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Abstract 

This thesis report presents a study on the virtualization of an Electric Cabin 

Scooter used to validate the feasibility of converting it into an autonomous 

vehicle. The project aimed to design, develop, and test a virtual model of the 

car that can navigate from points A to B while avoiding obstacles. The report 

describes the methodology used in the project, which includes setting up the 

workspace, construction of the virtual model, implementation of ROS2 

controllers, and integration of SLAM and Navigation2. The thesis report also 

describes and discusses related work, as well as the theoretical background of 

the project. Results show a successfully developed working virtual vehicle 

model, which provides a solid starting point for future work.  

Keywords: ROS2, Navigation2, SLAM, Gazebo, Virtual Environment, 

Ackermann steering, Autonomous Vehicle 

 

Sammanfattning 

Detta examensarbete presenterar en studie om virtualiseringen av en elektrisk 

kabinscooter. Den virtuella modellen används för att validera 

genomförbarheten av att omvandla den till ett autonomt fordon. Projektet 

syftade till att designa, utveckla och testa en virtuell modell av bilen som kan 

navigera från punkt A till B medan den undviker hinder. Rapporten beskriver 

metodiken som används i projektet, vilket inkluderar att sätta upp arbetsytan, 

konstruktion av den virtuella modellen, implementering av ROS2-kontroller 

och integration av SLAM och Navigation2. Rapporten diskuterar även 

relaterat arbete, samt teoretisk bakgrund till arbetet. Resultaten visar en 

framgångsrikt utvecklad fungerande virtuell fordonsmodell, som ger en solid 

utgångspunkt för framtida arbete. 

Nyckelord: ROS2, Navigation2, SLAM, Gazebo, Virtual Environment, 

Ackermann steering, Autonomous Vehicle 
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1 Introduction 

Modern robotics systems are complex entities equipped with a plethora of 

devices, sensors, and computers, which are often controlled by equally 

complex software. These systems need to be able to perform their tasks under 

different environments and dynamically changing conditions. However, 

testing the functionality of these systems under all potential different settings 

is not only time-consuming and expensive but also many times simply 

impossible.  

For this reason, there has been increased interest in the use of so-called virtual 

environments [1]. Virtual environments are, broadly speaking, simulations 

that are created using computer software with the goal of testing the 

functionality and/or feasibility of a system in a controlled environment. 

Performing tests in a virtual environment allows one to execute several tests 

at the same time, in conditions that are, in general, unreproducible in a 

laboratory environment, while preventing any risks of damage to the real 

equipment in case of failure.  Therefore, by making use of a well-developed 

virtual environment, the development process can be made to be more 

exhaustive and cost-effective. This virtualization process is the basis of this 

thesis work. 

1.1 Purpose 

This thesis work will be done in collaboration with the company Semcon [2] 

in Gothenburg, which has recently acquired a small electric car with space for 

one driver (see Figure 1). Their ambition is to turn this vehicle into an 

autonomous one, however, instead of testing the car’s autonomous functions 

in real life. They wish to create a virtual model of the car along with a virtual 

environment in which to perform simulated testing. The virtual model should 

be equipped with the corresponding virtual sensors to the real car, in 

corresponding positions, to mimic the real car and its functionalities.  

This work will focus on designing, developing, and testing said virtual 

environment, as well as making necessary changes to the configurations and 

settings of the avatar model.  
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Figure 1- The electric vehicle acquired by Semcon 

1.2 Goals & Delimitations 

This thesis work aims to create a virtual environment and model on which the 

autonomous functions of the vehicle can be tested. To achieve this goal, a set 

of subgoals need to be achieved: 

• Create a virtual model of the vehicle, which accurately represents the 

mobility and collision characteristics of the real vehicle. 

• Implement necessary packages and features to turn the model 

autonomous.  

To achieve these goals, certain delimitations will be necessary. Specifically, 

this thesis work will: 

• Focus exclusively on the development of the virtual model and the 

autonomous functions, without consideration of other features like 

suspension or actuators.  

• Assume ideal operating conditions for the virtual model, not taking 

features like weather or road conditions into account. 

• Not involve physical testing of the real vehicle, which will be subject 

of work based on the result of this thesis. 

1.3 Requirements 

• The virtual model should be able to navigate from point A to B in a 

known environment, while avoiding pre-defined as well as unknown 

static obstacles. 

• If avoiding collision is deemed impossible, the vehicle should stop. 
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2 Background 

2.1 Related Work  

Due to its ability to test and validate the behavior of autonomous vehicles, 

virtual validation has become an increasingly popular technique during recent 

years [3]. For example, researchers in [4] describe the process of modeling a 

vehicle in URDF [5] (Unified Robot Description Format), an XML format 

used to describe the kinematic and visual properties of a robot for simulation 

and visualization. They implemented Ackermann steering and a lidar sensor 

on the model and imported it into a virtual environment. However, in the 

report we have access to, no testing was performed to test the navigation 

capabilities of the vehicle. While in this work, the testing part is key to 

correctly determine the feasibility of automating the vehicle.  

Another similar project is found in [6] where the researchers attempted to 

create an autonomous golf cart. They created a virtual version of the car using 

URDF much like the previous work described. However, in this study, virtual 

testing is performed on the navigation characteristics. While testing, the 

developers found that the already existing algorithms for navigation were 

more suited for a differential drive robot rather than their implemented 

Ackermann steering. Upon modification, the navigation package could be 

used for the intended usage. A physical prototype was also developed, with 

corresponding sensors to the final car, to test the steering characteristics in 

the real world.  

The researchers in [1] present a simulation environment that will be used for 

testing mobile robots using ROS (Robot Operating System) and the 

simulation program Gazebo [7]. The simulation environment enables 

researchers and developers to test mobile robots in a virtual environment 

before deploying and testing them in real-world scenarios, thus reducing costs 

and risks. The researchers describe the design and implementation of their 

simulation environment, which includes the mobile robot model, sensor 

models, and controller models. They demonstrate the effectiveness of the 

simulation environment by testing the mobile robot in its simulated 

environment and comparing the results with real-world experiments. The 

paper illustrates the importance of simulation environments in robotics R&D 

and shows how ROS and Gazebo can be used to develop such environments. 

This work will make use of several of those software tools that have been 

developed and used in state-of-the-art research, including ROS2 [8], Gazebo, 

and Navigation2 [9]. 
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2.2 The Vehicle 

The inherited vehicle used in this work is an electric cabin scooter from the 

manufacturer Blimo [10]. To simulate a vehicle, certain key components and 

systems of the car must be replicated virtually. In this case, that would be the 

vehicle's mass, inertia, and wheel parameters, such as friction, radius, and 

width. The sensors need to be replicated to ensure that the autonomous 

functions of the car perform similarly in the real world.  

2.2.1 Physical properties and measurements 

Creating an accurate model of the vehicle in Gazebo requires some 

important measurements. Due to limited documentation on the car, we have 

acquired some of the following measurements ourselves. 

 

Vehicle width (cm) 71(117 including mirrors) 

Vehicle length (cm) 155 

Vehicle height (cm)  160 

Vehicle weight (kg) 242 

Track width (cm) 60 

Wheelbase (cm) 99 

Tire radius (cm) 18 

Ground clearance (cm)  9 (lowest point) 

Turning radius (cm) 235 

 

The inertial properties can be calculated with the help of Xacro [11], which 

is an XML macro language. Xacro will be explained in more detail later in 

the report. 

3D-scanning [12] is a method that can be used to create a precise virtual 

copy of the vehicle’s chassis. This method works by using a laser to create a 

point cloud from the vehicle. 

2.2.2 Sensors 

The vehicle will be equipped with a lidar sensor to help navigate the car. The 

sensor (Velarray M1600) comes from Velodyne and is a Solid-State lidar 

(SSL) [13]. By being an SSL, it uses solid-state components such as 

photodetectors and lasers instead of mechanical components to measure 

distance. This also makes the sensor lighter, so it is often used in applications 

where size and weight are important factors, such as autonomous vehicles. 

One downside of using an SSL instead of a mechanical lidar is that the field 

of view, FOV, can be smaller. Velarray M1600 has a FOV of 120° instead of 

360°, which a mechanical lidar has.  



- 5 - 

2.2.3 Ackermann Steering 

Four-wheeled robots have several different steering mechanisms, depending 

on how the vehicle is designed. Commonly used in robots is differential drive 

or skid steering because robots usually have fixed wheels. In this case, an 

Ackermann-type steering is most suitable. Ackermann steering mechanism 

[14] is used when both front wheels should be able to turn with minimal tire 

slippage, see Figure 2. A steering linkage connects the front wheels, and 

turning the wheel causes the wheels to turn at a different angle, to maintain a 

constant turning radius. The maximum angle of the inner and outer wheels 

can be calculated by using the formulas: 

 

Figure 2 – Ackermann steering kinematics [15] 

 

 

ɸ𝑖 = 𝑡𝑎𝑛−1 (
𝑙

𝑟 −
𝑤
2

) 

 

( 1 ) 

 
 

ɸ𝑜 = 𝑡𝑎𝑛−1 (
𝑙

𝑟 +
𝑤
2

) 

 

( 2 ) 

 

 

Where l is the wheelbase, r is the turning radius, and w is the track width. ɸ𝑖  

is the maximum inner wheel angle and ɸ0 is the maximum outer wheel angle, 

in radians. 

2.3 Simulation & Software 

Autonomous vehicles have been widely studied in recent years [16,17]. Much 

of the research in autonomous vehicles is done via simulators, mainly due to 

high costs and safety precautions [3]. Most of these simulations are built on 
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the open-source software platform ROS2 (Robot Operating System 2) [8]. 

ROS2 is a framework that provides a different set of tools and libraries that 

makes it easier to construct a robotic system. ROS2 calls the processes of 

robot system nodes [18], each responsible for a specific task (e.g., controlling 

a motor or collecting data from a sensor). Nodes can communicate with other 

nodes through three similar, but distinct ways: topics [19] which provide a 

way for nodes to exchange information with each other in a publish/subscribe 

type of communication; services [20] which are similar to topics but use a 

call/response communication instead (request a service from another node 

and receive a response like HTTP); and actions [21] which again are similar 

to services, but the communication through actions enables feedback during 

the execution of the task, this also allows for task cancellation (e.g., moving 

a robotic leg while sending feedback back to the requesting node so it can 

cancel the task if necessary).  

Despite its name, ROS2 is not an operating system but instead a type of 

software which is called “middleware.” This means that the software acts as 

a bridge between an operating system, different applications, and hardware 

components allowing them to communicate and exchange data with each 

other [22].  Using ROS2 as a middleware allows us to connect the various 

parts of the robot, including hardware and software elements, and enable them 

to communicate and work together seamlessly. This makes it easier for 

developers to focus on writing the code for the actual tasks rather than 

worrying about the details of how the different components will interact and 

work together.  

One of ROS2 useful packages is ros2_control [23] which is a framework 

designed to control robot hardware components, such as actuators, sensors, 

and controllers. The package makes it easy to switch between hardware 

configurations, as well as to simulate hardware in a virtual environment. 

Ros2_control supports different controller plugins, such as 

Joint_trajectory_controller and diff_drive_controller.  

Diff_drive_controller is a controller for differential drive robots, which is a 

type of robot that uses wheels that can rotate independently. A robot like this 

can drive each wheel both forwards and backward, which enables turning in 

place. The controller gets an input of body velocity commands which are then 

translated to wheel commands for the differential drive base. The 

diff_drive_controller also calculates the robot’s odometry, which estimates 

its position and orientation in the simulation environment. The odometry 

information is important for navigation tasks, and it can be used by other 

nodes in the ROS2 system to make decisions and plan trajectories. Odometry 

is about using data from sensors to estimate the position of the model [24]. 

The sensors can be wheel encoders or a lidar, or in our case, the /joint_states 

topic provides us with information. 
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Joint_trajectory_controller is a controller which can control multiple joints 

by taking a desired trajectory as input, typically in the form of a sequence of 

joint positions or angles, and then generates the necessary commands to 

achieve the desired position. This controller is good to use on multi-joint 

robots. 

Another useful package in ROS2 is the geometry_msg [25] package which 

provides a collection of message types that nodes can use to exchange 

information with each other. A common message type is a Twist message, 

which represents the linear and angular velocities of a robot. This is 

commonly used in ROS2 to control the movement of a robot. 

Two other essential and common packages are the robot_state_publisher [26] 

and joint_state_publisher package [27], which are responsible for publishing 

a robot’s state and joint information, respectively.  

Robot_state_publisher calculates the positions and orientations of all the 

robot’s links based on the joint states, which are usually provided by a URDF 

file. This information is published on topics that other nodes in the ROS2 

system can use to understand the robot’s configuration and perform tasks such 

as motion planning, sensor data processing, and visualization. 

Joint_state_publisher publishes information about the positions, velocities, 

and efforts of all a robot’s joints to a specific topic that nodes in the ROS2 

system can access. 

2.3.1 Navigation2 

ROS2 comes equipped with a navigation stack (Navigation2/Nav2) [9], that 

provides most features needed to navigate the vehicle from point A to B, 

without contacting obstacles in the path. Navigation2 is a set of different 

plugins that adds different navigation functionalities, such as global and local 

planners, cost map generators and recovery behaviors if a robot gets stuck or 

detects a collision, for example. These navigation functionalities are 

coordinated by a behavior tree which is a powerful and flexible control system 

for designing decision-making processes in robotics. 

With the use of the behavior tree, the global and local planner, cost map 

generators, and recovery behaviors are effectively integrated and ensures 

seamless navigation, illustrated in Figure 3. The global planner generates an 

initial path from the robot’s current position to the desired goal. After the 

initial global path is set, a controller generates a local path, and velocity 

commands in the form of a twist message are sent to the robot, which enables 

the robot to follow the global path and avoid obstacles in real-time. 

If the robot encounters a potential collision, then the behavior tree triggers a 

corresponding recovery behavior to handle the situation. Recoveries can be 

rotating in place, reversing, clearing the cost map, etc. This enables custom 
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recovery strategies tailored to the robot’s capabilities and application 

requirements. 

 

 

 

Figure 3 – Block diagram explaining the structure of the Navigation 2 stack 

2.3.2   SLAM – Simultaneous Localization and Mapping 

For the robot to navigate in an environment. It needs to be able to localize 

itself and map the surroundings. For that, SLAM [28] is used. ROS2 provides 

support for multiple different packages, such as SLAM_toolbox [29], Hector 

Slam [30], and Gmapping [31]. SLAM uses data from sensors such as lidars 

and RGB cameras to localize the position of the robot by extracting important 

features. These features can be used to identify landmarks or objects in the 

environment. The features are then matched with previous sensor readings to 

determine which features belong together. These landmarks or features help 

build a map incrementally. Revisiting the same areas improves the accuracy 

of the map due to the SLAM functionality of loop closing, which recognizes 

previous scans and patches the map together, correcting any faulty estimates. 

2.3.3 Rviz 

Rviz (ROS Visualization) [32] is a 3D visualization software tool for robots, 

sensors, and algorithm. The software communicates with ROS2 through the 

publish/subscribe pattern which is the core communication system of the 

ROS2 ecosystem. It provides a graphical interface for visualizing and 

interacting with data produced by different ROS2 nodes, such as sensor data, 
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robot states, and planned paths. Rviz helps to monitor, debug, and analyze the 

behaviors of robot systems in real time. 

The interface in Rviz is highly configurable and it lets the user add different 

interaction tools to suit the specific needs. For instance, it is possible to insert 

tools that enable SLAM and Navigation2 configuration. 

Integrating Navigation2 into Rviz enables the visualization of the global and 

local paths generated by the Nav2 planners. It also enables the user to publish 

information on specific topics. For instance, when setting a navigation goal, 

Rviz publishes a goal message to a specific topic to which the Navigation2 

node is subscribed to. 

2.3.4 Model 

A common way to create a virtual avatar of a robot is to describe it in an XML 

format using URDF, which describes the physical properties of a robot, such 

as mass, size, and shape as well as the visual properties, color, and shape. The 

URDF is built up of several tags and sub-tags, with the joint tag and link tag 

considered the most central ones. 

Links describe the visual and physical properties of a body part in the robot. 

To implement these properties, several sub-tags are used, these being 

<visual>, <inertia>, and <collision>. The visual tag defines the appearance of 

the body part. The color, size, and origin parameters for the body part are set 

in this section. To be able to simulate the robot in Gazebo or similar 

simulation programs, inertia and collision need to be defined. 

 

Figure 4 - Example of two links in an URDF file format, the “world” link is a base link, meaning that 

it has no parent. The “chassi” link is a fully defined link, with visual, inertial, and collision properties 

To connect two links, a joint is used, see Figure 5. The joint defines the 

relation between the two links, the parent link, and the child link. The joint 

tag sets limitations of movement as well as effort and velocity. Joints can be 
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constructed with different types of motion allowed. Some of the most 

common joints being fixed, revolute, continuous, prismatic, and planar. A 

fixed joint allows no movement, and the link becomes part of the parent link. 

Revolute allows the child link to rotate around a specific axis with limits on 

the range. Continuous joints allow rotation around a single axis, like a 

revolute joint. However, no limit is applied to a continuous joint, making it 

useful in the context of building a car. Planar and prismatic joints allow the 

links to move along one and two axes, respectively.  

 

Figure 5- Example of a fixed joint in an URDF file format, which connects chassi to world 

 

Figure 6 – Illustration of previously described URDF structure where the world link, which has no 

visual element and is used as a reference point for the world, is the parent and the chassi is the child 

link 

During the development of the model, the robot can be visualized in Rviz, a 

graphical interface that uses plugins for various topics to visualize the model, 

transforms, as well as sensor data. Thus, making it easy for a developer to 

review recent changes in real time. To get an understanding of the connection 

between the nodes and topics in a project, the user can utilize the graph plugin 

within Rqt (ROS Qt) [33]. Rqt is a graphical interface plugin framework that 

provides numerous tools to help developers understand the structure of the 

project, see Figure 7. 
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2.3.5 Simulation 

After developing a complete URDF model, simulations are required to ensure 

functionality. The simulations can be done within Gazebo [7], a 3D robot 

simulator plugin for the ROS2 platform. Gazebo utilizes plugins to be able to 

simulate steering and control of a robot model. With correctly setup link and 

joint attributes, Gazebo can accurately simulate the behavior of the robot in a 

controlled environment. As mentioned previously in the report, aspects like 

the steering, battery consumption, and sensor performance can be simulated 

in Gazebo. To do this Gazebo utilizes plugins, a software component that 

allows the user to extend the functionality of the program. A plugin can be 

downloaded or created by the user, enabling the developer to create custom 

simulation environments for the intended usage [34]. The main reason for 

choosing Gazebo over other similar simulators such as Webots [35], 

Coppeliasim [36] or MORSE [37] is that the same developers that developed 

ROS also developed Gazebo [38]. This, along with the large community 

supporting Gazebo, which can help by providing information through forums 

and tutorials, make this plug-in the easy choice for this project. 

  

 

 

 

 

 

 

 

 

 

Figure 7- Simple Rqt graph describing relation between topics and nodes, where the squares are 

topics, and the ovals are nodes. In this case, the “/joint_state_publisher_gui” subscribes to the 

“/robot_description” topic and publishes to the “/joint_states” topic 
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3 Method 

In the following section, strategies and tools that have been implemented will 

be described. The first part of the project time was spent on familiarizing us 

with the tools and programs, as well as reading up on previous similar work. 

The project's main focus was creating a virtual model and environment and 

establishing a working setup of nodes and packages to turn the model 

autonomous. 

3.1 Planification Stage  

During initial meetings with the company, potential scopes and plans for the 

project were discussed based on time availability. The original plan 

conducted was to construct the model and implement Navigation 2 and 

SLAM. When this was finished, the performance of the model was to be 

tested in randomized worlds created by AWS World Forge [39]. Testing 

would then be performed using a CI/CD pipeline [39], if time allows it, to 

automate and speed up the testing.  

However, if issues arose with the AWS RoboMaker [39], then testing could 

be performed through manually made virtual environments. However, 

constructing manual environments in Gazebo is less efficient and more time-

consuming. This will mean that, in this case the model would only be tested 

using a limited number of environments, however, this will at least ensure 

that testing is performed. The amount of time available in this case would 

ultimately determine the number of environments and their complexity. 

3.2 Project Workspace Setup 

The project was supplied with a virtual machine copy by the company which 

runs on Linux Ubuntu 22.04 and contains all the software programs that are 

relevant to the project, ROS2 Humble [40], and Gazebo 11 being the main 

ones. ROS2 includes support for essential features and tools for the project, 

such as Rviz and Navigation2. 

ROS2 provides support primarily for Python and C++, in this case we decided 

to use Python as the primary language to work in because of our familiarity 

with it and its simplicity with respect to C++. Python is a free high-level 

programming language that is designed to be easy to learn and use, making it 

great when developing robotics applications. It also has a large community 

base and extensive 3rd party library support, so there are many open-source 

resources and tools available to use with ROS2 [40]. 

In addition, a helpful tool when writing URDF files is Xacro [11], an XML 

macro language that reduces the amount of code that needs to be written by 

allowing the developer to create macros that can be used to represent 

commonly used parts in a robot model. It improves the readability of the code 

and allows for faster modification of the model. 
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The ROS2 workspace was created and edited with VSCode, an open-source 

code editor [41]. The reason behind choosing VSCode is that it supports 

multiple different code formats such as Python and XML, which allow us, the 

developers to mix freely when building the workspace. It also offers 

integration with GitHub [42], which simplifies commits to the online 

repository as well as cloning the code to the local repository. 

3.3 Software Tool Familiarization  

Due to our limited experience with ROS2 and simulation in virtual 

environments. The first weeks were spent reading about previous and similar 

work as well as familiarizing ourselves with the structure and principles of 

ROS2. As mentioned before, the ROS2 environment runs on a virtual box 

supplied by the company. The virtual box used Linux Ubuntu 22.04 [43] as 

the operating system, which was another component that we needed to get 

used to. It is worth mentioning that to familiarize ourselves with ROS2, we 

followed several tutorials regarding the handling of topics, nodes, and 

structuring a workspace, among other important features. Learning the 

foundations of the software set the project back a couple of weeks. 

3.4 Virtual Model Construction and Spawning in Gazebo 

Once the project’s workspace was set up correctly and we had familiarized 

ourselves with ROS2 and its communication system, we created a URDF file 

for the vehicle using the dimensions taken from the real car at the company’s 

headquarters. These measurements include the wheelbase dimension, tire 

radius, and ground clearance, but also the external dimensions of Wille’s 

chassis. We also used a 3D scanner to obtain a visual mesh, see Figure 9, as 

well as the collision properties of the vehicle. The mesh obtained by 3D 

scanning the vehicle was saved as a .stl file, which was imported into Gazebo 

to transfer the physical properties of the chassi into the simulation. 

The process began by constructing the URDF file via the creation of a chassis 

link in the center, which we then use to attach every other part, including the 

3D scanned mesh. The two front wheel links referred to as “left_front_wheel” 

and “right_front_wheel” were attached to two rotational links 

“front_left_rot” and “front_right_rot,” through two continuous joints, which 

enables certain degrees of freedom around the z-axis based on the Ackermann 

steering calculation in equations 1 and 2, while enabling the wheels to spin. 

Similarly, the two rear wheels, “left_back_wheel” and “right_back_wheel,” 

were connected to “rear_drive_left” and “read_drive_right” via continuous 

joints.  

We used Rviz to visualize the vehicle in a simple environment, see Figure 8. 

To be able to control the different joints, we also initialized the Joint State 

publisher graphical interface, which is a ROS2 package that publishes the 

state of a robot joint to the ROS2 system. This is done by reading the values 
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of a joint and publishing them as a message on a the “/joint_states” topic. In 

addition to using Joint State publisher to control the joints, we also used the 

Robot State publisher package which reads the URDF file and computes the 

robot’s kinematic state and publishes the information on the 

“/robot_description” topic.  

 

Figure 8 – The vehicle visualized in Rviz with the use of Robot State Publisher and Joint State 

Publisher 

 

Next, to simplify the launch of all the necessary nodes and spawn the vehicle 

in Gazebo we proceeded to develop a python launch file that initializes the 

following nodes automatically: 

1. URDF Model: Loads the URDF model. 

2. Robot State Publisher: Launches the robot state publisher node, which 

reads the URDF file and computes the robots kinematic state and 

publishes the information to the “/robot_description” topic. 

3. Joint State Publisher: Initialization of the joint state publisher node 

which publishes positions, velocities, and efforts of each joint as 

messages on the "/joint_states" topic. 

4. Gazebo simulation environment: Initializes the Gazebo node and 

opens the desired Gazebo world, see Figure 9. 

5. Rviz visualization: Launches the Rviz node to be able to inspect and 

interact with the joints in real time. 

As the project progresses and new nodes need to be created, we can easily 

extend and update this launch file to integrate new functionalities and features 

into our vehicle model.  
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Figure 9 – The vehicle visualized in a Gazebo world, with the mesh from previous 3D-scan 

incorporated, providing collision properties for the vehicle 

3.5 Implementation of Controllers 

The next step was the implementation of the control systems. Controllers are 

the key component that enable the movement of several joints at the same 

time and allow the user to control the vehicle in a way that closely resembles 

and mimics an actual car. After exploring the different possible controllers 

available in ROS2 Humble, we chose to implement the steering with a 

diff_drive_controller controlling the rear wheels. As well as the 

joint_trajectory_controller to control the rotation of the front wheels. These 

were later configured to replicate the Ackermann steering characteristics. 

Along with these two controllers, a joint broadcaster was implemented, which 

keeps track of the state of the joints controlled by the controllers. This helped 

when visualizing the robot in Rviz, to see if the joints moved as expected.  

To move the car manually and send input to both controllers, a script that uses 

the teleop_twist_keyboard [44] was constructed. The teleop_twist_keyboard 

takes key presses as inputs and generates a twist message that can be sent to 

the controllers. The custom script used key presses of “w” for forward 

movement, “s” for stopping, and “x” for reversing. Turning was handled by 

pressing “a” or “d.” Each key press generated a twist message. 

One issue with this solution was that the two controllers needed input on two 

different formats. The diff_drive_controller takes twist messages, which this 

script generates, and the joint_trajectory_controller takes position messages. 

Due to this, another node, “twist-to-joint”, was created that subscribed to the 

custom script created earlier and converted the angular part of the twist 

message into a position message. This message was then sent topic to which 

the joint_trajectory_controller subscribes. The structure of this conversion 

can be seen in Figure 10. 



- 17 - 

Apart from converting the twist message to a position format, the “twist-to-

joint” node converted the desired steering angle from the twist message into 

two individual angles for the joints depending on if the message was negative 

or positive, which indicated which way the car was turning. The conversion 

was based on the formula described in equations 1 and 2, but to find out the 

specific angle, the result was multiplied with a factor: received 

angle/maximum angle. Since the formula only generates the maximum angle 

for each wheel, multiplying by this factor gives the Ackermann angle based 

on the input. 

 

ɸ 𝑖𝑛𝑛𝑒𝑟 = ɸ𝑖   ∗
ɸ

ɸ𝑚𝑎𝑥

 
 

(3) 

 

ɸ
𝑜𝑢𝑡𝑒𝑟

= ɸ𝑜   ∗
ɸ  

ɸ𝑚𝑎𝑥

 
 

(4) 

 

Where ɸ𝑖   and ɸ𝑜  are the maximum angles for respective wheels, as per 

Figure 2. ɸ is the received angle and ɸ𝑚𝑎𝑥  is the maximum angle that the input 

can generate. This conversion is done due to the fact that Navigation 2 

generates different values based on the desired linear speed. 

3.6 Implementing SLAM and Nav2 

As discussed in the background, the model needs to be able to first localize 

itself and map the surroundings to plan a safe path to a target before starting 

to navigate. In this work, the implementation was done using a 2D lidar sensor 

model. This was due to the fact that using a 3D lidar in the simulations would 

require a large amount of processing power. In addition, during our 

preliminary investigation we concluded that several state-of-the-art projects 

seem to use 2D lidar [45, 46, 47].  This meant that there is more information 

sources and channels available to us in case there is a need of troubleshooting. 

The lidar configurations regarding resolution and range also had to be 

modified to preserve processing power. Once we had mapped a demo world, 

we decided to implement the Nav2 package and tune the parameters for Nav2 

by testing in the example world.  

3.6.1 Writing Custom Nodes and Scripts 

To run the previously designed steering script simultaneously to the Nav2 and 

to avoid having to change topics for our previously written nodes, we decided 

to create two muxes using the “twist_mux” package in ROS2. A mux, short 

for multiplexer, is a device or component which allows for selection of an 

output from multiple inputs [48]. The two muxes listened to the two topics 

generating messages to each controller. The mux regarding the front wheels 
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listened to two topics, one published from the Nav2 node and one where the 

message was published with the steering script. The advantage of using a 

mux, besides being able to listen to inputs from two topics, is that the 

developer can order them in priority. In our case, we put a higher priority on 

the message generated by the steering script which enabled the ability to 

intervene with the manual control in case the model got stuck. The mux sent 

the prioritized info through the previously created node to convert the 

message to a position format and to get the Ackermann angle. 

The mux regarding the rear wheels needed more configuration. Since Nav2 

generates both angular and linear messages, the angular part of the message 

needs to be filtered away. Sending both linear and angular messages to the 

diff drive controller would cause the rear wheels to move at different speeds. 

Another node, “Twist-to-linear”, was then created which only sent the linear 

part of the twist message to the topic on which the controller subscribed. 

Apart from that implementation, the mux regarding the rear wheels was 

implemented in the same way, with the Nav2 message being prioritized. 

Figure 10 shows the relationship between the different system components 

used in our ROS2 configuration 

 

Figure 10 – Overview of the remapping and restructuring of the messages generated by Nav2 and the 

Steering Script. 

 

Upon testing the navigation, we noticed that the model in Rviz and Gazebo 

moved differently. We decided to investigate the odometry settings and 

realized that only the diff drive controller published odometry, causing the 
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model to move strangely in Rviz. To correct this, we needed to create a 

custom node that calculated the odometry and published it as a fixed frame.  

The created node retrieved information about the wheels and joints by 

subscribing to the “/joint_states” topic. The topic holds information about the 

velocity and position of every wheel as well as the front steering joints. In 

order to estimate the position and direction of the vehicle, a steering angle 

and linear velocity needed to be obtained. The steering angle was calculated 

by using the mean of the two front steering joint’s positions. The linear 

velocity was obtained by calculating the mean of the velocity of the rear 

wheel. The main reason behind only using the rear wheels was that we had 

an issue with the front wheels that kept spinning even though the vehicle 

stopped. This is not something that affected the performance of the model, so 

the most direct way of avoiding the potential problem was to use the rear 

wheels for estimating the speed. The linear velocity was then used to calculate 

the angular velocity.  

 

                  Figure 11- Ackermann steering kinematics with angular and linear velocities [15]. 

 

 

 
𝑎𝑛𝑔𝑙𝑒 =

(ɸinner + ɸ𝑜𝑢𝑡𝑒𝑟)

2
 

(5) 

 
𝑣 =

𝜔𝑖 + 𝜔𝑜

2
∗ 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 

(6) 

 𝜔 = 𝑣 ∗ 𝑎𝑡𝑎𝑛(𝑎𝑛𝑔𝑙𝑒) (7) 
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Where ɸ𝑖nner is the angle of the right wheel, and ɸ𝑜𝑢𝑡𝑒𝑟 is the angle of the left 

wheel, as explained in equations 3 and 4. ω𝑖 , ω𝑜 is the rotational velocity of 

the right, respectively left rear wheels. The linear velocity is v in this case and 

𝜔 is the angular velocity. 

Furthermore, to update the position of the model, the following equations 

were used:  

 

 𝑡ℎ𝑒𝑡𝑎 = 𝜔 ∗ 𝑑𝑡 (8) 

 𝑥 = 𝑣 ∗ cos(𝑡ℎ𝑒𝑡𝑎) ∗ 𝑑𝑡 (9) 

 𝑦 = 𝑣 ∗ 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎) ∗ 𝑑𝑡 (10) 

 

Where dt is the time elapsed between each callback of the code, the position 

and orientation are then published on the topic “/my_odom”. 

 

 

 

 

 

 

 

 

 

 

 

 

To use the updated odometry obtained from the wheel speeds and positions, 

we then needed to create a translator component between the odometry 

message and the base link. So, a new node was created that subscribed to the 

odometry message and broadcasted a transformed version of it between the 

base link of the world and the odometry, thus enabling a fixed frame to use.   

3.6.2 Setting Up Nav2  

Once the odometry was updated to get a more accurate representation, it was 

time to continue with the SLAM and Nav2 implementation. We ran the 

SLAM on the same environment as before and noticed that the estimation of 

the position of the model was improved, which also led to a more accurate 

Figure 12– Code snippet generating the odometry message published on the 

“/my_odom” topic 
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scan. Nav2, however, proved more complex to get an improvement on. The 

navigation stack contains several launch files and a parameter file, where the 

developer can change the parameters of the currently used plugins or replace 

them with other ones. Nav2 was originally configured to work with a 

differential drive robot, which meant that the planning and behavior of the 

robot in case of a detected collision differed from what was desired. 

Thus, for the model to be able to perform the desired actions, some plugins 

had to be modified: 

1. The original controller plugin, “DWB Controller” [49], was swapped 

out for the “Regulated Pure Pursuit” [50] controller, which is more 

suitable for an Ackermann-like steering [51]. 

2. The original planner plugin “NavFn Planner” [52] was swapped with 

the “SmacPlannerHybrid” [53]. The main difference between the 

planners is that the NavFn planner finds a straight plan and disregards 

the orientation of the vehicle since differential drive robots can turn in 

place. However, the SmacPlannerHybrid generates a global plan that 

takes the goal direction into account. 

3. Finally, the standard recovery behaviors were changed. Originally, 

three commands would be sent to the model in case of an error or an 

impending collision. One to spin the vehicle around, one to reverse 

the vehicle, and one to wait. In our case, we would just like the vehicle 

to stop in case of a collision or an error, so the two first behaviors were 

removed. 

Once the plugins had been changed to fit our setup better, parameter tuning 

could be performed with regards to speed, distance to obstacles, and goal 

precision.  

3.7 Experimental Evaluation  

To analyze the performance of our implementation of SLAM and 

Navigation2, multiple experiments were conducted. The experiments aimed 

to evaluate the performance of both the SLAM and Navigation2 node 

configurations. As stated before, both SLAM and Navigation2 are configured 

with two different parameter files. Since there are millions of potential 

parameter configurations, the experiments were not aimed at finding the 

optimal parameter configuration (if it exists), but rather to determine if our 

chosen parameters are able to comply with the project’s requirements. 

3.7.1 SLAM Performance 

To evaluate the performance of SLAM, different configurations of the 

simulated lidar were tested. Since our simulations run on a virtual machine 

with limited RAM, we needed to take processing power into consideration. 

With this in mind, the goal was to find a value for the range of the lidar that 

was sufficient for navigating in an indoor environment and required relatively 
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low computational power to simulate. Afterwards, when an adequate lidar 

range had been determined, parameter tuning could be performed on the 

chosen configuration. Parameter tuning would then be performed using a 

mostly heuristic approach using the initial configuration as a starting point. 

3.7.2 Navigation2 Performance 

To test the Navigation2 performance and check whether the requirements of 

the project were met, we conducted three different tests: 

• Trajectory matching test 

• Replan 

• Collision 

The Trajectory matching test is based on computing the mean distance and 

standard deviation from the desired destination and vehicle when moving 

from point A to B while avoiding obstacles. The test also showed the average 

distance from the vehicle to the walls, obstacles, and the goal at selected 

points in Figure 13.  

 

Figure 13 – Visualization of the three points where measurements will be taken of the position of the 

vehicle in relation to either obstacles or the final goal. 

Five simulation runs were performed, where the goal was set at point number 

3 in Figure 13. Meanwhile, the distance from the vehicle to the closest 

obstacle was measured at points number 2 and 1. The distances were 
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measured from the center of the vehicle. As well as distances to the goal and 

obstacles, the time of each run was measured. The model ran at 1 m/s with an 

acceleration of 0.5 m/s. 

The replan test focused on determining the shortest distance to an obstacle at 

which the vehicle recognized the need to replan its trajectory and successfully 

navigate around the obstacle. The testing was performed by adding an 

obstacle in the planned path at different distances from the lidar sensor located 

at the front of the vehicle, see Figure 19. If the model was able to pass, the 

closest distance to the obstacle was measured. 

The collision test builds upon the results in the replan test, distances shorter 

than the shortest distance avoidable in the replan test were tested here. In the 

collision test, we tested the brake distance for the model by adding an obstacle 

at different distances in front of the vehicle. The longest distance was 1 meter 

and then it was incrementally lowered by 0.1 meters until the vehicle had a 

collision with the obstacle. 
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4 Results and Analysis 

This section aims to describe the outcome of the experiments outlined in the 

methodology section, as well as the overall development of the project. 

4.1 SLAM Performance 

Different settings and parameters were tested during the implementation part 

of the project to optimize performance. One significant change that was made 

was reducing the range of the lidar. The full list of parameters and their 

specific values can be found in Appendix C.  

By decreasing the lidar range, the amount of data that needed to be processed 

was reduced. This resulted in faster processing speeds and more efficient 

operation of the SLAM algorithm, which made it easier to drive around, map 

up the environment, and improve the overall performance. The 15-meter 

distance was found to be sufficient for our application by incrementally 

decreasing the 30-meter range by 5 meters and comparing the performance. 

15 meters provided a good balance between processing speed and the ability 

to detect obstacles at a reasonable distance considering the maximum speed 

of the vehicle being 1 m/s. 

  

Figure 14 - Demo map in Gazebo  Figure 15 - Gazebo-map produced by SLAM 

4.2 Navigation2 Performance 

This section will showcase the results of the experiments described in 3.7.2 

Upon completion of the project, the model can move from point A to B while 

considering the obstacles in its path. As shown in the experiments, the model 

can plan an initial path to the goal, as well as identify obstacles and replan in 

case of obstruction.  

In terms of obstacle avoidance and path planning, some features were more 

important than others, these being: 
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Global cost map: 2D grid representation of the robot’s environment used for 

long-term planning. The cost map assigns a cost to each cell in the map based 

on the likelihood of a collision with an obstacle. 

Cost_travel_multiplier: Used to determine how much the model should steer 

away from high-cost areas. 

Global footprint: represents the physical shape of the model and is used for 

global planning. 

We wanted the model to be able to avoid obstacles but not steer away from 

paths that were possible to take. To do this, the global cost map inflation 

radius was increased from 0.55 to 1, causing the global planner to plan further 

away from obstacles. The “cost_scaling_factor” was decreased from 3.0 to 

2.0, which makes it easier for the planner to plan through higher-cost areas if 

needed. Furthermore, the global footprint was set to match the car’s shape, 

with minimal padding, which enables planning closer to the obstacles. 

Combining these three changes allows the model to take the safer path when 

possible but allows for paths closer to obstacles when needed. These values 

were produced by trial and error and changed until we were satisfied with the 

result. 

In the documentation for Nav2 regarding the tuning of the parameters, the 

chosen value of 2.0 for Cost_travel_multiplier is described as a tradeoff value 

when deciding whether to prioritize tight turns close to an obstacle or wide 

turns to avoid a collision. 

The discussed changes have been performed by changing parameters in a 

configuration file for Nav2. No programming has been made that directly 

affects the navigation, rather nodes and scripts that enable the car to move 

and locate. 

4.2.1 Trajectory matching test 

The test was performed as described in section 3.7.2; the test generated the 

following results. 

Table 1: Mean and standard deviation calculated from measurements from the center of the 

vehicle. Measurements from each simulation run can be found in appendix E. 

 

Vehicle position 
turn (m) (1) 

Vehicle position 
obstacle (m) (2) 

Vehicle position 
destination (m) (3) 

Time 
(s) 

Mean 1,10 0,63 0,28 32 

Standard 
Deviation 0,27 0,07 0,10 1,87 

 

The results show that the parameter tuning discussed in the previous section 

had a noticeable effect. The car prefers to navigate further from obstacles, as 

seen in the measurements from point 1. However, the measurements from 

point 2 shows that it is capable of navigating closer to obstacles if needed.  
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Figure 16 – Measurement point 1. Measuring the distance from the center of the vehicle to the closest 

obstacle, which in this case is the wall. The planned path to the goal is visualized in the right window 

of the picture. 

 

Figure 17 – Measurement point 2. Measuring the distance from the center of the vehicle to the closest 

obstacle, either the cylindrical obstacles or the wall. The planned path is visualized in the right 

window of the picture. 

 

Figure 18 – Measurement point 3. Measuring the distance from the initial goal to the actual position 

of the vehicle. The distance here is measured from the center of the vehicle as well. 
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4.2.2 Replan 

The replan test, shown in Figure 19 was focused on determining the minimum 

distance to an obstacle at which the vehicle recognized the need to replan its 

trajectory and successfully navigate around the obstacle.  

As shown in Table 2, at the distance of 5 meters from the front of the vehicle 

to the obstacle, the vehicle successfully replanned the route and reached the 

goal. The closest distance between the vehicle and the obstacle was 1.14m.  

Similarly, at 4 meters, the vehicle successfully replanned the path and reached 

the goal with the closest distance of 1.43m to the obstacle. Likewise, as the 

distance to the obstacle decreased to 3 meters, the vehicle replanned its path 

and avoided the obstacle with the closest distance of 0.90m to the target. 

However, when the distance was reduced to 2.5 meters and below, the vehicle 

was unable to replan and execute the path to avoid the obstacle, which 

resulted in the vehicle stopping. 

These results show that the vehicle successfully recognized the need to replan 

its trajectory and navigate around the obstacle when the obstacle distance was 

5, 4, and 3 meters. But, at distances of 2.5 meters and below, the vehicle failed 

to replan the path. This is probably due to the vehicle’s mobility constraints, 

the turning radius of 2.35 meters combined with the speed and effectiveness 

of the replanning algorithm not being optimal. 

 

 

Figure 19 – Replan test with 3 m distance to the obstacle in Gazebo (Left) and Rviz (Right) 
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Table 2: Test results of the replanning test where the distance to the obstacle is measured 

from the lidar located at the front, closest distance while passing is measured from the center 

of the vehicle. 

Distance to Obstacle (m) Closest distance while passing (m) Target reached 

5 1,14 Yes 

4 1,43 Yes 

3 0,90 Yes 

2,5 N/A No 

2 N/A No 

 

4.2.3 Collision 

The collision test aimed to evaluate the brake distance of the model by 

introducing obstacles at different distances in front of the vehicle. As can be 

seen in Table 3, the vehicle managed to stop without a collision with distances 

over 60cm from the vehicle to the obstacle. This is probably due to the 

deacceleration value of 0.5 m/s, a value which was chosen by taking into 

account the velocity of 1 m/s. The update frequency of the costmap could also 

be an issue because it provides information about the available paths and 

ensures that the robot has updated information about obstacles and available 

free space. 

Table 3: The results from the collision test, the distance to the obstacle is measured from the 

lidar sensor which is located at the front of the vehicle. 

Distance to Obstacle (m) Remaining distance (m) Crash (Yes/No) 

1 0,27 No 

0,9 0,17 No 

0,8 0,14 No 

0,7 0,06 No 

0,6 0 Yes 
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5 Discussion 

This section introduces a discussion on some of the challenges faced during 

the development of the project, as well as the limitations regarding the 

accuracy and scope of the finalized vehicle model. 

5.1 SLAM Performance 

The result of the experiment resulted in a 2D-lidar configuration and range of 

15m, with computational requirements in mind. The selected configuration is 

specified to run on the limited system that we ran the simulation on and can 

be changed in case of access to more processing power and a need for more 

range. The parameters of SLAM were tuned according to the lidar range. 

During development, it was found that the odometry of the vehicle had a 

bigger impact on localization when mapping with SLAM than the parameters 

chosen. 

5.2 Navigation Performance 

5.2.1 Trajectory matching test 

As discussed briefly in the results section, the model has a preferred distance 

to obstacles when navigating, but, if necessary, it can navigate closer to the 

obstacles to reach the goal. On average, the model missed the target by 0.28 

meters, with a standard deviation of 0.1 meters which in our case is an 

acceptable distance. This result was expected since the tolerance was set to 

0.25 meters in the Nav2 parameters, which means that the planner will 

consider the model to have reached the goal when in this range. Reducing the 

tolerance could improve the results, however, it would put higher demands 

on the other parameters to make sure that the navigation is accurate enough. 

If the tolerance is too low, the model wouldn’t consider itself to have reached 

the goal, despite being at an acceptable distance considering the size of the 

vehicle.  

5.2.2 Replan 

The replanning test was a test of both the ability to navigate past an obstacle 

as well as a test of the mobility constraints of the robot. One issue encountered 

here was that, since two paths were available to pass the object with similar 

lengths and cost, the planner sometimes alternated between them. This caused 

the robot to delay the avoidance maneuver. This can be seen in the results, 

where it would be expected that the distance to the obstacle would be greater 

or at least similar for the simulation run with a 5-meter distance to the obstacle 

compared to the one with a 4-meter distance. This issue could potentially be 

avoided by further tuning the parameters, with emphasis on the replanning 

frequency. This would allow the planner to choose one path and by the time 

replanning is considered, the paths are no longer the same length, causing one 

of them to be chosen instead of alternating. 
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5.2.3 Collision 

The results of the collision test show that the vehicle was able to stop and 

avoid collisions at distances of 1 meter, 0.9 meters, 0.8 meters, and 0.7 meters. 

At a distance of 0.6 meters, the vehicle was unable to stop before colliding 

with the obstacle.  

Several different factors could contribute to this distance. Like said before, 

the deacceleration of 0.5 m/s could potentially be an issue. By increasing this 

the vehicle should be able to come to a stop faster. Additionally, friction 

between the tires and the ground could also influence the stopping distance. 

The update frequency of the costmap could also contribute to the stopping 

distance because of its key role to create cost areas around obstacles. If the 

frequency is set too low, the vehicle may not be aware of a suddenly appeared 

obstacle. To address this issue, it is important to ensure that the frequency is 

set properly to match the environment and the vehicles dynamics.  

However, increasing the update frequency of the costmap means increasing 

load on processing power which could put a strain on the system. Therefore, 

it is necessary to find a good balance between the update frequency and 

controller frequency. 

5.2.4 Comparative Analysis 

In [54] the authors introduced a methodology aimed at acting as a guide for 

the necessary steps required to deploy Navigation2 on an existing custom-

built robot operating with ROS2. The Navigation2 configuration was tested 

in a virtual environment, Gazebo, which was modeled to replicate the real-

world environment.  

To evaluate the transferability of the setup, the authors of the paper ran a 

similar test on both a real-life robot as well as a simulated one in Gazebo. The 

two tests in both a simulated environment and a real environment 

demonstrated that the same Navigation2 configuration resulted in the same 

maneuvers being carried out. Furthermore, in this project we have followed 

roughly the same steps highlighted in [54] and the main differences are mostly 

in the configuration parameters which are highly dependent upon the actual 

vehicle one desires to simulate. This shows that transferring and 

implementing a Nav2 configuration into a real physical system is entirely 

plausible and in fact has already been achieved by following roughly the same 

methodology. Thus, we can conclude that we have proven the feasibility of 

automating the real electric vehicle.  

5.3 Limitations  

Although the project produced a working virtual model that can move from 

point A to B while avoiding obstacles, the model still has some limitations 

worth noting. 
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As mentioned previously in the report, the model cannot reverse, which 

means that the car’s mobility is somewhat limited. The reason behind not 

allowing the car to reverse was that the project was supplied with one physical 

lidar aimed to be mounted at the front. This meant it would only be able to 

detect objects in front of the car. Due to this, it was thought that, from a safety 

standpoint, it was reasonable not to allow the car to reverse.  

Not allowing reversing also brings another limitation to the performance. If 

the model was to deviate from the target when close to the goal, it cannot 

correct it. So, either it must find a way to loop around to reach the target or 

the goal tolerance of the navigation stack can be increased to allow more 

deviation from the final goal. 

Another limitation of the model is maneuvering in open space without 

obstacles or walls nearby. Due to the range being set at 15m, the SLAM will 

not be provided with any lidar scans if there are no obstacles within a radius 

of 15m from the sensor. This will cause the model to localize only with the 

help of odometry, which isn’t perfect. This causes some confusion for the 

planner at times and leads to a decrease in precision. 

Currently, the model can only navigate in a previously mapped environment. 

However, this does not pose much of an issue since the vehicle is intended to 

be used in closed areas. 

The model would need complementing to be used as a base for the real 

vehicle, as several integral parts would need changing to control it: 

Steering the robot has been performed by sending commands directly to the 

joints, as opposed to the real vehicle, which will be controlled by actuators. 

To further replicate the real vehicle, these actuators would need to be 

simulated as well. 

The model is only configured to map and navigate using a 2D lidar, which is 

not what will be used in the vehicle. This was a way of saving time due to the 

quicker configuration regarding the limited time of the project, as well as 

saving processing power. 

5.4 Challenges 

As described previously in the report, the project was supplied with a virtual 

box containing ROS2 Humble, which is the latest release of ROS2. While this 

has advantages in terms of longevity, it also presents some challenges. 

One advantage of it is the latest release is that it is likely to have a longer life 

span than the older distributions. This is good, considering the community of 

the older distributions may become inactive and stop providing updates to 

packages.  

One issue with this, however, is that all the necessary packages for performing 

our project are not yet developed for Humble. Previous distributions offer 
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support for an Ackermann controller, which makes steering and odometry 

calculating a lot easier for the user. The Ackermann controller will be 

provided to ROS2 Humble in due time, so the configuration of this project 

might seem outdated by then.  

Overall, our experience using ROS2 Humble highlighted both the advantages 

and disadvantages of using the latest ROS2 distribution. While it offers 

longevity and access to up-to-date features, it may not always be the best 

choice, depending on the type of project that is to be conducted. 

5.5 Sustainable Development  

This final section aims to analyze the project from different sustainability 

perspectives. 

Economical 

Performing virtual testing is considered cheaper since it is less time-

consuming and brings a lower risk of any hardware being damaged. Since the 

testing can be performed virtually, there is no need to transport the vehicle or 

the people working on it. 

Environmental 

As discussed in the economic part, virtual testing decreases the transport 

necessary and eventual hardware reparations. Furthermore, creating a virtual 

environment and model enables the developers to try different configurations 

without needing to order new parts. 

Safety 

The biggest safety risk when developing autonomous cars is that the vehicle 

performs in an erratic and unexpected way. Virtually simulating the 

performance before reduces this risk. However, it is a risk to assume that the 

vehicle performs exactly like the virtual model since a lot of parameters and 

conditions need to be simulated correctly. 
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6 Conclusion 

This project explored the virtualization of an electric vehicle, and 

collaboration with the company has allowed the authors to design, develop, 

and test this virtual avatar of the car.  

This thesis work has proven that although it isn’t ideal to create a custom 

control setup for an Ackermann steering robot, it is possible in a simulated 

environment. Through custom-written nodes to convert messages to the right 

message types as well as updating the odometry from wheel speeds and 

positions, a working autonomous model was created. 

The developed model was able to achieve the goals set out in the beginning 

of the work, by navigating from point A to B while simultaneously avoiding 

obstacles. The results proved that navigation was performed with an error 

margin of 0.28 meters, which is deemed a success considering the size of the 

vehicle. Furthermore, if avoiding an obstacle was deemed impossible, the car 

would come to a stop if the obstacle appeared more than 0.6 meters away 

from the lidar sensor. 

Although the model has some limitations, including the inability to reverse, 

due to safety constraints, and maneuver in open spaces without obstacles or 

walls nearby, it provides a solid starting point for future work. 

For potential future work, the authors recommend using a previous 

distribution of ROS2 or awaiting further controller support for Ackermann-

steer robots. In addition, to enable the vehicle reverse drive, it is 

recommended to incorporate a lidar or RGB camera located at the rear. 

The identified areas for future development present promising opportunities 

for significant advancements in this field. Moreover, the assumption that the 

virtual setup will translate into real-life scenarios is supported by the work 

conducted by [54]. Their successful implementation of Nav2 on a real robot 

showcases the potential practical application of our virtual testing setup. 

Overall, this project has demonstrated the feasibility of virtual testing for 

autonomous vehicles and has identified several areas for potential future 

development, which could lead to significant advancements in this field. 
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8 Appendices 
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Appendix A – URDF code describing the vehicle 

 



- 45 - 

 



- 46 - 



- 47 - 



- 48 - 



- 49 - 

 

  



- 50 - 

Appendix B – Nav2 Params 
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Appendix C – SLAM Parameters 
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Appendix D – Launch file which launches all nodes except Nav2, SLAM 

and steering script 
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Appendix E – Measurements from trajectory matching test 

  
Vehicle position 
turn (m) 

Vehicle position 
obstacle (m) 

Vehicle position 
destination (m) 

Time 
(s) 

X1 16,05 15,7 17,2 31 

Y1 1,81 8,19 12,86   
Distance to 
obstacle/goal 1,26 0,7 0,11   

          

          

  
Vehicle position 
turn (m) 

Vehicle position 
obstacle (m) 

Vehicle position 
destination (m) 

Time 
(s) 

X2 16,15 15,54 17,21 30 

Y2 1,75 8,26 11,27   
Distance to 
obstacle/goal 1,37 0,54 0,27   

          

          

  
Vehicle position 
turn (m) 

Vehicle position 
obstacle (m) 

Vehicle position 
destination (m) 

Time 
(s) 

X3 15,77 15,66 17,19 31 

Y3 1,52 8,48 13,45   
Distance to 
obstacle/goal 1,25 0,66 0,31   

          

          

  
Vehicle position 
turn (m) 

Vehicle position 
obstacle (m) 

Vehicle position 
destination (m) 

Time 
(s) 

X4 15,5 15,59 17,35 34 

Y4 1,78 8,28 13,74   
Distance to 
obstacle/goal 0,88 0,59 0,34   

          

          

  
Vehicle position 
turn (m) 

Vehicle position 
obstacle (m) 

Vehicle position 
destination (m) 

Time 
(s) 

X5 15,47 15,68 17,14 34 

Y5 1,93 8,05 13,9   
Distance to 
obstacle/goal 0,74 0,68 0,38   

          

 


