNMPv3 remains unchanged, with only

cryptographic security being added. Despite being officially recognized as a full standard

in 2002, vendors have been slow to adopt SNMPv3, with most vendor implementations

still based on SNMPv1. However, some notable infrastructure vendors, such as Cisco,

have supported SNMPv3 for some time [1, pp. 2, 73].

2.1.2 NETCONF

The NETCONF protocol offers a simple method for managing network devices, retrieving

configuration data, and uploading new configuration data. It exposes a formal API on the

device and employs a remote procedure call (RPC) paradigm [19]. Information exchange

is encoded in XML, with the request and response fully described in XMLDocument De-

fined Definitions (DTD) or XML schemas [5]. The protocol facilitates close mirroring of

the device’s native functionality, which reduces implementation costs and provides timely

access to new features. The client can discover the server’s supported protocol extensions

and adjust its behavior accordingly. NETCONF is a building block for an automated con-

figuration system, utilizing XML and eXtensible Stylesheet Language Transformations

(XSLT) to generate vendor, product, operating system, and software release-specific con-

figurations, which can then be transferred to the device using NETCONF [5] [4].

In various studies, NETCONF ismore scalable than SNMP. For example, one study demon-

strated that as the number of managed objects increased, NETCONF became increas-

ingly time-efficient. NETCONF required only one transaction for many managed objects,

whereas SNMP needed multiple transactions to maintain efficiency. The authors stated

that the gain in transactions outweighed the higher bandwidth utilization; however, they

could not quantify the exact efficiency advantage of NETCONF over SNMP [10].

NETCONF facilitates a variety of operations, all thoroughly detailed in RFC 6241 [4], as

7

2. Background

seen in Table 2.1. The base operations are divided into three distinct types: provision-

ing operations that modify device configuration, state operations that retrieve the current

device state, and utility operations that assist in managing the session and ensuring safe

operation. All of these operations are outlined in the RFC, as mentioned earlier, see Ap-

pendix A for a flowchart of the NETCONF protocol.

The RFC also describes two types of multi-device operations. The first type allows for

operation execution on some devices even if it fails on others, while the second type ne-

cessitates operation success across all devices or none at all. In the case of the first type,

devices that fail to execute the operation revert to their previous state, ensuring no device

enters an unknown state.

The second type of transaction is described as atomic in the RFC, meaning all devices

successfully execute the operation, or none do. This property is particularly beneficial

when the operation’s success depends on other devices’ states. This might occur when

changing a network’s default gateway or modifying its VPN [4].

Table 2.1: NETCONF Base Protocol Operations

Operation Operation Type Description

<get> State Data

Retrieves the configuration and state

data of the specified portion of the

device configuration datastore.

<get-config> State Data
Retrieves the configuration data

of the specified datastore.

<edit-config> Provisioning
Modifies the configuration data

in the specified datastore.

<copy-config> Provisioning

Replaces the configuration data in the specified

target datastore with the configuration data

in the source datastore.

<delete-config> Provisioning
Removes the configuration data from the

specified datastore.

<lock> Utility
Locks the target datastore so that the client can

modify it exclusively.

<unlock> Utility Releases the lock on the target datastore.

<close-session> Utility Closes the NETCONF session with the server.

<kill-session> Utility
Terminates the NETCONF session with the

server.

8

2. Background

2.2 Using YANG and XML for Data Modeling

Data modeling languages support efficient data retrieval, storage, and processing and ver-

ify that requests from different clients to a server are in the correct format. This section

introduces the data modeling language YANG and provides an overview of XML.

2.2.1 YANG

YANG is a data modeling language initially designed for use with NETCONF but can also

be used with other protocols [7, 20]. In a NETCONF and YANG network, YANG defines

data hierarchies. A module in the YANG language specifies the hierarchies of data that

can be applied for various NETCONF-based operations, such as configuration, state data,

RPCs, and notifications [7, 6].

YANG allows data models to describe constraints that restrict the presence or value of

nodes based on other nodes in the hierarchy. These constraints can be enforced by either

the client or the server. YANG also provides a set of built-in types and a type mechanism

for defining additional types. Derived types can restrict their base type’s valid values using

range or pattern restrictions that clients or servers can enforce. Derived types, such as a

string-based hostname type, can also specify usage conventions [7, 6].

2.2.2 XML

XML is a framework that allows the structuring of different data [rfc3470]. It evolved

from the StandardGeneralizedMarkup Language, primarily used for documents [rfc3470].

XML is widely used, and its creation allowed for richly structured documents to be used

over the web [21]. For example, XML has been proposed for the exchange of data using

databases [22]. In NETCONF, requests are sent and received as XML documents [5, 23,

8].

2.3 Evolution of Secure Communication Protocols

The TLS protocol was conceived by the IETF Transport Layer SecurityWorking Group as

a solution to the confusion arising from the rival Secure Socket Layer (SSL) 3.0 and Private

Communication Technology protocols [24, pp. 27-28]. TLS 1.0, introduced in January

1999, was an adapted version of SSL 3.0. Subsequent to its release, several iterations

have emerged, such as 1.1 in 2006, 1.2 in 2008, and 1.3 in 2018. As of 2021, all versions

preceding 1.2 have been deprecated and are no longer utilized [25, 26, 27]. TLS seeks

to facilitate secure communication and safeguard the confidentiality and integrity of data

transmitted across a network [24, pp. 24-25, 27].

9

2. Background

2.3.1 Overview of OpenSSL

Given the prevalence of OpenSSL in the open-source implementations noted in Section

3.1.2, it is important to provide a brief overview of the software. OpenSSL is a compre-

hensive and robust toolkit for cryptography and secure communication [28]. The software

offers a range of cryptographic features, including symmetric and public key algorithms,

hash algorithms, and message digests [29]. It provides a command line application and

cryptographic libraries for creating and handling certificates, enabling SSL/TLS commu-

nication for clients or servers [30]. Managed by the OpenSSL Technical Committee and

governed by the OpenSSLManagement Committee [28], the software has undergone nu-

merous updates over the years, with OpenSSL 3.0 being the most recent major release as

of 2021 [31].

2.3.2 Introduction to MbedTLS

As mentioned in the Section 1, this project seeks to ascertain the feasibility of imple-

menting a NETCONF server on the ABCC using open-source projects operating over

MbedTLS.MbedTLS is an open-source implementation encompassing cryptographic prim-

itives, X.509 certificate handling, and SSL/TLS andDTLS protocols. Tailored specifically

for embedded systems, MbedTLS features a compact code footprint and the capacity to

construct sizes as small as 45 kB while maintaining versatility and facilitating secure com-

munication, cryptography, and key management. Crafted in C, MbedTLS is portable and

compatible with a range of platforms, including embedded systems, PCs, and mobile de-

vices. The SSL/TLS component ofMbedTLS establishes a secure communication channel

that can function as either a client or server, with various parameters and callback func-

tions for authentication mode, host-to-host communication, random number generation,

ciphers, certificate verification, session control, and X.509 parameters. MbedTLS can be

employed to develop both SSL/TLS servers and clients, utilizing the library’s symmetric

and asymmetric encryption, certificate parsing, and hashing modules [11, 32].

2.4 Hardware and Software

This section provides an overview of the hardware and software employed in this thesis,

detailing their respective functionalities and roles in the research process.

2.4.1 Segger: J-Link

In this thesis, the J-Link debug probe facilitated debugging and flash programming of the

NETCONF server on the ABCC. J-Link supports various CPUs and architectures, from

single 8051 to mass-market Cortex-M to high-end cores like Cortex-A (32- & 64-bit). J-

10

2. Background

Link directly interfaces with SPI flashes without requiring a CPU between the probe and

the SPI flash, allowing for direct communication via the Serial Peripheral Interface (SPI)

protocol [33].

2.4.2 Anybus CompactCom M40 Module IIoT Secure

The primary equipment used in this researchwas theAnybusCompactComM40PROFINET

IIoT Secure module. It is a communication module that provides industrial devices with

instant PROFINET connectivity. The module facilitates seamless network integration and

communication with IoT protocols like Open PlatformCommunications UnifiedArchitec-

ture (OPC UA) and Message Queuing Telemetry Transport (MQTT). It supports various

application interfaces, such as 8/16-bit parallel, high-speed SPI, I/O (shift register inter-

face), and Universal Asynchronous Receiver/Transmitter (UART) [34]. It also includes a

web server that allows users to set an IP address, configure user accounts, and install CA

and device certificates [35, pp. 8-10, 16–21]. See Appendix B for datasheet.

2.4.3 HMS IPconfig

HMS IPconfig is a utility that leverages the Secure Host IPConfiguration Protocol (HICP)

to modify network configurations, including IP address, subnet mask, and Dynamic Host

Configuration Protocol (DHCP) settings [35]. It will be used to confirm if the changes

made with the NETCONF client are reflected in the tool and, therefore, successful.

2.4.4 Employing VMware Workstation Player and Ubuntu

VMware Workstation Player is a virtualization platform that allows users to run multiple

operating systems simultaneously on a single computer [36]. In this thesis, Ubuntu 20.04

LTS was the guest operating system [37]. The virtual machine settings included 2 GB

of memory, a dual-processor configuration, and 20 GB of allocated disk space. A virtual

environment was used because the various NETCONF servers and clients were designed

to operate in a Linux environment. Allocating more disk space, memory, or processing

power could improve the overall experience of working in a virtual machine. However,

for our purposes, the impact of higher specifications was not significant. The enhanced

specifications facilitated smoother development; however, the lightweight nature of the

client and server implementations ensured that their performance did not suffer due to the

modest specs of our virtual machine.

11

3

Methodology and Implementation

This section outlines the steps to implement aNETCONF server on theABCC.The process

began with a literature review to understand the previous use of open-source NETCONF

servers. This was followed by an analysis of NETCONF server implementations to choose

the best one for the project. The chosen server was then modified to use MbedTLS instead

of OpenSSL and ported to the ABCC. The implementation ended with an attempt to con-

nect with a NETCONF client. The goal was to perform a capability exchange, retrieve the

IP configuration of the ABCC, and configure one attribute. The following steps detail the

methodology used in this project.

Step 1: Review of NETCONF in literature:

The first step was to review studies that had used open-source NETCONF server imple-

mentations. This provided an overview of their previous use.

Step 2: Analysis of Open-Source NETCONF Servers and Clients:

Following the literature review, we analyzed the IETF NETCONF wiki [38] and selected

server implementations and clients. A table was constructed for the servers that contains

information such as the programming language used, TLS/SSL support, and OS depen-

dencies.

Step 3: Replace OpenSSLwith MbedTLS:

During the initial research, it was found that most NETCONF server implementations

used OpenSSL. As a result, to ensure compatibility with the ABCC, it was necessary to

replace OpenSSL with MbedTLS in our chosen NETCONF server implementation. To

achieve this, we carefully identified the function calls in the OpenSSL code and replaced

them with their equivalent MbedTLS function calls, ensuring that secure communication

was maintained while adapting to the ABCC requirements.

Step 4: Porting the NETCONF Server to the ABCC:

After substituting OpenSSL with MbedTLS, we began porting the NETCONF server to

theABCC. This involved identifying and resolving the server’s dependencies on the target

platform. This step required code modification to ensure compatibility with the ABCC.

Step 5: Tested the Implementation:

Once the NETCONF server had been successfully ported to the ABCC, we tested the

implementation using a NETCONF client and communicating over TLS. The goal of the

communication exchange was for the client to get the network attributes (see Table 3.1)

12

3. Methodology and Implementation

of the ABCC and be able to modify at least one of these attributes. We then verified that

the change had succeeded by comparing the values with the HMS IPconfig tool.

Table 3.1: Current configuration state of ABCC displayed in HMS IPconfig tool.

DHCPConfiguration

Attribute Value Description

Enabled False Indicates whether DHCP is enabled or not

IP Configuration

Attribute Value Description

IPAddress 192.168.1.78 The assigned IP address of the device

Subnet Mask 255.255.255.0 Defines the network’s subnet boundaries

Default Gateway 0.0.0.0

The node’s IP address functions as a bridge

between the local network and outside

networks or the internet.

DNS Configuration

Attribute Value Description

Primary DNS 0.0.0.0 The IP address of the primary DNS server

Secondary DNS 0.0.0.0 The IP address of the secondary DNS server

Host Name N/A
The unique name identifying the

device on the network

3.1 Research on NETCONF implementations

This section presents our research on open-source implementations of NETCONF. Our

research approach involved an initial review of existing literature on using open-source

NETCONF server implementations, followed by an analysis of different open-source im-

plementations from the official NETCONF wiki [38] for the NETCONF working group.

The page also states that the wiki was mainly updated after an IETF meeting. The sec-

tion concludes with selecting the open-source server implementation, and client used to

advance our study.

3.1.1 NETCONF servers employed in other research

Areview of relevant literature revealed that open-source NETCONF implementations had

been examined in different settings. In one study, researchers leveraged the Netopeer2

framework to create a framework for automatically generating software agents in Software

Defined Optical Networks [39]. Another publication also utilized Netopeer2 to abstract

the control functionality of a tunable Small Form-factor Pluggable (SFP+) transceiver’s

wavelength, making it adjustable through Software Defined Network principles [40].

Netopeer2 was also evaluated based on the suitability of NETCONF and YANG as a con-

figuration tool for managing devices in a home environment by implementing Netopeer2

13

3. Methodology and Implementation

on a Raspberry Pi 3 B+ running Linux [41]. Similarly, Netopeer2 was used in a Digi-

tal Enhanced Cordless Telecommunication ultra-low energy system with a Raspberry Pi

3. It helped connect the Configuration and Update Controller to the Configuration and

Network Controller through a User-to-Network Interface [42].

In a time-sensitive network study, the authors used Netopeer2 on the NXP LS1028ARDB

network switch running Open Industrial Linux, the authors found netopeer2 ”seamless

and straightforward” [43].

In addition to Netopeer2, the open-source software packageYenca was also used for NET-

CONF implementations. In three studies,Yenca and the Differentiated Services (DiffServ)

module evaluated the NETCONF protocol against Common Open Policy Service for Pol-

icy Provisioning. In the first study, the evaluation was performed on two Linux PCs run-

ning Slackware 10.1 [44]. The second study used the Linux-based Fedora Core 4 operat-

ing system. The authors stated that the simplicity and small size of Yenca allowed them

to easily integrate DiffServ into the module [45]. The final study used the Linux-based

operating system Gentoo-r5 [46].

In a conference paper from 2013 [47], the contact person for Netopeer2 [38] recommended

using the libnetconf library to effectively implement NETCONF servers, citing the inad-

equacies of other existing implementations, such as the outdated and poorly maintained

Yenca. The author noted that the libnetconf library had received favorable receptionwithin

the NETCONF community, suggesting a respected status.

3.1.2 Overview of Open-Source NETCONF server

This section explores open-source NETCONF servers from the official IETF NETCONF

wiki [38] to identify a server that could be adapted and integrated into the ABCC device.

For the proof of concept project, an open-source server is preferred to minimize costs

and simplify customization and adaptation to fit the device’s specific requirements. This

section provides an overview of four open-source implementations of a NETCONF server.

The section concludes with a table summarizing their capabilities, dependencies, and our

pick to advance our study.

3.1.2.1 libnetconf2 and libyang

The libnetconf2 library is a C-based NETCONF library that enables the construction of

NETCONF clients and servers. It is maintained and developed by the Tools for Moni-

toring and Configuration department of CESNET, and to utilize it, a C compiler, cmake,

libyang, and either libssh or OpenSSL are required [48]. Libyang is a YANG data model-

ing language parser and toolkit written in C, which is used in projects such as libnetconf2

14

3. Methodology and Implementation

and Netopeer2, and requires a C compiler, cmake, and libpcre2 for both Unix and Win-

dows systems. Both libnetconf2 and libyang are open-source projects licensed under the

BSD-3-Clause license [48, 49]. Furthermore, the libnetconf2 library supports NETCONF

1.0, 1.1, and NETCONF over TLS [48].

3.1.2.2 Netopeer2 and Sysrepo

Netopeer2, a NETCONF server for network configuration management licensed under

the BSD-3 license, is based on libyang and libnetconf2 and uses sysrepo as a NETCONF

datastore implementation [50]. Netopeer2 has the same dependencies as libnetconf2, with

the added sysrepo dependency, and is maintained and developed by CESNET. Sysrepo is

a YANG-based configuration and operational state data store that supports Unix/Linux

applications and can be integrated with management agents such as NETCONF or REST-

CONF servers. Its build requirements include a C compiler, cmake, and libyang [51]. The

primary goal of the Netopeer server is to offer a NETCONF framework for network de-

vice developers, enabling them to implement configuration modifications on their devices

without requiring expertise in the NETCONF protocol [52]. Like libnetconf2, Netopeer2

supports NETCONF 1.0, 1.1, and NETCONF over TLS [50].

3.1.2.3 POCO NETCONF

POCO (Portable Components) C++ Libraries is a collection of C++ class libraries licensed

under the Boost Software License, with a focus on network-centric, cross-platform appli-

cations [53]. POCO NETCONF, an add-on library, implements the NETCONF standard,

offering automatic configuration capabilities for devices [54]. The libraries provide vari-

ous network functionalities such as stream, datagram, multicast, server sockets, HTTP(S)

client and server frameworks, C++ server page compiler, and more, while supporting

SSL/TLS based on OpenSSL. POCO is highly portable, available on various platforms,

with minimum system requirements being 75 MHzARM9 and 8 MB RAM for embedded

Linux. The prerequisites for POCO include CMake 3.5 or newer, a C++14 compiler, and

optionally, OpenSSL and various client libraries [53]. Lastly, POCO NETCONF supports

NETCONF version 1.0 [55].

3.1.2.4 Yenca

TheYenca NETCONF server, a C-based implementation, provides an extensible interface

for NETCONF modules without being directly linked to them [56, p. 15, pp. 16-17]. It

operates using libxml2 and libdl libraries and can incorporate OpenSSL for encryption. It

is developed to run on Linux kernel-based x86 platforms [56, pp. 14-15]. This open-source

project is licensed under GPL-2.0 [57].

15

3. Methodology and Implementation

Table 3.2: Yenca supported operations.

NETCONFOPERATION Corresponding YENCAOPERATION

<get> <get-state>

<get-config> <get-config>

<edit-config> <edit-config>

<copy-config> <copy-config>

<delete-config> <delete-config>

<lock> <lock>

<unlock> <unlock>

<close-session> None

<kill-session> <kill-session>

TheYenca library was released in 2004 and

developed before NETCONF 1.0. How-

ever, upon comparing the documentation

and the official RFC [4], we concluded that

it supports 8 of the 9 required NETCONF

protocol operations shown in Table 3.2.

3.1.2.5 Summary

Table 3.3 summarizes the NETCONF server implementations that have been examined.

The data in the table is based on the information provided by the authors of the imple-

mentations and the corresponding online documentation. However, it is not intended to

be comprehensive in scope. Notably, all the implementations analyzed are contingent on

an underlying operating system, either Unix or Windows-based and feature support for

SSL/TLS via the OpenSSL library.

Table 3.3: Summary of NETCONF server implementations.

Library Language Dependencies License TLS

Libnetconf2 C libyang →Unix/Windows BSD-3 Clause OpenSSL

Netopeer2 C
libnetconf2 →Unix/Windows

Sysrepo →Unix/Linux
BSD-3 Clause OpenSSL

POCO

NETCONF
C++

Windows Embedded CE

Embedded Linux (uClibc/glibc)
BSL-1.0 OpenSSL

Yenca C Linux GPL-2.0 OpenSSL

Yenca, despite its lack of updates since 2004 and non-compliance with the latest RFC,

was chosen for our purposes as it is a fully realized NETCONF server. Its alternatives

were not as suitable: the POCO implementation was ruled out due to its monolithic nature

(see Table 3.4), and although Libnetconf2 is a complete library, it is not a ready-to-use

NETCONF server, but rather a toolset for building NETCONF clients and servers. The

primary goal was to reduce development time, and the Unix dependencies of Netopeer2

would have required more time to address than was available.

The complexity of Yenca’s codebase is also less than the other alternatives. Complexity

here is measured by the ease of understanding the code and identifying which files corre-

spond to which functionality. If there were more development time available, Yenca might

not have been our first choice; a future,ABCC-specific implementation using Libnetconf2

would be more ideal.

16

3. Methodology and Implementation

Table 3.4: Repository Summary.

Agent Files Comments Lines of Code Size(MB)

Yenca 40 5149 35307 2.57

POCO NETCONF 4710 184,382 1,235,628 216

Netopeer2 99 4761 30343 6.51

Libnetconf2 81 6043 28580 5.6

3.1.3 NETCONF client implementations

This section aims to examine three NETCONF clients sourced from the official NET-

CONF wiki [38]. The objective is to select a client for testing the communication of our

NETCONF server. The section will conclude with a client we choose to proceed with in

our study.

3.1.3.1 Segue-Soft: NETCONFc

The Segue-Soft NETCONFc client is a commercial software tool that provides a brows-

ing interface for NETCONF and YANG developers and test engineers. It allows users to

browse and edit server configurations using a graphical interface, with the ability to au-

tomatically generate standard NETCONF operations by pointing and clicking [58]. The

tool supports both vendor-specific and IETF standard YANG modules, as well as various

versions of the NETCONF protocol, including NETCONF 1.0 and 1.1, and NETCONF

over TLS [58]. The Segue-Soft NETCONFc client runs on MicrosoftWindows and Linux

operating systems, and it is available for purchase with a free trial option [58].

3.1.3.2 MG-SOFT: NETCONF Browser

MG-SOFT NETCONF Browser Professional Edition is a commercial software tool that

provides a NETCONF client application. It allows users to retrieve, modify, install, and

delete the configuration of any NETCONF server device in the network [59]. The tool

supports visual loading of standard and vendor-specific YANG 1.1 [7] and YANG 1.0

[6] modules, displaying their contents in a hierarchical tree structure representing module

elements. It also supports NETCONF 1.0 and 1.1, and NETCONF over TLS [59]. It runs

onMicrosoftWindows, Linux, andmacOS operating systems and is available for purchase

with a free trial option [59].

3.1.3.3 YumaWorks: YumaBench

YumaBench is a graphical workbench created by YumaWorks to manage NETCONF ses-

sions. It is designed for developers and network operators to manage network devices

17

3. Methodology and Implementation

like routers and switches by leveraging NETCONF protocols. YumaBench is part of the

YumaPro SDK and is based on the Yangcli-pro client [60]. It is worth mentioning that a

2014 paper discussed the capabilities of YumaPro in the context of an online NETCONF

Interoperability Lab, comparing various NETCONF client and server implementations

[61]. Based on the information provided in that paper, one can assume that YumaPro, and

YumaBench, as part of the YumaPro SDK, are RFC compliant with NETCONF 1.0.

The Yangcli-pro is a NETCONF client that supports TLS. Driven by YANG modules,

it offers a command line interface with context-sensitive help. Some of the features of

Yangcli-pro include support for multiple sessions to multiple servers at once, support for

NETCONF 1.0, NETCONF 1.1 [62]. As YumaBench is based on the Yangcli-pro client,

YumaBench offers the same features as Yangcli-pro but with a graphical user interface.

YumaBench is available on Unix-like operating systems such as Ubuntu, Debian, and

macOS, and early release version of YumaBench is available for free download [60].

3.1.3.4 NETCONF Client Comparison and Selection

All three clients offer support for standard and vendor-specificYANGmodules and various

versions of the NETCONF protocol, including NETCONF 1.0 and 1.1 and NETCONF

over TLS, and claim that they adhere to RFC 7589 ”Using the NETCONF Protocol over

TLS with Mutual X.509Authentication” [16]. They also provide graphical interfaces that

enable users to browse and edit server configurations.

After considering the features and availability of various clients, we have decided to use

YumaWorks YumaBench to test the communication with our NETCONF server imple-

mentation. The primary reason for this choice is its free availability and visually appealing

interface, which we found to be the most attractive.

3.2 Yenca

TheYenca NETCONF server, while supporting all the basic NETCONF operations, needs

an updated architecture that follows the minimum RFC standards. Additionally, the server

tends to leak memory and has several undefined behaviors. These issues made it chal-

lenging to integrate Yenca with theABCC device. This section discusses the problems we

encountered with Yenca and how we solved them, including our testing process to ensure

our solutions were effective.

18

3. Methodology and Implementation

3.2.1 Yenca Problems with Outdated Architecture

Yenca is an earlier NETCONF server supporting all fundamental NETCONF operations.

Nonetheless, it was developed before the standardization of NETCONF 1.0, meaning

Yenca’s request for sending and parsing needs updating to adhere to the minimum RFC re-

quirements for RFC compliance (i.e., RFC4741 [5]). Although the code is mostly loosely

coupled, some aspects are not. For instance, Yenca’s module handling is closely tied to the

modules’ structure. As a result, any new module must conform to the existing modules’

structure. This approach is suboptimal, with a more modular method being preferable.

Moreover, a handle for each module is passed to the parser, complicating the prevention

of memory leaks, an issue Yenca experiences.

3.2.2 Memory Leaks and Undefined Behaviour

Using the Valgrind tool for C/C++ development for memory management, we could de-

tect memory leaks in the Yenca code. We detected up to 700,000 bytes in memory leak

from 100 requests to the Yenca server, equating to about 0.7 MB in memory leak. This

is significant because the embedded device, ABCC, has only 128 MB of memory with a

certain amount of memory blocks. If the Yenca server were to be run on the ABCC, it

would run out of memory. Another issue with Yenca is its tendency to write to memory

using sprintf, a banned function by git [63]. Furthermore, the length of the buffer is not

specified, causing the NETCONF server to buffer overflow on somemachines while func-

tioning on others. Similarly, it works on some machines when trying to find the interfaces

from its interface module. On others, it would not find anything and set it all to NULL

because memory management needs to be handled better in Yenca.

3.2.3 File Dependency

Yenca relied on reading files, including dynamically loadingmodules from a folder on disk

and accessing temporary files to determine how to respond to client requests. However,

this approach could bemore efficient as it requires reading from a disk every time a request

is made, which is slower than reading from memory. Additionally, the ABCC has limited

filesystem capabilities.

3.2.4 Testing and Validation for Yenca Refactoring

To test the solution, we again used Valgrind to detect memory leaks. After our refactoring,

Valgrind did not detect any memory leaks, which means the memory leaks were solved;

see Appendix C.

19

3. Methodology and Implementation

To test the buffer overflow issue, we ran the Yenca server on various machines to ensure

that it was not reproducible. We also used unit tests to test specific functions and modules

of Yenca to ensure that our changes did not introduce new bugs.

Additionally, we employedWireshark to examine the interaction between ourYenca server

and the YumaBench NETCONF client. This allowed us to verify that the server continued

to exchange valid NETCONF messages. By running the Yenca server and then using

the YumaBench NETCONF client, we were able to establish a connection and test the

Yenca NETCONF operations that were supported. This confirmed that all functionalities

remained intact even after addressing the issues that were identified earlier.

3.3 MbedTLS-Based Secure Communication

This section delves into the implementation of secure communication using the MbedTLS

library. It covers the initial research and familiarization with the library, developing an

MbedTLS server, and the hurdles encountered while enabling client connections and han-

dling certificates. Furthermore, this section explores how the implementation was inte-

grated with YumaBench, the chosen NETCONF client, as discussed in Section 3.1.3.3.

It discusses the testing of NETCONF and YANG functionality and the evaluation and

analysis of requests.

3.3.1 Initial Research and Familiarization

The first phase of this project involved researching the MbedTLS source code, available

on GitHub [15], and becoming familiar with its various functions. This allowed us to

draw inspiration from how Yenca sets up its OpenSSL server. A key advantage of Yenca

is its loose coupling, which means its networking layer is not dependent on the rest of the

code. This allows us to create an MbedTLS server and modify the entire networking layer

without replacing functions one-to-one.

3.3.2 Developing the MbedTLS Server

TheMbedTLSGitHub repository [15] provided several examples as a solid foundation for

our implementation. With the help of these examples and some inspiration from Yenca,

we were able to develop an MbedTLS server.

20

3. Methodology and Implementation

3.3.3 Client Connections and Certificate Management

As stated in Section 3.1.3.4, all the clients claim to adhere to RFC 7589. RFC 7589 de-

scribes using TLS with mutual X.509 authentication to secure the exchange of NETCONF

messages. This means the server and client need their certificate and private keys to com-

municate. It also states that the delimiter ”]]>]]>”must be used at the end of all NETCONF

1.0 messages [16]. Yenca did not adhere to this, so this had to be implemented. All cer-

tificates and keys were generated using OpenSSL.

3.3.4 Integration with YumaBench for Testing and Validation

This section will discuss integrating our secure communication implementation withYum-

aBench for testing and validation purposes. We will cover the interaction between the

client and server and the challenges we faced to ensure that our MbedTLS server was

functional and reliable, with stable sessions that did not terminate unexpectedly. We will

also explore our testing of NETCONF and YANG functionality using YumaBench, and

how it enabled us to validate our XML documents and Yang models. Finally, we will

discuss our analysis of YumaBench’s requests and how it helped us to deepen our under-

standing of their construction.

3.3.4.1 Client and Server Interaction

For the client-side implementation, we utilized YumaBench. To test the reliability of our

MbedTLS server, we established connections using the Linux terminal with MbedTLS

and through YumaBench. By simultaneously sending and receiving packets and enabling

the server’s debug mode, we could assess the server’s reliability.

Through close collaboration with YumaBench, we verified that our MbedTLS server was

functional and reliable, maintaining stable sessions without unexpected terminations.

3.3.4.2 Testing NETCONF and YANG Functionality

UsingYumaBench, we practiced our understanding of NETCONF andYANGwhile man-

ually sending replies to YumaBench and observing its responses. The XML documents

and Yang modules were developed by analyzing the information provided in RFC4741

and RFC6241.

3.3.4.3 Validation and Analysis of Requests

YumaBench allowed us to verify that we had constructed valid XMLdocuments andYang

models. It would terminate the session with a close-session command if it received im-

21

3. Methodology and Implementation

proper requests. This also enabled us to analyze YumaBench’s requests, compare them to

the RFC standards, and deepen our understanding of their construction.

3.4 Implementation of NETCONF and YANG server

Yenca’s file dependencies, as discussed in Section 3.2.3, posed a significant and unfore-

seen challenge. HMS advised removing the code’s reliance on the filesystem to enhance

its reliability. However, this would necessitate a complete rewrite of the module loading

system, which makes up around 85% of the codebase. Instead, we developed our server,

drawing on the experience and insights from working with Yenca. Having already created

the entire transport layer by implementing an MbedTLS server, it was straightforward to

design a new architecture, as seen in Figure 3.1. Our approach to file naming and the struc-

ture of C files resembled Yenca’s method. Yenca utilized Xpath Query to locate different

child nodes and retrieve their contents, as libxml2, the primary library for parsing XML

documents in C, provides access to an ordered tree. While this is a viable approach, we

used an array to store a struct of key-value pairs due to the limited number of fields desig-

nated for configuration and monitoring on the ABCC. This method is more efficient than

Xpath queries as it has a lower overhead but is slightly less scalable. However, the minor

loss in scalability is not critical. The impact would likely be noticeable if the number of

attributes increased significantly, but it is not expected to exceed ten. Furthermore, since

this is a proof of concept, it is not intended for large-scale deployment in a vast network.

Instead, using existing literature, it aims to demonstrate the feasibility of implementing

NETCONF on a non-Unix/Windows device. The following sections will discuss the de-

sign and implementation of the server in greater detail. The GitHub repository for the

NETCONF implementation will include more details on the API, see Appendix D.

YumaBench

PC

TLS

<XML>

<XML><XML>

<XML>

NETCONF
Client

Transport Layer
Protocol

XML parser
(libxml2)

MbedTLS
server

ABCC40

ABCC
Datastore

Execute
RPC request

Get values
or set values

Figure 3.1: NETCONF communication diagram.

22

3. Methodology and Implementation

3.4.1 Data Structure

The server utilizes a key-value pair array, its fundamental data structure, consisting of

straightforward structs embodying a key and a value. In this arrangement, the key is a

string, while the value is a void pointer, facilitating the storage of any data type within

the value field. The key serves the purpose of identifying its associated value. Designed

to store data necessitating configuration or monitoring, the key-value pair array finds its

application in examples seen in Appendix E andAppendix F. These Appendices illustrate

instances where the XML document is a YumaBench request and the structured output

below displays the resulting array. The data structure’s API is detailed in Appendix G,

while the comprehensive API can be accessed on the GitHub repository, see Appendix D.

3.4.2 Parsing

Exploring the parsing of XML documents involves understanding a series of functions

that collectively parse, process, and generate XML documents. This includes tasks such

as parsing XML from a string, traversing the XML tree, extracting and processing data,

and creating XML replies. For instance, Libnetconf2 uses regex, a modern approach, yet

unsupported by the ABCC. Designed with modularity, the parsing layer facilitates easy

modification and extension, while maintaining loose coupling with the rest of the code.

The API documentation, available in Appendix H, provides further insights. For a com-

prehensive overview of the full API, the accompanying GitHub repository is a valuable

resource, see Appendix D.

3.4.3 Network Layer

In our implementation, a transport layer for a NETCONF and YANG server is imple-

mented using the MbedTLS library. The primary goal of the transport layer is to provide

a secure connection between the client and server. The code can be broken down into

several sections:

1. Include necessary header files: Header files for the network, KeyValuePairArray,

parsing, and ABCC device are included to provide the required functionality.

2. Debug function: A custom debug function, my_debug, is used by mbed TLS for

logging purposes.

3. Write to client function: The function write_to_client writes a given message

to the connected client over an SSL connection. The function ensures that the mes-

sage is sent successfully and handles possible errors.

23

3. Methodology and Implementation

4. mbed SSL server: The main function, mbed_ssl_server, establishes a secure

SSL/TLS server using the MbedTLS library.

(a) Initialization: The necessary MbedTLS structures are initialized, such as the

server and client network contexts, SSL context, SSL configuration, certifi-

cates, private key, and random number generator.

(b) Seeding the random number generator: The random number generator is

seeded using the entropy source.

(c) Loading the certificates and private key: The server, CA certificates, and

private key are loaded from the corresponding files.

(d) Setup the listening TCP socket: The server binds to the specified port and

listens for incoming connections.

(e) SSLconfiguration: SSL/TLS defaults are set for the server, and the necessary

configurations are applied, such as setting the RNG, debug function, session

cache, authentication mode, CAchain, and server’s certificate and private key.

(f) Main loop: The server waits for incoming connections, and when a connec-

tion is established, it performs the SSL/TLS handshake. After a successful

handshake, the server enters a loop, where it reads messages from the client,

parses the received XML, processes the request, and sends a response back to

the client. If an error occurs during reading, writing, or SSL/TLS handshake,

the server will reset the connection or exit gracefully.

5. Clean up: Before exiting, the server frees all the allocated resources, such as the

network contexts, certificates, private key, SSL context, SSL configuration, random

number generator, and entropy source.

This transport layer provides a secure connection between the client and server, ensuring

that data exchanged between the parties is encrypted and protected against eavesdropping

or tampering. The server is designed to handle NETCONF andYANG requests by parsing

and processing XML messages and generating appropriate responses. A visual represen-

tation can be seen in appendix I.

3.5 Unit testing

In an article published inDecember 1997, the authors discusses the key issue of objectively

measuring test quality in software testing [64]. The authors survey the research conducted

in this field over the past two decades, focusing on various test criteria proposed and

24

3. Methodology and Implementation

studied for evaluating test quality.

The article examines the concept of adequacy criteria and its role in software dynamic

testing. It also reviews criteria classification, followed by a summary of the methods used

to compare and assess these criteria. The main topics covered in the paper include test

adequacy criteria, comparing testing effectiveness, software unit test, test coverage, fault

detection, and testing methods.

Additionally, functional tests have been devised in the form of Python scripts. These

scripts initiate the NETCONF server and supply it with a variety of XML documents to

examine the server’s functionality. The server’s responses are subsequently contrasted

with anticipated replies to confirm its operational correctness. Both the unit tests and

the functional tests are integrated into the GitHub repository. Any change pushed or the

main branch pulled triggers an automatic execution of these tests on GitHub, courtesy of

GitHub Actions. GitHub Actions is a built-in CI/CD service that autonomously executes

a custom-made Makefile, which in turn runs all of our tests [65].

We used the testing framework Unity for C to test our classes. The framework provides

a way to create, run and summarize the test results. The tests cover the ABCC device,

the KeyValuePairArray, the network layer, and the parsing layer and are run on the host

machine with the results displayed in the terminal.

3.5.1 Wireshark for packet capture

To verify the encrypted traffic and ensure the correctness of a packet exchange between

the server and client, we employed packet analysis usingWireshark. We could effectively

focus our analysis by filtering the traffic to display only the packets exchanged between

the server and the client. This was accomplished by filtering for TCPpackets on port 6513,

corresponding to the port on which the NETCONF server was operating. Consequently,

we could confirm that the traffic was encrypted and that the packet exchange between the

server and client was correct.

3.6 Modelling ABCC to a YANG model

In order to achieve reconfigurability with YumaBench, we modeled theABCC to aYANG

model by extracting relevant fields from the HMS IPconfig. Given that the project is a

proof of concept, we decided only to enable the configuration of the hostname. This ap-

proach was selected as it required the least effort to implement, as opposed to considering

the possibility of disruptions in the client-server connection and subsequent resetting of

the device to manage or set a new IP. The YANG model is shown in Appendix J.

25

3. Methodology and Implementation

3.7 Porting the NETCONF server to the ABCC

Porting the NETCONF server to the ABCC involved transferring program libraries to

the ABCC and ensuring their compatibility with the existing system. Certificate and pri-

vate key loading were accomplished using the HMS web server. While confidentiality

restrictions prevent us from elaborating on the specifics, it is worth noting that hardware-

related issues posed challenges during the porting process. Notably, the J-Link debugger

presented some difficulties, such as clearing the SPI table and accidentally dropping the J-

Link connector on the ground resulting in the loss of connectivity and rendering the J-Link

debugger unusable.

26

4

Results

This chapter presents the results derived from implementing the NETCONF server on

the ABCC. The implementation was carried out using the YumaBench client to evaluate

the server’s performance and adherence to the NETCONF and YANG standards. Fur-

thermore, this chapter will also discuss the outcomes of the unit tests executed on Linux

devices to assess the code’s correctness and functionality.

Unit tests were conducted on Linux devices using the command make test in the project’s
root directory. This process compiled the test files and executed the tests. Tables 4.1 and

4.2 display the test results, indicating that all tests passed successfully and the code cov-

erage reached 96%. Packet analysis of the NETCONF server running with a YumaBench

session was carried out usingWireshark. Packet analysis demonstrated that the TLS hand-

shake occurred correctly and that <get-config> sent from the client were correct. In Ap-

pendix K we can observe the TLS handshake between YumaBench and our NETCONF

server using Wireshark to analyze the packets.

The custom-made implementation is significantly more memory-efficient than Yenca, as

shown in Table 4.3. The values were obtained using Valgrind. As can be seen, running

Yenca’s TLS implementation, which is OpenSSL, without any connections or requests,

already consumes approximately 840,000 bytes in heap usage. In contrast, our imple-

mentation uses only around 124,000 bytes. As a result, our implementation consumes

approximately 14.8% of the heap memory that Yenca does. Furthermore, this does not

consider the substantial memory leaks evident in the table with 200 requests. Yenca’s

memory leaks can be approximated as follows:

M(C, R) = 11375C + 6875R where C, R ∈ Z+ (4.1)

C represents the number of connections and R the number of requests. A visual represen-

tation of this relationship can be found inAppendix L. The equation is formulated through

a thorough analysis ofYenca using Valgrind. Intriguingly, there exists a linear relationship

between the extent of memory leaks and the rise in requests and connections. Specifically,

if the number of connections C remains constant, the memory leak evolves into a linear

function of the number of requests R. Though it is demanding to ascertain the precise

extent of memory leaks, this approximation serves as a robust indicator of their severity.

The memory leak attributable to connections appears constant, while that resulting from

27

4. Results

Table 4.1: Sample of unit test results for the KeyValuePairArray class.

Test Name Test Results Description

init_key_value_array PASS

Tests the initialization of a

KeyValuePairArray with a

specified capacity.

init_key_value_pair PASS

Tests the initialization of a

KeyValuePair with a given

key and value.

set_request_type PASS
Tests setting the request type

for a KeyValuePairArray.

add_key_value PASS

Tests the addition of a

KeyValuePair to a

KeyValuePairArray.

get_key PASS
Tests retrieving a key from a

KeyValuePairArray.

get_value PASS
Tests retrieving a value from a

KeyValuePairArray given a key.

print_all_nodes PASS
Tests the print functionality for

all nodes in a KeyValuePairArray.

init_key_value_array_max_capacity PASS

Tests the initialization of a

KeyValuePairArray with a

capacity exceeding the

maximum allowed.

init_key_value_pair_null_value PASS
Tests the initialization of a

KeyValuePair with a null value.

requests exhibits slight variance. This discrepancy stems from Yenca leaking the actual

string of the request itself. If we consider each character to be equivalent to a byte, then

the approximation error can be expressed as:

Error = M(C, R) − Request String Length (4.2)

By presuming a reasonable string length, the error remains insignificant due to thememory

leak arising from handling the request itself.

ThroughYumaBench, wemanaged to establish a connection to theABCC, retrieve its con-

figuration, monitor the said configuration, and modify the hostname. Table 4.4 displays

the ABCC’s initial configuration as seen from YumaBench’s monitoring tab. These set-

tings, the default ones for the ABCC, confirm the NETCONF server’s correct operation,

and they are also mirrored in the HMS IPconfig.

In Table 4.5, we present the ABCC’s configuration post the successful hostname change.

28

4. Results

Table 4.2: Sample of code coverage for the KeyValuePairArray class.

LCOV - Code Coverage Report

Directory Line Coverage Functions

parsing/DataStructures 96.1% 49/51 100.0% 8/8

tests 100.0% 108/108 100.0% 12/12

Table 4.3: Heap summary comparison between Yenca Agent and our implementation with different TLS

and request configurations

Server TLS Requests Heap summary (bytes)

Yenca Agent No 200 1,419,665

Yenca Agent Yes No 838,302

Yenca Agent No 0 103,287

Our implementation Yes ∞ 123,994

To ensure this change is accurately reflected on theABCC, we checked the HMS IPconfig

tool and found that the hostname had indeed been altered to ”test”. These results precisely

match those shown in Table 4.5, affirming the accuracy of what YumaBench’s monitoring

tab displayed.

Table 4.4: The monitor tab of YumaBench after successfully connecting to the ABCC.

IP Configuration

Attribute Value

IPAddress 192.168.1.78

Subnet Mask 255.255.255.0

Default Gateway 0.0.0.0

DNS Configuration

Attribute Value

Primary DNS 0.0.0.0

Secondary DNS 0.0.0.0

Host Name N/A

DHCPConfiguration

Attribute Value

Enabled False

Initially, the aim was to find a suitable open-source NETCONF server and port it to the

ABCC. However, our findings suggest this is impossible, given the current state of open-

source NETCONF servers. The servers we found needed to be properly maintained or

unsuitable for our use case. The only viable option was to create a NETCONF server

from scratch. However, if time were not a factor, we believe it would be possible to port

a NETCONF server to the ABCC. Specifically, the ones mentioned in the thesis, namely

Libnetconf2, and Netopeer2, could be ported over.

In summary, the results demonstrate the successful connection and configuration of the

29

4. Results

Table 4.5: The monitor tab of YumaBench after successful get-config operation.

IP Configuration

Attribute Value

IPAddress 192.168.1.78

Subnet Mask 255.255.255.0

Default Gateway 0.0.0.0

DNS Configuration

Attribute Value

Primary DNS 0.0.0.0

Secondary DNS 0.0.0.0

Host Name test

DHCPConfiguration

Attribute Value

Enabled False

ABCC using a NETCONF client and the effectiveness of the unit tests and code coverage.

Despite the challenges in finding suitable open-source implementations, the custom-built

NETCONF server proved a viable solution.

30

5

Discussion

While functional, the developedNETCONF andYANG implementation has its challenges.

It must be completed and fully adhere to the NETCONF standard, lacking some fea-

tures defined in the standard, such as lock, unlock, and copy-config. Additionally, the

implementation needs substantial error handling. Despite these limitations, the server is

exceptionally lightweight compared to other servers, boasting a codebase of fewer than

1000 lines of code. The implementation is also OS-agnostic, which means it can run on

any platform that supports MbedTLS and libxml2. Free from memory leaks, the imple-

mentation includes unit tests that achieve 96% code coverage, adhering to code adequacy

standards like statement coverage and branch coverage. Although these tests are not ex-

haustive and do not cover all possible scenarios, they indicate the code’s correctness and

the functionality of the classes.

As Dijkstra stated, ”Program testing can be used to show the presence of bugs, but never

to show their absence!” [66]. This statement is pertinent in this context. The tests demon-

strate that the code is correct for the given test cases but does not guarantee correctness for

all possible inputs. Nonetheless, testing is a non-trivial matter and has long been a topic

of discussion. Since the tests adhere to statement and branch coverage, confidence in the

code’s correctness can be maintained in most cases.

Evaluating the server’s compliance with the RFC presents a challenging endeavor. To

ensure the server’s conformity with the RFC, it would necessitate examination by an ex-

ternal expert in the domain, submission to the IETF, or the creation of compliance tests.

However, such measures exceed the boundaries of this project. Given that the server in-

teracts with YumaBench, which is supposedly RFC-compliant, it is plausible to assume

that it partially adheres to the RFC for the following NETCONF operations: <hello>, get,

get-config, edit-config, and correct usage of delimiter. Moreover, it satisfies the goals and

requirements set in Section 1.2.

Although Yenca was featured on the IETF’s website and included in other studies, it ex-

hibited flaws that needed addressing these sources. It is essential to understand that the

implementation could be more flawless and high-quality even if a project is showcased

on the IETF website or has been the subject of studies. In this case, Yenca suffered from

significant memory leaks, rendering it nonviable on the ABCC. More time should have

been dedicated to analyzing the code’s quality. Some bugs and memory leaks were not

challenging to identify, but they were taken for granted due to the IETF’s recommenda-

31

5. Discussion

tion. This can also lead one to question the validity of the studies using Yenca but not

mention its problems.

Had the issues with Yenca been discovered earlier, it could have opened the path to a

more in-depth analysis of whether an implementation with libnetconf2 could have been

feasible. This could have saved the time spent fixing Yenca’s issues and allocated that

time to refining our implementation.

The realization of the project goals affirms the success of this thesis, which has earned

our partners’ admiration at HMS. HMS has asked that we present our work to their col-

leagues. The success of the project has also sparked HMS’s contemplation of developing

their proprietary version of NETCONF and YANG. However, the value of this endeavor

is currently still being determined. HMS has noted that the demand for NETCONF among

their clients is not exceptionally high. If this demand increases, there would be more jus-

tification for a proprietary implementation. This thesis has established a solid foundation

for such an effort, should HMS decide to undertake it.

Considering the widespread adoption and understanding of the SNMP protocol is essen-

tial. Without compelling reasons to switch to NETCONF and YANG, HMS might prefer

to stick with SNMP. Nevertheless, one significant critique raised by HMS customers re-

garding SNMP is its lack of security features. In this context, NETCONF and YANG

could present an attractive alternative due to their inherent security capabilities.

As delineated in this thesis, the advice from the IETF is not to advance to SNMPv3 but

rather to shift towards NETCONF and YANG. However, the extensive scope of the NET-

CONF protocol compared to SNMP raises questions about the capacity of theABCCmod-

ule to support NETCONF and YANG. Additionally, there are doubts about the ABCC’s

competence to handle the more complex features of NETCONF. Further research is nec-

essary to assess the practicability and efficiency of implementing NETCONF and YANG

on the ABCC.

To our knowledge, no existing open-source or readily available NETCONF and YANG

server, or even a standalone NETCONF server, runs over MbedTLS. Therefore, the inten-

tion is to make our implementation open source and provide clear instructions on using

it and getting it up and running on the most common platforms, such as Linux and Win-

dows, as well as on specific operating systems like the one running on the ABCC. This

is a significant contribution to the research and further prosperity of the NETCONF and

YANG communities.

The implementation presented in this report is a derivative work inspired by NETCONF

and YANG server functionality principles and drawing upon the knowledge gained from

existing open-source projects, such as Yenca. In this context, a derivative work refers to

32

5. Discussion

a novel creation that incorporates elements or aspects of pre-existing works while adding

original features and modifications.

The creation of derivative works plays a crucial role in the growth and evolution of tech-

nology, as it enables researchers and developers to learn from previous projects and build

upon them. This process encourages innovation and drives the development of better

solutions by leveraging the knowledge and experience of multiple projects. Thus, devel-

oping derivative works, such as the implementation presented in this report, is a valuable

contribution to the ongoing progress in the NETCONF and YANG communities.

33

6

Conclusion

This thesis explored the implementation of NETCONF andYANG on an embedded device

with a custom operating system, with a particular focus on adding support for MbedTLS

in the open-source NETCONF server. The chosen platform for this study was theAnybus

CompactCom family of industrial Ethernet switches, which run on MbedTLS and offer

plug-and-play operation with advanced Layer 2 features for industrial networks.

The results presented in this thesis demonstrate the successful implementation of the NET-

CONF server on theABCC platform using the YumaBench client. The YumaBench client

was used to evaluate the server’s performance. It confirmed the server’s ability to adhere

to the NETCONF and YANG standards and enabled the configuration and monitoring

of the embedded device. Furthermore, the outcomes of the unit tests executed on Linux

devices provided a solid indication of the code’s correctness and functionality.

Integrating MbedTLS support into the open-source NETCONF server has proven to be

a viable solution to expand the transport layer’s applicability to more devices. However,

the initial aim to find a suitable open-source NETCONF server and port it to the ABCC

was not feasible due to the current available open-source servers. As a result, creating a

custom NETCONF server from scratch became necessary.

In conclusion, this thesis contributes to the ongoing discussion and development of NET-

CONF and YANG in embedded devices, particularly those running on custom operating

systems and MbedTLS. The successful implementation of the NETCONF server on the

ABCC platform is a stepping stone toward greater adoption of these protocols in the indus-

try, potentially leading to enhanced network configuration and management capabilities

across various embedded systems. Further research and development in this area can ex-

plore the possibility of porting other existing NETCONF servers to the ABCC platform

and enhancing the custom server’s features and performance.

35

Glossary

ABCC Anybus compatcom 40 - The embedded device cre-

ated by HMS which the thesis aims to implement

NETCONF and YANG on 3

HMS Hardware Meets Software - the company this paper is

being written at 2

IIoT The Industrial Internet of Things 2

MbedTLS Asoftware library for embedded systems that provides

cryptographic and SSL/TLS capabilities 2

NETCONF A network management protocol 2, 3, 38

Protocol A set of rules for communication 3

SNMP Simple Network Management Protocol is a standard

protocol used for managing and monitoring network

devices 2–4

TLS A cryptographic protocol for secure communication

on the internet 2

YANG Yet another language - A data modeling language for

network management 2, 38

37

Bibliography

Bibliography

1. Mauro DR and Schmidt KJ. Essential SNMP. 2nd ed. Sebastopol, CA: O’Reilly,

2005. 442 pp.

2. Chatzimisios P. Security issues and vuluerabilities of the SNMP protocol. (ICEEE).

1st International Conference on Electrical and Electronics Engineering, 2004. (ICEEE).

1st International Conference on Electrical and Electronics Engineering, 2004. 2004

Sep :74–7. DOI: 10.1109/ICEEE.2004.1433853
3. Valencic D and Mateljan V. Implementation of NETCONF Protocol. 2019 42nd In-

ternational Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO). 2019 42nd International Convention on Informa-

tion and Communication Technology, Electronics and Microelectronics (MIPRO).

Opatija, Croatia: IEEE, 2019 May :421–30. DOI: 10 . 23919 / MIPRO . 2019 .
8756925.Available from: https://ieeexplore.ieee.org/document/8756925/
[Accessed on: 2023 Feb 16]

4. Enns R, Björklund M, Bierman A, and Schönwälder J. Network Configuration Pro-

tocol (NETCONF). Request for Comments RFC 6241. Num Pages: 113. Internet

Engineering Task Force, 2011 Jun. DOI: 10 . 17487 / RFC6241. Available from:

https://datatracker.ietf.org/doc/rfc6241 [Accessed on: 2023 Feb 16]

5. Enns R.NETCONFConfiguration Protocol. Request for Comments RFC 4741. Num

Pages: 95. Internet Engineering Task Force, 2006 Dec. DOI: 10.17487/RFC4741.
Available from: https://datatracker.ietf.org/doc/rfc4741 [Accessed on:

2023 Jun 2]

6. Björklund M. YANG - A Data Modeling Language for the Network Configuration

Protocol (NETCONF). Request for Comments RFC 6020. Num Pages: 173. Internet

Engineering Task Force, 2010 Oct. DOI: 10 . 17487 / RFC6020. Available from:

https://datatracker.ietf.org/doc/rfc6020 [Accessed on: 2023 Jun 2]

7. Björklund M. The YANG 1.1 Data Modeling Language. Request for Comments

RFC 7950. Num Pages: 217. Internet Engineering Task Force, 2016 Aug. DOI:

10.17487/RFC7950. Available from: https://datatracker.ietf.org/doc/
rfc7950 [Accessed on: 2023 Jun 2]

8. Yu J and Al Ajarmeh I. An Empirical Study of the NETCONF Protocol. 2010 Sixth

International Conference on Networking and Services. 2010 Mar :253–8. DOI: 10.
1109/ICNS.2010.41. [Accessed on: 2023 Jan 23]

9. Chang Y, Xiao D, Xu H, and Chen L. Design and Implementation of NETCONF-

Based NetworkManagement System. 2008 Second International Conference on Fu-

ture Generation Communication and Networking. 2008 Second International Con-

ference on Future Generation Communication and Networking (FGCN). Hainan,

China: IEEE, 2008 Dec :256–9. DOI: 10.1109/FGCN.2008.121. Available from:

38

Bibliography

http://ieeexplore.ieee.org/document/4734099/ [Accessed on: 2023 Feb

16]

10. HedstromB,WatweA, and Sakthidharan S. Protocol Efficiencies of NETCONF ver-

sus SNMP for Configuration Management Functions. en. Denver, CO, USA, 2011

May. Available from: http://www.hit.bme.hu/~jakab/edu/litr/NetConf_
Yang/11NETCONFvsSNMP.pdf

11. MbedTLS documentation hub—MbedTLS documentation.Available from: https:
//mbed-tls.readthedocs.io/en/latest/ [Accessed on: 2023 Feb 13]

12. AnybusCompactComM40Module - PROFINET IIoTSecure.Available from: https:
/ / www . anybus . com / products / embedded - index / anybus - compactcom -
modules/m40-detail/anybus-compactcom-m40-module---profinet-iiot-
secure [Accessed on: 2023 Apr 28]

13. WritableMIBModule IESGStatement. IETF.Available from: https://www.ietf.
org/about/groups/iesg/statements/writable-mib-module/ [Accessed on:

2023 Mar 2]

14. BowneM. Expansions toTSN and Security in PROFINETSpecification. PROFINEWS.

2021 Aug 11. Available from: https://profinews.com/2021/08/expansions-
to-tsn-and-security-in-profinet-specification/ [Accessed on: 2023

Apr 28]

15. README for Mbed TLS. original-date: 2012-11-14T13:13:13Z. 2023 Jan. Avail-

able from: https://github.com/Mbed-TLS/mbedtls [Accessed on: 2023 Jan

30]

16. Badra M, LuchukA, and Schönwälder J. Using the NETCONF Protocol over Trans-

port Layer Security (TLS) with Mutual X.509 Authentication. Request for Com-

ments RFC 7589. Num Pages: 11. Internet Engineering Task Force, 2015 Jun. DOI:

10.17487/RFC7589. Available from: https://datatracker.ietf.org/doc/
rfc7589 [Accessed on: 2023 May 4]

17. Wallin S and Wikström C. Automating Network and Service Configuration Using

NETCONF andYANG. Proceedings of LISA 11: 25th Large Installation System Ad-

ministration Conference. Conference paper, Published paper (Refereed). USENIX

- The Advanced Computing Systems Association. 2011 :267–79. Available from:

https://ltu.diva-portal.org/smash/record.jsf?pid=diva2%3A1001395&
dswid=9535

18. Fedor M, Schoffstall ML, Davin JR, and Case JD. Simple Network Management

Protocol (SNMP). Request for Comments RFC 1157. Num Pages: 36. Internet En-

gineeringTask Force, 1990 May. DOI: 10.17487/RFC1157.Available from: https:
//datatracker.ietf.org/doc/rfc1157 [Accessed on: 2023 Mar 5]

19. DallaglioM, SamboN, Cugini F, andCastoldi P. Control andmanagement of transpon-

ders with NETCONF andYANG. Journal of Optical Communications and Network-

ing 2017; 9:B43–B52

39

Bibliography

20. Cisco Systems I. The YANG Data Modeling Language. 2021 Sep. Available from:

https://developer.cisco.com/docs/nso/guides/#!the-yang-data-
modeling-language/the-yang-data-modeling-language

21. Walsh N. What is XML. XML. commune 1998. Available from: https://www.
xml.com/pub/a/98/10/guide1.html [Accessed on: 2023 Apr 14]

22. Achard F, Vaysseix G, and Barillot E. XML, bioinformatics and data integration.

Bioinformatics 2001 Feb; 17:115–25. DOI: 10.1093/bioinformatics/17.2.
115. eprint: https://academic.oup.com/bioinformatics/article-pdf/
17/2/115/48836815/bioinformatics_17_2_115.pdf. Available from:
https://doi.org/10.1093/bioinformatics/17.2.115

23. NETCONF Configuration. Available from: https://www.cisco.com/c/en/us/
support/docs/storage-networking/management/200933-YANG-NETCONF-
Configuration-Validation.html [Accessed on: 2023 Jan 23]

24. Oppliger R. SSL and TLS: theory and practice. Second edition. Artech House infor-

mation security and privacy series. OCLC: ocn951909923. Boston: Artech House,

2016. 278 pp.

25. Polk T and Turner S. Prohibiting Secure Sockets Layer (SSL) Version 2.0. Request

for Comments RFC 6176. Num Pages: 4. Internet Engineering Task Force, 2011

Mar. DOI: 10.17487/RFC6176. Available from: https://datatracker.ietf.
org/doc/rfc6176 [Accessed on: 2023 Feb 13]

26. Barnes R, ThomsonM, PirontiA, and LangleyA. Deprecating Secure Sockets Layer

Version 3.0. Request for Comments RFC 7568. Num Pages: 7. Internet Engineer-

ing Task Force, 2015 Jun. DOI: 10 . 17487 / RFC7568. Available from: https :
//datatracker.ietf.org/doc/rfc7568 [Accessed on: 2023 Feb 13]

27. Moriarty K and Farrell S. Deprecating TLS 1.0 and TLS 1.1. Request for Com-

ments RFC 8996. Num Pages: 18. Internet Engineering Task Force, 2021 Mar. DOI:

10.17487/RFC8996. Available from: https://datatracker.ietf.org/doc/
rfc8996 [Accessed on: 2023 Feb 13]

28. OpenSSL.Available from: https://www.openssl.org/ [Accessed on: 2023 Feb

15]

29. Viega J, Messier M, and Chandra P. Network security with OpenSSL. 1st ed. Se-

bastopol, CA: O’Reilly, 2002. 367 pp.

30. OpenSSL Overview - OpenSSLWiki. Available from: https://wiki.openssl.
org/index.php/OpenSSL_Overview [Accessed on: 2023 Feb 15]

31. OpenSSL 3.0 - OpenSSLWiki. Available from: https://wiki.openssl.org/
index.php/OpenSSL_3.0 [Accessed on: 2023 Feb 15]

32. Mbed TLS tutorial — Mbed TLS documentation. Available from: https://mbed-
tls.readthedocs.io/en/latest/kb/how-to/mbedtls-tutorial/ [Accessed

on: 2023 Feb 13]

40

Bibliography

33. J-Link Debug Probes by SEGGER – the Embedded Experts.Available from: https:
//www.segger.com/products/debug-probes/j-link/ [Accessed on: 2023

Apr 30]

34. AnybusCompactComM40Module - PROFINET IIoTSecure.Available from: https:
/ / www . anybus . com / products / embedded - index / anybus - compactcom -
modules/m40-detail/anybus-compactcom-m40-module---profinet-iiot-
secure [Accessed on: 2023 May 1]

35. Anybus® CompactCom™ 40 - PROFINET IRT IIoT Secure - NETWORKGUIDE.

2022 Dec 16.Available from: https://www.anybus.com/docs/librariesprovider7/
default - document - library / manuals - design - guides / hms - scm - 1202 -
0672bea4c0522ce670692f4ff00001bbfd4.pdf?sfvrsn=fe242bd7_24 [Ac-

cessed on: 2023 Apr 28]

36. VMware Workstation Player. VMware. Available from: https://www.vmware.
com/products/workstation-player.html [Accessed on: 2023 May 2]

37. Ubuntu PC operating system. Ubuntu. Available from: https://ubuntu.com/
desktop [Accessed on: 2023 May 2]

38. NETCONF WG - Network Configuration. IETF Community Wiki. Available from:

https://wiki.ietf.org/group/netconf [Accessed on: 2023 Feb 21]

39. Iglesias-Castreno I, Alabarce MG, Hernandez-Bastida M, and Marino PP. Towards

anOpen-Source Framework for Jointly Emulating Control andData Planes of Disag-

gregatedOptical Networks. 2020 22nd International Conference on Transparent Op-

tical Networks (ICTON). 2020 22nd International Conference onTransparent Optical

Networks (ICTON). Bari, Italy: IEEE, 2020 Jul :1–4. DOI: 10.1109/ICTON51198.
2020.9203453. Available from: https://ieeexplore.ieee.org/document/
9203453/ [Accessed on: 2023 Feb 16]

40. Ahearne S, Verbishchuk Y, Sreenan C, and Gunning F. Software Defined Control of

Tunable Optical Transceivers Using NETCONF and YANG. 2018 European Con-

ference on Networks and Communications (EuCNC). 2018 European Conference on

Networks and Communications (EuCNC). Ljubljana, Slovenia: IEEE, 2018 Jun :1–

86. DOI: 10.1109/EuCNC.2018.8443188.Available from: https://ieeexplore.
ieee.org/document/8443188/ [Accessed on: 2023 Feb 16]

41. Đumić D and Lubura S. ”Leveraging Raspberry Pi as a server for the integration

of the NETCONF protocol within IoT systems based on YANG”. Journal of Engi-

neering and Natural Sciences. 2021; 3. DOI: 10.14706/JONSAE2021314. Available
from: https://omeka.ibu.edu.ba/items/show/3479 [Accessed on: 2023 Feb

16]

42. Nsiah KA, Alkhouri K, and Sikora A. Configuration of Wireless TSN Networks.

2020 IEEE 5th International Symposium on Smart and Wireless Systems within the

Conferences on Intelligent DataAcquisition andAdvancedComputing Systems (IDAACS-

SWS). 2020 IEEE 5th International Symposium on Smart and Wireless Systems

41

Bibliography

within the Conferences on Intelligent Data Acquisition and Advanced Computing

Systems (IDAACS-SWS). Dortmund, Germany: IEEE, 2020 Sep 17:1–5. DOI: 10.
1109/IDAACS-SWS50031.2020.9297066.Available from: https://ieeexplore.
ieee.org/document/9297066/ [Accessed on: 2023 Feb 16]

43. Chouksey S, Satheesh HS, andAkerberg J.An Experimental Study of TSN-NonTSN

Coexistence. 2021 IEEE 11th Annual Computing and Communication Workshop

and Conference (CCWC). 2021 IEEE 11th Annual Computing and Communication

Workshop and Conference (CCWC). NV, USA: IEEE, 2021 Jan 27:1577–84. DOI:

10.1109/CCWC51732.2021.9376048. Available from: https://ieeexplore.
ieee.org/document/9376048/ [Accessed on: 2023 Feb 16]

44. Ferreira Franco T, Queiroz Lima W, Silvestrin G, Corezola Pereira R, Bosquiroli

Almeida M, Rockenbach Tarouco L, Zambenedetti Granville L, Beller A, Jamhour

E, and Fonseca M. Substituting COPS-PR:An Evaluation of NETCONF and SOAP

for Policy Provisioning. Seventh IEEE International Workshop on Policies for Dis-

tributed Systems and Networks (POLICY’06). Seventh IEEE International Work-

shop on Policies for Distributed Systems and Networks (POLICY’06). London, ON,

Canada: IEEE, 2006 :195–204. DOI: 10.1109/POLICY.2006.35. Available from:
http://ieeexplore.ieee.org/document/1631173/ [Accessed on: 2023 Feb

16]

45. POLICY-BASED MANAGEMENT OF DIFFSERV USING XML TECHNOLO-

GIES: Proceedings of the Third International Conference on Web Information Sys-

tems and Technologies. 3rd International Conference on Web Information Systems

and Technologies. Barcelona, Spain: SciTePress - Science, 2007 :72–9. DOI: 10.
5220 / 0001281500720079. Available from: http : / / www . scitepress . org /
DigitalLibrary/Link.aspx?doi=10.5220/0001281500720079 [Accessed on:

2023 Feb 16]

46. Pereira RC and Granville LZ. On the performance of COPS-PR and NETCONF

in an integrated management environment for DiffServ-enabled networks. 2008 In-

ternational Conference on Telecommunications. 2008 International Conference on

Telecommunications (ICT). St. Petersburg: IEEE, 2008 Jun :1–6. DOI: 10.1109/
ICTEL . 2008 . 4652667. Available from: http : / / ieeexplore . ieee . org /
document/4652667/ [Accessed on: 2023 Feb 16]

47. Krejci R. Building NETCONF-enabled network management systems with libnet-

conf. 2013 IFIP/IEEE International Symposium on Integrated NetworkManagement

(IM 2013). 2013 IFIP/IEEE International Symposium on Integrated Network Man-

agement (IM 2013). ISSN: 1573-0077. 2013 May :756–9

48. libnetconf2 –TheNETCONFprotocol library. original-date: 2015-08-31T13:58:55Z.

2023 Feb 11.Available from: https://github.com/CESNET/libnetconf2 [Ac-

cessed on: 2023 Feb 14]

42

Bibliography

49. Releases · CESNET/libyang. GitHub. Available from: https : / / github . com /
CESNET/libyang/releases [Accessed on: 2023 Feb 14]

50. Netopeer2 – NETCONF Server. original-date: 2015-12-03T10:05:33Z. 2023 Feb

11. Available from: https://github.com/CESNET/netopeer2 [Accessed on:

2023 Feb 14]

51. Sysrepo. original-date: 2015-12-09T12:27:03Z. 2023 Feb 9.Available from: https:
//github.com/sysrepo/sysrepo [Accessed on: 2023 Feb 14]

52. YANG and NETCONF | Liberouter / Cesnet TMC group. Available from: https:
//www.liberouter.org/technologies/netconf/ [Accessed on: 2023 Feb 14]

53. POCO C++ Libraries - About. POCO C++ Libraries. Available from: https://
pocoproject.org [Accessed on: 2023 Feb 14]

54. gerhard. POCO C++ Libraries - Blog. pocoproject.org. Available from: https://
pocoproject.org/blog/?p=28 [Accessed on: 2023 Feb 14]

55. POCONETCONFUser Guide.Available from: https://www.appinf.com/docs/
poco-2008.2/NetconfUserGuide.html [Accessed on: 2023 Feb 20]

56. Zores B, State R, and Festor O. NetConfDocumentation.pdf. 2004 Apr 20.Available

from: https://sourceforge.net/projects/yenca/
57. Zores B. COPYRIGHT_NOTICE_YENCA. 2003.Available from: https://sourceforge.

net/projects/yenca/ [Accessed on: 2023 Feb 14]

58. NETCONFc. Available from: http://www.seguesoft.com/index.php [Ac-

cessed on: 2023 Apr 30]

59. MG-SOFT Corporation: NETCONF Browser Pro. Available from: https://www.
mg-soft.com/mgNetConfBrowser.html [Accessed on: 2023 Apr 30]

60. NETCONF Client GUI | YumaBench | YumaWorks.Available from: https://www.
yumaworks.com/tools/yumabench/ [Accessed on: 2023 Apr 30]

61. Bajpai V and Schonwalder J. NETCONF Interoperability Lab. 2014 IEEE Network

Operations and Management Symposium (NOMS). NOMS 2014 - 2014 IEEE/IFIP

Network Operations and Management Symposium. Krakow, Poland: IEEE, 2014

May :1–2. DOI: 10.1109/NOMS.2014.6838278.Available from: http://ieeexplore.
ieee.org/document/6838278/ [Accessed on: 2023 Feb 16]

62. yangcli-pro Introduction—YumaPro 22.10Tdocumentation.Available from: https:
//docs.yumaworks.com/en/latest/yangcli/introduction.html [Accessed

on: 2023 Apr 30]

63. git/banned.h atmaster · git/git · GitHub. original-date: 2008-07-23T14:21:26Z. 2023

May 1. Available from: https://github.com/git/git/blob/master/banned.
h [Accessed on: 2023 May 1]

64. Zhu H, Hall PAV, and May JHR. Software Unit Test Coverage and Adequacy. ACM

Comput. Surv. 1997 Dec; 29:366–427. DOI: 10.1145/267580.267590. Available
from: https://doi.org/10.1145/267580.267590

43

Bibliography

65. Features • GitHub Actions. GitHub. Available from: https : / / github . com /
features/actions [Accessed on: 2023 Jun 4]

66. Dahl OJ, Dijkstra EW, and Hoare CAR. Structured programming.A.P.I.C. studies in

data processing, no. 8. London, New York: Academic Press, 1972 :25

44

A

Overview of NETCONF

An overview of NETCONF and YANG can be seen in Figure A.1. The figure shows that

NETCONF can be broken down into four layers. The first layer, the Content layer, is dis-

cussed in the YANG RFC. Specifically, RFC6020 [6]. Therefore, it will not be discussed

in great detail here. The configuration data is sent to the Operations layer from the Con-

tent layer. This layer defines the base NETCONF operations that invoke an RPC method

based on the data. This is then sent to the third layer, the Message layer, which formats the

RPC and notifications into a format that can be transmitted over the network. The fourth

and final layer is the Transport layer, which may utilize protocols like SSH or TLS.

Each of these layers has specific requirements that need to be met. These requirements are

outlined in the corresponding RFC. Specifically, RFC 6241 [4]. They include but are not

limited to specifications for managing and editing configurations, handling asynchronous

event notifications, capabilities discovery, and ensuring data integrity and secure trans-

mission.

Configuration Data

Notification Data

edit-config, get

RPC-type Notifications

SSH, TLS

Content

Operations

Messages

Secure Transport

End Transport

Figure A.1: Overview of the NETCONF protocol as specified in the RFC6241

I

B

AnyBus CompactCom IIoT Security

Profinet Datasheet

II

5/8/23, 12:07 AM Anybus CompactCom M40 Module - PROFINET IIoT Secure

https://www.anybus.com/products/embedded-index/anybus-compactcom-modules/m40-detail/anybus-compactcom-m40-module---profinet-iiot-sec… 1/3

Features & Benefits

Technical specifications

Anybus CompactCom M40 Module -
PROFINET IIoT Secure
The Anybus CompactCom M40 PROFINET-IRT IIoT Secure is a complete communication

module which enables your products to communicate on a PROFINET-RT or IRT network. The

module is conformance tested and communicates with the host device via the patented Anybus

CompactCom host interface. Any device that supports this standard can take advantage of the

features provided by the module, allowing seamless network integration regardless of network

type. The module supports fast communication speeds, making it suitable also for high-end

industrial devices and is a ready security solution which enables network-secure and encrypted

communication. The module is also able to communicate with IoT protocols such as OPC UA and

MQTT. This means that the PROFINET data is processed as usual by the CompactCom - and data

from the device can also be sent to an IT system via OPC UA or MQTT.

A complete, interchangeable communication module with connectors

Short in-design with free assistance from HMS ensures a fast time to market

PNO pre-certified for network compliance (enables faster network certification)

Fast data transfer: Up to 1440 bytes of process data in each direction

Very low process data latency

Event-based interface method enables easy access to input and output data at any time

Fast, event-based application hardware interfaces: 8/16-bit parallel and high speed SPI. The module also support a I/O interface (shift

register interface)

IIoT functionality: Includes Email Client, Secure Web server with customizable content, JSON functionality and Secure File Transfer

WebDAV

Extended flash-based file system with two-disc access (internal and external)

Transparent Socket Interface handling the complete Ethernet frame (support for 20 socket connections)

Black channel support enables PROFI safety implementation

Support of S2 functionality

Dimensions (L•W•H) 52 x 50 x 22 mm or 2,04 x 1,97 x 0,86"

51 x 37 x 16 mm or 2,01 x 1,46 x 0,63" (without housing)

Operating temperature -40 to +70 °C or -40 to +158 °F

-40 to +85 °C or -40 to +185 °F (without housing)

Power requirements 3.3 VDC, +/- 0.15 VDC

Application Interface 8/16-bit parallel (30 ns access)

High speed SPI, baudrate configurable up to 20 MHz

I/O (shift register interface, cyclical update time 82 μs)

UART (for backwards compatibility with 30-series, max 625kbps)

5/8/23, 12:07 AM Anybus CompactCom M40 Module - PROFINET IIoT Secure

https://www.anybus.com/products/embedded-index/anybus-compactcom-modules/m40-detail/anybus-compactcom-m40-module---profinet-iiot-sec… 2/3

SECURE NETWORK & ENCRYPTION
The Anybus CompactCom 40 PROFINET-IRT IIoT Secure module is a ready-made security solution which enables network-secure, encrypted

communication on OPC UA Secure channels, and Secure MQTT communication. It also enables secure access to the embedded web server

and secure file transfer. In order to secure the network communication over TLS, the device is equipped with a security chip providing secure

key storage together with a hardware-accelerated cryptographic engine. The embedded web server includes web pages for security

configuration such as certificate installation and user account management.

Security Functions

Get your industrial devices IIoT ready with Anybus CompactCom security
platform
The Anybus CompactCom 40 IIoT Secure Brick provides network security features such as

CERTIFICATES & SECURE COMMUNICATION
Certificates are a key component in secure communication, the CompactCom uses the following three-step process to ensure secure device

connectivity.

Which certificates to use, depends on the installation. HMS Networks offers a tool that generates device and CA certificates, to be used

during development.

Profile support Generic device

Ethernet features Transparent socket interface

Support of HTTP forwarding via socket interface

Integrated 2-port switch

IT functions (WebDAV, E-mail client, web server with JSON support)

Internal file system Configurable up to 28 MB

Two discs are available: One internal (28 MB capacity), and one reserved for accessing

the application file system (capacity determined by application).

LED indicators Integrated on front (with housing), via application interface (without housing).

Indicates Module Status and Network Status.

Connectors 2x RJ45 10/100 Mbit/s

Galvanic isolation YES

Mechanical rating IP20, NEMA rating 1

Mounting PCB mounting via a customized CompactFlash connector available from HMS

Certifications CE, CULUS, RoHS

TLS support for secure data transfer

Security chip for secure key storage

Hardware accelerated cryptographic operations

Hashed password storage

Secure web server w. customizable content

Secure file transfer server (WebDAV)

Secure Boot

Solid security: Mandatory software signatures prevent unauthorized software to be downloaded to the module. Furthermore, encryption

is used to prevent illicit copying

Read more

5/8/23, 12:07 AM Anybus CompactCom M40 Module - PROFINET IIoT Secure

https://www.anybus.com/products/embedded-index/anybus-compactcom-modules/m40-detail/anybus-compactcom-m40-module---profinet-iiot-sec… 3/3

PROFINET - Device Interface

IoT Protocols

Connect to IoT-software with OPC UA or MQTT

Now also available with OPC UA Information model and related companion
specifications
The Anybus CompactCom IIoT Secure now also support the OPC UA Information model and related companion specification. This allows any

information model to be incorporated into the Anybus CompacCom IIoT Secure.

File Version Size Read online

Ordering information

1 year guarantee. For purchasing instructions and terms and conditions, see: How to buy

Copyright © 2020 HMS Industrial Networks - All rights reserved.

Supports PROFINET-RT and IRT functionality spec.2.35

Pre-conformance supporting Class A, B and C

Dual port cut-through switch implemented in the Anybus NP40 processor

Up to two APIs (including API 0) enabling profile implementations

Up to 64 modules, 8 submodules each (up to 128 submodules in total)

Up to 32767 ADIs

Generic and PROFINET specific diagnostic support

Device identity customization

Supports PROFIenergy profile V 1.1

Support for PROFIsafe (via the black channel to the IXXAT Safe T100 Module)

Supports Media Redundancy Protocol (MRP)

2x RJ-45 PROFINET 100 Mbit/s ports available simultaneously

Support of S2 functionality

 Tap data from the host device, all ADI data is readable (application parameters)

 Provide on-the-fly statistics from your device

Predictive maintenance — Spot problems before they occur

Collect data to perform data analysis (local server or on IT level)

Read more

Read more

Order Code AB6650

Included components Anybus CompactCom M40 Module - PROFINET IIoT Secure

C

Valgrind analysis of Yenca and our

implementation

Table C.1: Valgrind output showing no traces of memory leak with SSLYenca.

Leak Summary

Definitely lost: 0 bytes in 0 blocks.

Indirectly lost: 0 bytes in 0 blocks.

Possibly lost: 0 bytes in 0 blocks.

Still reachable: 831,646 bytes in 6,086 blocks.

Supressed: 0 bytes in 0 blocks.

VI

D

Access to Source Code

In the scope of this thesis, a considerable amount of unique software has been created. The

source code for this software is kept in a private GitHub repository and is currently under

development. As such, the repository is not publicly accessible. However, recognizing the

essential role of openness, repeatability, and collaboration in academic research, we are

willing to provide access to the source code on a case-by-case basis for research purposes.

To access the source code, please contact the authors with a brief outline of your research

and how you plan to use the code. Upon receiving your request, we will review it and,

if suitable, provide you with access to the repository. Please note that the source code

is provided without guarantees or warranties. Any use of the code should be properly

acknowledged in any subsequent publications or derivative works.

VII

E

Example of parsing a YumaBench <get>

request

<?xml version="1.0" ecoing="UTF -8"?>
<rpc message -id="2"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>

<filter type="subtree">
<netconf -xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf -monitoring">

<schemas/>
<\netconf -state >

</filter >
</get>

</rpc >]]>]]>

Request type: rpc
key: get value:
key: filter value:
key: netconf -state value:
key: schemas value:

Listing E.1: Example of parsing a YumaBench request.

VIII

F

Example of parsing a YumaBench

<edit-config> request

<?xml version="1.0" ecoing="UTF -8"?>
<rpc message -id="2"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config >

<target >
<running/>

</target >
<default -operation >merge </default -operation >
<error -option >stop-on-error </error -option >
<config >

<DNS_Configuration xmlns="urn:hms:abcc">
<Host_Name >test ></Host_Name >

</DNS_Configuration >
</config >

</edit-config >
</rpc >]]>]]>

Request type: rpc

key: edit-config value:

key: target value:

key: running value:
key: default -operation value: merge
key: test-option value: set
key: error -option value: stop-on-error
key: config value:

key: DNS_Configuration value:

key: Host_Name value: test

Listing F.1: Example of parsing an <edit-config> request from YumaBench.

IX

G

KeyValuePairArray API functions

API Functions for the Data Structure

Aset ofAPI functions is designed to manage and interact with a custom data structure, the

KeyValuePairArray. Serving as a dynamic array of key-value pairs, the KeyValuePairArray
aims to offer a convenient and efficient method for storing and manipulating configura-

tion data. Functions for initializing, adding, and retrieving key-value pairs, along with

managing the associated memory, are available. Constants representing maximum ca-

pacity, successful operations, and failed operations for the KeyValuePairArray are also

provided.

• int init_key_value_array(KeyValuePairArray *array, unsigned char capacity):

Initializes a KeyValuePairArray with the specified capacity.

• int init_key_value_pair(KeyValuePair *kv, const char *key, const void *value,

size_t value_size):

Initializes a KeyValuePair with the provided key and value.

• int set_request_type(const char *request, KeyValuePairArray *array):

Sets the request type for a KeyValuePairArray.

• int add_key_value(KeyValuePairArray *array, const KeyValuePair *kv):

Adds a KeyValuePair to a KeyValuePairArray.

• int free_key_value_pair_array(KeyValuePairArray *array):

Frees the memory allocated for a KeyValuePairArray.

• int print_all_nodes(KeyValuePairArray *array):

Prints all the key-value pairs in a KeyValuePairArray.

• int get_key(KeyValuePairArray *array, char* key):

Checks if the specified key exists in a KeyValuePairArray.

• int get_value(KeyValuePairArray *array, char* key, void **value):

Retrieves the value associated with the specified key in a KeyValuePairArray.

X

G. KeyValuePairArray API functions

Constants

• MAX_CAPACITY: Maximum capacity allowed for a KeyValuePairArray.

• SUCCESS: Represents a successful operation.

• FAIL: Represents a failed operation.

XI

H

Parsing API functions

1. parse_xml: This function takes a character pointer request and two pointers, one to

an xmlNodePtr and one to an xmlDocPtr. It first creates a copy of the request string

and locates the end of the message delimiter. Then, it reads the XML message

into memory using xmlReadMemory, parses it, and retrieves the document’s root

element. This function returns -1 if there is an error during processing or 1 if the

parsing is successful.

2. print_element: This is a utility function that prints the element name and its value,

if it exists, for a given XML node.

3. process_xml: This function processes the XML document by traversing its struc-

ture and performing actions based on the contents. It takes a ‘KeyValuePairArray‘

pointer and an ‘xmlNodePtr‘ as its arguments. Depending on the request type (e.g.,

HELLO, RPC), the function sets the request type and performs appropriate actions

by invoking ”traverse_xml”.

4. traverse_xml: This is a recursive function that traverses the XML document tree,

visiting each node and performing a specified operation on it. It takes an ‘xmlN-

odePtr‘, a ‘KeyValuePairArray‘ pointer, and a function pointer to an operation to

perform on each node.

5. extract_xml: This function is called by ”traverse_xml” to extract information from

an XML node and store it in a ‘KeyValuePairArray‘. It creates a ‘KeyValuePair‘

from the node’s name and content (if it exists), and adds it to the array.

6. create_xml_reply: This function takes a ‘KeyValuePairArray‘ pointer, an ‘abcc‘

pointer, and a ”message_id” string and creates an XML reply based on the request

type and its contents. Depending on the request type and the contents of the ‘Key-

ValuePairArray‘, it returns an appropriate XML response string.

7. create_abcc_state_response: This function generates a specific XML response

based on the hostname and message ID. It creates a new XML document with the

necessary elements and attributes, serializes it to a string, and returns it as the re-

sponse.

8. int_to_str: This utility function converts an integer to a string by allocatingmemory

XII

H. Parsing API functions

for the string and then using ‘snprintf‘ to format and store the integer as a string.

XIII

I

MbedTLS Server Flowchart

MbedTLS Server

Seed the RNG

Load certificates
and private RSA

key

Setup listening
TCP socket

Setup ssl/tls
configuration

Wait for client
connection

Perform ssl/tls
handshake

Send <Hello>
element

Wait for client
message

Yes

No

Received
messages?

Parse and
respond to
message

No

Yes
Has

Connection
error?

Close connection

Figure I.1: Flowchart of the network layer.

XIV

J

Yang Model of ABCC Network

Configuration settings

Module abcc {
Yang-version 1.1;
Namespace urn:hms:abcc;
Prefix abcc;
Revision 2002-01-02;
Container DHCP_Configuration {

Config false;
Leaf enabled {

Type boolean;
}

}
Container IP_Configuration {

Config false;
Leaf IP_ADDRESS {

Type string;
}
Leaf Subnet_mask {

Type string;
}
Leaf Default_Gateway {

Type string;
}

}
Container DNS_Configuration {

Leaf Primary_DNS {
Config false;
Type string;

}
Leaf Secondary_DNS {

Config false;
Type string;

}
Leaf Host_Name {

XV

J. Yang Model of ABCC Network Configuration settings

Config true;
Type string;

}
}

}

Listing J.1: YANG model of ABCC.

XVI

K

Diagram of TLS Handshake with

Wireshark Packet Analysis

PC
ABCC40

Connect on port 6513

Client Hello

Server Hello

Certificate

Server Key Exchange

Certificate Request

Server Hello Done

Certificate

Client Key Exchange

Certificate Verify

Change Cipher Spec

Encrypted Handshake Message

Change Cipher Spec

Encrypted Handshake Message

Application Data

Figure K.1: Packet analysis using wireshark of TLS handshake.

XVII

L

Graph of Yenca memory leak

0 50 100 150 200 250 300
Requests

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
em

or
y

Le
ak

 (M
B)

Memory Leak in Netconf Yenca (Megabytes)

0 connections
10 connections
20 connections
30 connections
40 connections
50 connections
60 connections
70 connections
80 connections
90 connections
100 connections

Figure L.1: Approximation of Yenca memory leaks.

XVIII

	Introduction
	Purpose
	Goals
	Boundaries

	Background
	Network management protocols
	SNMP
	SNMPv1
	SNMPv2
	SNMPv3

	NETCONF

	Using YANG and XML for Data Modeling
	YANG
	XML

	Evolution of Secure Communication Protocols
	Overview of OpenSSL
	Introduction to MbedTLS

	Hardware and Software
	Segger: J-Link
	Anybus CompactCom M40 Module IIoT Secure
	HMS IPconfig
	Employing VMware Workstation Player and Ubuntu

	Methodology and Implementation
	Research on NETCONF implementations
	NETCONF servers employed in other research
	Overview of Open-Source NETCONF server
	libnetconf2 and libyang
	Netopeer2 and Sysrepo
	POCO NETCONF
	Yenca
	Summary

	NETCONF client implementations
	Segue-Soft: NETCONFc
	MG-SOFT: NETCONF Browser
	YumaWorks: YumaBench
	NETCONF Client Comparison and Selection

	Yenca
	Yenca Problems with Outdated Architecture
	Memory Leaks and Undefined Behaviour
	File Dependency
	Testing and Validation for Yenca Refactoring

	MbedTLS-Based Secure Communication
	Initial Research and Familiarization
	Developing the MbedTLS Server
	Client Connections and Certificate Management
	Integration with YumaBench for Testing and Validation
	Client and Server Interaction
	Testing NETCONF and YANG Functionality
	Validation and Analysis of Requests

	Implementation of NETCONF and YANG server
	Data Structure
	Parsing
	Network Layer

	Unit testing
	Wireshark for packet capture

	Modelling ABCC to a YANG model
	Porting the NETCONF server to the ABCC

	Results
	Discussion
	Conclusion
	Glossary
	Bibliography
	Appendix Overview of NETCONF
	Appendix AnyBus CompactCom IIoT Security Profinet Datasheet
	Appendix Valgrind analysis of Yenca and our implementation
	Appendix Access to Source Code
	Appendix Example of parsing a YumaBench <get> request
	Appendix Example of parsing a YumaBench <edit-config> request
	Appendix KeyValuePairArray API functions
	Appendix Parsing API functions
	Appendix MbedTLS Server Flowchart
	Appendix Yang Model of ABCC Network Configuration settings
	Appendix Diagram of TLS Handshake with Wireshark Packet Analysis
	Appendix Graph of Yenca memory leak

