

Bachelor thesis report
Engineering & Computer Science, Degree
project 15hp

Virtual Validation of Autonomous
Vehicles
Virtualizing an Electric Cabin Scooter

Halmstad University, Semcon

Halmstad, 2023-06-04

Jakob Andersson & Christoffer Arvidsson

II

III

Abstract

This thesis report presents a study on the virtualization of an Electric Cabin

Scooter used to validate the feasibility of converting it into an autonomous

vehicle. The project aimed to design, develop, and test a virtual model of the

car that can navigate from points A to B while avoiding obstacles. The report

describes the methodology used in the project, which includes setting up the

workspace, construction of the virtual model, implementation of ROS2

controllers, and integration of SLAM and Navigation2. The thesis report also

describes and discusses related work, as well as the theoretical background of

the project. Results show a successfully developed working virtual vehicle

model, which provides a solid starting point for future work.

Keywords: ROS2, Navigation2, SLAM, Gazebo, Virtual Environment,

Ackermann steering, Autonomous Vehicle

Sammanfattning

Detta examensarbete presenterar en studie om virtualiseringen av en elektrisk

kabinscooter. Den virtuella modellen används för att validera

genomförbarheten av att omvandla den till ett autonomt fordon. Projektet

syftade till att designa, utveckla och testa en virtuell modell av bilen som kan

navigera från punkt A till B medan den undviker hinder. Rapporten beskriver

metodiken som används i projektet, vilket inkluderar att sätta upp arbetsytan,

konstruktion av den virtuella modellen, implementering av ROS2-kontroller

och integration av SLAM och Navigation2. Rapporten diskuterar även

relaterat arbete, samt teoretisk bakgrund till arbetet. Resultaten visar en

framgångsrikt utvecklad fungerande virtuell fordonsmodell, som ger en solid

utgångspunkt för framtida arbete.

Nyckelord: ROS2, Navigation2, SLAM, Gazebo, Virtual Environment,

Ackermann steering, Autonomous Vehicle

IV

V

Acknowledgments

We want to express our deepest gratitude to Semcon AB, particularly Mikael

Wiktorell and Magnus Andersson, for their invaluable support and

collaboration throughout this project. Their expertise, guidance, and

resources have been instrumental in the success of this study.

We would also like to thank our academic supervisor at Halmstad University,

Felipe Eduardo Valle Quiroz, for their invaluable advice, feedback, and

encouragement throughout the research process and report writing.

VI

VII

Table of contents

1 Introduction .. - 1 -

1.1 Purpose ... - 1 -

1.2 Goals & Delimitations .. - 2 -

1.3 Requirements ... - 2 -

2 Background ... - 3 -

2.1 Related Work .. - 3 -

2.2 The Vehicle ... - 4 -

2.2.1 Physical properties and measurements - 4 -

2.2.2 Sensors .. - 4 -

2.2.3 Ackermann Steering ... - 5 -

2.3 Simulation & Software ... - 5 -

2.3.1 Navigation2 ... - 7 -

2.3.2 SLAM – Simultaneous Localization and Mapping - 8 -

2.3.3 Rviz .. - 8 -

2.3.4 Model .. - 9 -

2.3.5 Simulation ... - 11 -

3 Method .. - 13 -

3.1 Planification Stage.. - 13 -

3.2 Project Workspace Setup ... - 13 -

3.3 Software Tool Familiarization .. - 14 -

3.4 Virtual Model Construction and Spawning in Gazebo - 14 -

3.5 Implementation of Controllers .. - 16 -

3.6 Implementing SLAM and Nav2 .. - 17 -

3.6.1 Writing Custom Nodes and Scripts - 17 -

3.6.2 Setting Up Nav2 .. - 20 -

3.7 Experimental Evaluation .. - 21 -

3.7.1 SLAM Performance ... - 21 -

3.7.2 Navigation2 Performance .. - 22 -

4 Results and Analysis ... - 25 -

4.1 SLAM Performance .. - 25 -

4.2 Navigation2 Performance .. - 25 -

VIII

4.2.1 Trajectory matching test .. - 26 -

4.2.2 Replan ... - 28 -

4.2.3 Collision... - 29 -

5 Discussion .. - 31 -

5.1 SLAM Performance .. - 31 -

5.2 Navigation Performance .. - 31 -

5.2.1 Trajectory matching test .. - 31 -

5.2.2 Replan ... - 31 -

5.2.3 Collision... - 32 -

5.2.4 Comparative Analysis ... - 32 -

5.3 Limitations .. - 32 -

5.4 Challenges... - 33 -

5.5 Sustainable Development .. - 34 -

6 Conclusion ... - 35 -

7 References ... - 37 -

8 Appendices .. - 43 -

Appendix A – URDF code describing the vehicle - 44 -

Appendix B – Nav2 Params .. - 50 -

Appendix C – SLAM Parameters .. - 58 -

Appendix D – Launch file which launches all nodes except Nav2,

SLAM and steering script ... - 59 -

Appendix E – Measurements from trajectory matching test - 61 -

- 1 -

1 Introduction

Modern robotics systems are complex entities equipped with a plethora of

devices, sensors, and computers, which are often controlled by equally

complex software. These systems need to be able to perform their tasks under

different environments and dynamically changing conditions. However,

testing the functionality of these systems under all potential different settings

is not only time-consuming and expensive but also many times simply

impossible.

For this reason, there has been increased interest in the use of so-called virtual

environments [1]. Virtual environments are, broadly speaking, simulations

that are created using computer software with the goal of testing the

functionality and/or feasibility of a system in a controlled environment.

Performing tests in a virtual environment allows one to execute several tests

at the same time, in conditions that are, in general, unreproducible in a

laboratory environment, while preventing any risks of damage to the real

equipment in case of failure. Therefore, by making use of a well-developed

virtual environment, the development process can be made to be more

exhaustive and cost-effective. This virtualization process is the basis of this

thesis work.

1.1 Purpose

This thesis work will be done in collaboration with the company Semcon [2]

in Gothenburg, which has recently acquired a small electric car with space for

one driver (see Figure 1). Their ambition is to turn this vehicle into an

autonomous one, however, instead of testing the car’s autonomous functions

in real life. They wish to create a virtual model of the car along with a virtual

environment in which to perform simulated testing. The virtual model should

be equipped with the corresponding virtual sensors to the real car, in

corresponding positions, to mimic the real car and its functionalities.

This work will focus on designing, developing, and testing said virtual

environment, as well as making necessary changes to the configurations and

settings of the avatar model.

- 2 -

Figure 1- The electric vehicle acquired by Semcon

1.2 Goals & Delimitations

This thesis work aims to create a virtual environment and model on which the

autonomous functions of the vehicle can be tested. To achieve this goal, a set

of subgoals need to be achieved:

• Create a virtual model of the vehicle, which accurately represents the

mobility and collision characteristics of the real vehicle.

• Implement necessary packages and features to turn the model

autonomous.

To achieve these goals, certain delimitations will be necessary. Specifically,

this thesis work will:

• Focus exclusively on the development of the virtual model and the

autonomous functions, without consideration of other features like

suspension or actuators.

• Assume ideal operating conditions for the virtual model, not taking

features like weather or road conditions into account.

• Not involve physical testing of the real vehicle, which will be subject

of work based on the result of this thesis.

1.3 Requirements

• The virtual model should be able to navigate from point A to B in a

known environment, while avoiding pre-defined as well as unknown

static obstacles.

• If avoiding collision is deemed impossible, the vehicle should stop.

- 3 -

2 Background

2.1 Related Work

Due to its ability to test and validate the behavior of autonomous vehicles,

virtual validation has become an increasingly popular technique during recent

years [3]. For example, researchers in [4] describe the process of modeling a

vehicle in URDF [5] (Unified Robot Description Format), an XML format

used to describe the kinematic and visual properties of a robot for simulation

and visualization. They implemented Ackermann steering and a lidar sensor

on the model and imported it into a virtual environment. However, in the

report we have access to, no testing was performed to test the navigation

capabilities of the vehicle. While in this work, the testing part is key to

correctly determine the feasibility of automating the vehicle.

Another similar project is found in [6] where the researchers attempted to

create an autonomous golf cart. They created a virtual version of the car using

URDF much like the previous work described. However, in this study, virtual

testing is performed on the navigation characteristics. While testing, the

developers found that the already existing algorithms for navigation were

more suited for a differential drive robot rather than their implemented

Ackermann steering. Upon modification, the navigation package could be

used for the intended usage. A physical prototype was also developed, with

corresponding sensors to the final car, to test the steering characteristics in

the real world.

The researchers in [1] present a simulation environment that will be used for

testing mobile robots using ROS (Robot Operating System) and the

simulation program Gazebo [7]. The simulation environment enables

researchers and developers to test mobile robots in a virtual environment

before deploying and testing them in real-world scenarios, thus reducing costs

and risks. The researchers describe the design and implementation of their

simulation environment, which includes the mobile robot model, sensor

models, and controller models. They demonstrate the effectiveness of the

simulation environment by testing the mobile robot in its simulated

environment and comparing the results with real-world experiments. The

paper illustrates the importance of simulation environments in robotics R&D

and shows how ROS and Gazebo can be used to develop such environments.

This work will make use of several of those software tools that have been

developed and used in state-of-the-art research, including ROS2 [8], Gazebo,

and Navigation2 [9].

- 4 -

2.2 The Vehicle

The inherited vehicle used in this work is an electric cabin scooter from the

manufacturer Blimo [10]. To simulate a vehicle, certain key components and

systems of the car must be replicated virtually. In this case, that would be the

vehicle's mass, inertia, and wheel parameters, such as friction, radius, and

width. The sensors need to be replicated to ensure that the autonomous

functions of the car perform similarly in the real world.

2.2.1 Physical properties and measurements

Creating an accurate model of the vehicle in Gazebo requires some

important measurements. Due to limited documentation on the car, we have

acquired some of the following measurements ourselves.

Vehicle width (cm) 71(117 including mirrors)

Vehicle length (cm) 155

Vehicle height (cm) 160

Vehicle weight (kg) 242

Track width (cm) 60

Wheelbase (cm) 99

Tire radius (cm) 18

Ground clearance (cm) 9 (lowest point)

Turning radius (cm) 235

The inertial properties can be calculated with the help of Xacro [11], which

is an XML macro language. Xacro will be explained in more detail later in

the report.

3D-scanning [12] is a method that can be used to create a precise virtual

copy of the vehicle’s chassis. This method works by using a laser to create a

point cloud from the vehicle.

2.2.2 Sensors

The vehicle will be equipped with a lidar sensor to help navigate the car. The

sensor (Velarray M1600) comes from Velodyne and is a Solid-State lidar

(SSL) [13]. By being an SSL, it uses solid-state components such as

photodetectors and lasers instead of mechanical components to measure

distance. This also makes the sensor lighter, so it is often used in applications

where size and weight are important factors, such as autonomous vehicles.

One downside of using an SSL instead of a mechanical lidar is that the field

of view, FOV, can be smaller. Velarray M1600 has a FOV of 120° instead of

360°, which a mechanical lidar has.

- 5 -

2.2.3 Ackermann Steering

Four-wheeled robots have several different steering mechanisms, depending

on how the vehicle is designed. Commonly used in robots is differential drive

or skid steering because robots usually have fixed wheels. In this case, an

Ackermann-type steering is most suitable. Ackermann steering mechanism

[14] is used when both front wheels should be able to turn with minimal tire

slippage, see Figure 2. A steering linkage connects the front wheels, and

turning the wheel causes the wheels to turn at a different angle, to maintain a

constant turning radius. The maximum angle of the inner and outer wheels

can be calculated by using the formulas:

Figure 2 – Ackermann steering kinematics [15]

ɸ𝑖 = 𝑡𝑎𝑛−1 (
𝑙

𝑟 −
𝑤
2

)

(1)

ɸ𝑜 = 𝑡𝑎𝑛−1 (
𝑙

𝑟 +
𝑤
2

)

(2)

Where l is the wheelbase, r is the turning radius, and w is the track width. ɸ𝑖

is the maximum inner wheel angle and ɸ0 is the maximum outer wheel angle,

in radians.

2.3 Simulation & Software

Autonomous vehicles have been widely studied in recent years [16,17]. Much

of the research in autonomous vehicles is done via simulators, mainly due to

high costs and safety precautions [3]. Most of these simulations are built on

- 6 -

the open-source software platform ROS2 (Robot Operating System 2) [8].

ROS2 is a framework that provides a different set of tools and libraries that

makes it easier to construct a robotic system. ROS2 calls the processes of

robot system nodes [18], each responsible for a specific task (e.g., controlling

a motor or collecting data from a sensor). Nodes can communicate with other

nodes through three similar, but distinct ways: topics [19] which provide a

way for nodes to exchange information with each other in a publish/subscribe

type of communication; services [20] which are similar to topics but use a

call/response communication instead (request a service from another node

and receive a response like HTTP); and actions [21] which again are similar

to services, but the communication through actions enables feedback during

the execution of the task, this also allows for task cancellation (e.g., moving

a robotic leg while sending feedback back to the requesting node so it can

cancel the task if necessary).

Despite its name, ROS2 is not an operating system but instead a type of

software which is called “middleware.” This means that the software acts as

a bridge between an operating system, different applications, and hardware

components allowing them to communicate and exchange data with each

other [22]. Using ROS2 as a middleware allows us to connect the various

parts of the robot, including hardware and software elements, and enable them

to communicate and work together seamlessly. This makes it easier for

developers to focus on writing the code for the actual tasks rather than

worrying about the details of how the different components will interact and

work together.

One of ROS2 useful packages is ros2_control [23] which is a framework

designed to control robot hardware components, such as actuators, sensors,

and controllers. The package makes it easy to switch between hardware

configurations, as well as to simulate hardware in a virtual environment.

Ros2_control supports different controller plugins, such as

Joint_trajectory_controller and diff_drive_controller.

Diff_drive_controller is a controller for differential drive robots, which is a

type of robot that uses wheels that can rotate independently. A robot like this

can drive each wheel both forwards and backward, which enables turning in

place. The controller gets an input of body velocity commands which are then

translated to wheel commands for the differential drive base. The

diff_drive_controller also calculates the robot’s odometry, which estimates

its position and orientation in the simulation environment. The odometry

information is important for navigation tasks, and it can be used by other

nodes in the ROS2 system to make decisions and plan trajectories. Odometry

is about using data from sensors to estimate the position of the model [24].

The sensors can be wheel encoders or a lidar, or in our case, the /joint_states

topic provides us with information.

- 7 -

Joint_trajectory_controller is a controller which can control multiple joints

by taking a desired trajectory as input, typically in the form of a sequence of

joint positions or angles, and then generates the necessary commands to

achieve the desired position. This controller is good to use on multi-joint

robots.

Another useful package in ROS2 is the geometry_msg [25] package which

provides a collection of message types that nodes can use to exchange

information with each other. A common message type is a Twist message,

which represents the linear and angular velocities of a robot. This is

commonly used in ROS2 to control the movement of a robot.

Two other essential and common packages are the robot_state_publisher [26]

and joint_state_publisher package [27], which are responsible for publishing

a robot’s state and joint information, respectively.

Robot_state_publisher calculates the positions and orientations of all the

robot’s links based on the joint states, which are usually provided by a URDF

file. This information is published on topics that other nodes in the ROS2

system can use to understand the robot’s configuration and perform tasks such

as motion planning, sensor data processing, and visualization.

Joint_state_publisher publishes information about the positions, velocities,

and efforts of all a robot’s joints to a specific topic that nodes in the ROS2

system can access.

2.3.1 Navigation2

ROS2 comes equipped with a navigation stack (Navigation2/Nav2) [9], that

provides most features needed to navigate the vehicle from point A to B,

without contacting obstacles in the path. Navigation2 is a set of different

plugins that adds different navigation functionalities, such as global and local

planners, cost map generators and recovery behaviors if a robot gets stuck or

detects a collision, for example. These navigation functionalities are

coordinated by a behavior tree which is a powerful and flexible control system

for designing decision-making processes in robotics.

With the use of the behavior tree, the global and local planner, cost map

generators, and recovery behaviors are effectively integrated and ensures

seamless navigation, illustrated in Figure 3. The global planner generates an

initial path from the robot’s current position to the desired goal. After the

initial global path is set, a controller generates a local path, and velocity

commands in the form of a twist message are sent to the robot, which enables

the robot to follow the global path and avoid obstacles in real-time.

If the robot encounters a potential collision, then the behavior tree triggers a

corresponding recovery behavior to handle the situation. Recoveries can be

rotating in place, reversing, clearing the cost map, etc. This enables custom

- 8 -

recovery strategies tailored to the robot’s capabilities and application

requirements.

Figure 3 – Block diagram explaining the structure of the Navigation 2 stack

2.3.2 SLAM – Simultaneous Localization and Mapping

For the robot to navigate in an environment. It needs to be able to localize

itself and map the surroundings. For that, SLAM [28] is used. ROS2 provides

support for multiple different packages, such as SLAM_toolbox [29], Hector

Slam [30], and Gmapping [31]. SLAM uses data from sensors such as lidars

and RGB cameras to localize the position of the robot by extracting important

features. These features can be used to identify landmarks or objects in the

environment. The features are then matched with previous sensor readings to

determine which features belong together. These landmarks or features help

build a map incrementally. Revisiting the same areas improves the accuracy

of the map due to the SLAM functionality of loop closing, which recognizes

previous scans and patches the map together, correcting any faulty estimates.

2.3.3 Rviz

Rviz (ROS Visualization) [32] is a 3D visualization software tool for robots,

sensors, and algorithm. The software communicates with ROS2 through the

publish/subscribe pattern which is the core communication system of the

ROS2 ecosystem. It provides a graphical interface for visualizing and

interacting with data produced by different ROS2 nodes, such as sensor data,

- 9 -

robot states, and planned paths. Rviz helps to monitor, debug, and analyze the

behaviors of robot systems in real time.

The interface in Rviz is highly configurable and it lets the user add different

interaction tools to suit the specific needs. For instance, it is possible to insert

tools that enable SLAM and Navigation2 configuration.

Integrating Navigation2 into Rviz enables the visualization of the global and

local paths generated by the Nav2 planners. It also enables the user to publish

information on specific topics. For instance, when setting a navigation goal,

Rviz publishes a goal message to a specific topic to which the Navigation2

node is subscribed to.

2.3.4 Model

A common way to create a virtual avatar of a robot is to describe it in an XML

format using URDF, which describes the physical properties of a robot, such

as mass, size, and shape as well as the visual properties, color, and shape. The

URDF is built up of several tags and sub-tags, with the joint tag and link tag

considered the most central ones.

Links describe the visual and physical properties of a body part in the robot.

To implement these properties, several sub-tags are used, these being

<visual>, <inertia>, and <collision>. The visual tag defines the appearance of

the body part. The color, size, and origin parameters for the body part are set

in this section. To be able to simulate the robot in Gazebo or similar

simulation programs, inertia and collision need to be defined.

Figure 4 - Example of two links in an URDF file format, the “world” link is a base link, meaning that

it has no parent. The “chassi” link is a fully defined link, with visual, inertial, and collision properties

To connect two links, a joint is used, see Figure 5. The joint defines the

relation between the two links, the parent link, and the child link. The joint

tag sets limitations of movement as well as effort and velocity. Joints can be

- 10 -

constructed with different types of motion allowed. Some of the most

common joints being fixed, revolute, continuous, prismatic, and planar. A

fixed joint allows no movement, and the link becomes part of the parent link.

Revolute allows the child link to rotate around a specific axis with limits on

the range. Continuous joints allow rotation around a single axis, like a

revolute joint. However, no limit is applied to a continuous joint, making it

useful in the context of building a car. Planar and prismatic joints allow the

links to move along one and two axes, respectively.

Figure 5- Example of a fixed joint in an URDF file format, which connects chassi to world

Figure 6 – Illustration of previously described URDF structure where the world link, which has no

visual element and is used as a reference point for the world, is the parent and the chassi is the child

link

During the development of the model, the robot can be visualized in Rviz, a

graphical interface that uses plugins for various topics to visualize the model,

transforms, as well as sensor data. Thus, making it easy for a developer to

review recent changes in real time. To get an understanding of the connection

between the nodes and topics in a project, the user can utilize the graph plugin

within Rqt (ROS Qt) [33]. Rqt is a graphical interface plugin framework that

provides numerous tools to help developers understand the structure of the

project, see Figure 7.

- 11 -

2.3.5 Simulation

After developing a complete URDF model, simulations are required to ensure

functionality. The simulations can be done within Gazebo [7], a 3D robot

simulator plugin for the ROS2 platform. Gazebo utilizes plugins to be able to

simulate steering and control of a robot model. With correctly setup link and

joint attributes, Gazebo can accurately simulate the behavior of the robot in a

controlled environment. As mentioned previously in the report, aspects like

the steering, battery consumption, and sensor performance can be simulated

in Gazebo. To do this Gazebo utilizes plugins, a software component that

allows the user to extend the functionality of the program. A plugin can be

downloaded or created by the user, enabling the developer to create custom

simulation environments for the intended usage [34]. The main reason for

choosing Gazebo over other similar simulators such as Webots [35],

Coppeliasim [36] or MORSE [37] is that the same developers that developed

ROS also developed Gazebo [38]. This, along with the large community

supporting Gazebo, which can help by providing information through forums

and tutorials, make this plug-in the easy choice for this project.

Figure 7- Simple Rqt graph describing relation between topics and nodes, where the squares are

topics, and the ovals are nodes. In this case, the “/joint_state_publisher_gui” subscribes to the

“/robot_description” topic and publishes to the “/joint_states” topic

- 12 -

- 13 -

3 Method

In the following section, strategies and tools that have been implemented will

be described. The first part of the project time was spent on familiarizing us

with the tools and programs, as well as reading up on previous similar work.

The project's main focus was creating a virtual model and environment and

establishing a working setup of nodes and packages to turn the model

autonomous.

3.1 Planification Stage

During initial meetings with the company, potential scopes and plans for the

project were discussed based on time availability. The original plan

conducted was to construct the model and implement Navigation 2 and

SLAM. When this was finished, the performance of the model was to be

tested in randomized worlds created by AWS World Forge [39]. Testing

would then be performed using a CI/CD pipeline [39], if time allows it, to

automate and speed up the testing.

However, if issues arose with the AWS RoboMaker [39], then testing could

be performed through manually made virtual environments. However,

constructing manual environments in Gazebo is less efficient and more time-

consuming. This will mean that, in this case the model would only be tested

using a limited number of environments, however, this will at least ensure

that testing is performed. The amount of time available in this case would

ultimately determine the number of environments and their complexity.

3.2 Project Workspace Setup

The project was supplied with a virtual machine copy by the company which

runs on Linux Ubuntu 22.04 and contains all the software programs that are

relevant to the project, ROS2 Humble [40], and Gazebo 11 being the main

ones. ROS2 includes support for essential features and tools for the project,

such as Rviz and Navigation2.

ROS2 provides support primarily for Python and C++, in this case we decided

to use Python as the primary language to work in because of our familiarity

with it and its simplicity with respect to C++. Python is a free high-level

programming language that is designed to be easy to learn and use, making it

great when developing robotics applications. It also has a large community

base and extensive 3rd party library support, so there are many open-source

resources and tools available to use with ROS2 [40].

In addition, a helpful tool when writing URDF files is Xacro [11], an XML

macro language that reduces the amount of code that needs to be written by

allowing the developer to create macros that can be used to represent

commonly used parts in a robot model. It improves the readability of the code

and allows for faster modification of the model.

- 14 -

The ROS2 workspace was created and edited with VSCode, an open-source

code editor [41]. The reason behind choosing VSCode is that it supports

multiple different code formats such as Python and XML, which allow us, the

developers to mix freely when building the workspace. It also offers

integration with GitHub [42], which simplifies commits to the online

repository as well as cloning the code to the local repository.

3.3 Software Tool Familiarization

Due to our limited experience with ROS2 and simulation in virtual

environments. The first weeks were spent reading about previous and similar

work as well as familiarizing ourselves with the structure and principles of

ROS2. As mentioned before, the ROS2 environment runs on a virtual box

supplied by the company. The virtual box used Linux Ubuntu 22.04 [43] as

the operating system, which was another component that we needed to get

used to. It is worth mentioning that to familiarize ourselves with ROS2, we

followed several tutorials regarding the handling of topics, nodes, and

structuring a workspace, among other important features. Learning the

foundations of the software set the project back a couple of weeks.

3.4 Virtual Model Construction and Spawning in Gazebo

Once the project’s workspace was set up correctly and we had familiarized

ourselves with ROS2 and its communication system, we created a URDF file

for the vehicle using the dimensions taken from the real car at the company’s

headquarters. These measurements include the wheelbase dimension, tire

radius, and ground clearance, but also the external dimensions of Wille’s

chassis. We also used a 3D scanner to obtain a visual mesh, see Figure 9, as

well as the collision properties of the vehicle. The mesh obtained by 3D

scanning the vehicle was saved as a .stl file, which was imported into Gazebo

to transfer the physical properties of the chassi into the simulation.

The process began by constructing the URDF file via the creation of a chassis

link in the center, which we then use to attach every other part, including the

3D scanned mesh. The two front wheel links referred to as “left_front_wheel”

and “right_front_wheel” were attached to two rotational links

“front_left_rot” and “front_right_rot,” through two continuous joints, which

enables certain degrees of freedom around the z-axis based on the Ackermann

steering calculation in equations 1 and 2, while enabling the wheels to spin.

Similarly, the two rear wheels, “left_back_wheel” and “right_back_wheel,”

were connected to “rear_drive_left” and “read_drive_right” via continuous

joints.

We used Rviz to visualize the vehicle in a simple environment, see Figure 8.

To be able to control the different joints, we also initialized the Joint State

publisher graphical interface, which is a ROS2 package that publishes the

state of a robot joint to the ROS2 system. This is done by reading the values

- 15 -

of a joint and publishing them as a message on a the “/joint_states” topic. In

addition to using Joint State publisher to control the joints, we also used the

Robot State publisher package which reads the URDF file and computes the

robot’s kinematic state and publishes the information on the

“/robot_description” topic.

Figure 8 – The vehicle visualized in Rviz with the use of Robot State Publisher and Joint State

Publisher

Next, to simplify the launch of all the necessary nodes and spawn the vehicle

in Gazebo we proceeded to develop a python launch file that initializes the

following nodes automatically:

1. URDF Model: Loads the URDF model.

2. Robot State Publisher: Launches the robot state publisher node, which

reads the URDF file and computes the robots kinematic state and

publishes the information to the “/robot_description” topic.

3. Joint State Publisher: Initialization of the joint state publisher node

which publishes positions, velocities, and efforts of each joint as

messages on the "/joint_states" topic.

4. Gazebo simulation environment: Initializes the Gazebo node and

opens the desired Gazebo world, see Figure 9.

5. Rviz visualization: Launches the Rviz node to be able to inspect and

interact with the joints in real time.

As the project progresses and new nodes need to be created, we can easily

extend and update this launch file to integrate new functionalities and features

into our vehicle model.

- 16 -

Figure 9 – The vehicle visualized in a Gazebo world, with the mesh from previous 3D-scan

incorporated, providing collision properties for the vehicle

3.5 Implementation of Controllers

The next step was the implementation of the control systems. Controllers are

the key component that enable the movement of several joints at the same

time and allow the user to control the vehicle in a way that closely resembles

and mimics an actual car. After exploring the different possible controllers

available in ROS2 Humble, we chose to implement the steering with a

diff_drive_controller controlling the rear wheels. As well as the

joint_trajectory_controller to control the rotation of the front wheels. These

were later configured to replicate the Ackermann steering characteristics.

Along with these two controllers, a joint broadcaster was implemented, which

keeps track of the state of the joints controlled by the controllers. This helped

when visualizing the robot in Rviz, to see if the joints moved as expected.

To move the car manually and send input to both controllers, a script that uses

the teleop_twist_keyboard [44] was constructed. The teleop_twist_keyboard

takes key presses as inputs and generates a twist message that can be sent to

the controllers. The custom script used key presses of “w” for forward

movement, “s” for stopping, and “x” for reversing. Turning was handled by

pressing “a” or “d.” Each key press generated a twist message.

One issue with this solution was that the two controllers needed input on two

different formats. The diff_drive_controller takes twist messages, which this

script generates, and the joint_trajectory_controller takes position messages.

Due to this, another node, “twist-to-joint”, was created that subscribed to the

custom script created earlier and converted the angular part of the twist

message into a position message. This message was then sent topic to which

the joint_trajectory_controller subscribes. The structure of this conversion

can be seen in Figure 10.

- 17 -

Apart from converting the twist message to a position format, the “twist-to-

joint” node converted the desired steering angle from the twist message into

two individual angles for the joints depending on if the message was negative

or positive, which indicated which way the car was turning. The conversion

was based on the formula described in equations 1 and 2, but to find out the

specific angle, the result was multiplied with a factor: received

angle/maximum angle. Since the formula only generates the maximum angle

for each wheel, multiplying by this factor gives the Ackermann angle based

on the input.

ɸ 𝑖𝑛𝑛𝑒𝑟 = ɸ𝑖 ∗
ɸ

ɸ𝑚𝑎𝑥

(3)

ɸ
𝑜𝑢𝑡𝑒𝑟

= ɸ𝑜 ∗
ɸ

ɸ𝑚𝑎𝑥

(4)

Where ɸ𝑖 and ɸ𝑜 are the maximum angles for respective wheels, as per

Figure 2. ɸ is the received angle and ɸ𝑚𝑎𝑥 is the maximum angle that the input

can generate. This conversion is done due to the fact that Navigation 2

generates different values based on the desired linear speed.

3.6 Implementing SLAM and Nav2

As discussed in the background, the model needs to be able to first localize

itself and map the surroundings to plan a safe path to a target before starting

to navigate. In this work, the implementation was done using a 2D lidar sensor

model. This was due to the fact that using a 3D lidar in the simulations would

require a large amount of processing power. In addition, during our

preliminary investigation we concluded that several state-of-the-art projects

seem to use 2D lidar [45, 46, 47]. This meant that there is more information

sources and channels available to us in case there is a need of troubleshooting.

The lidar configurations regarding resolution and range also had to be

modified to preserve processing power. Once we had mapped a demo world,

we decided to implement the Nav2 package and tune the parameters for Nav2

by testing in the example world.

3.6.1 Writing Custom Nodes and Scripts

To run the previously designed steering script simultaneously to the Nav2 and

to avoid having to change topics for our previously written nodes, we decided

to create two muxes using the “twist_mux” package in ROS2. A mux, short

for multiplexer, is a device or component which allows for selection of an

output from multiple inputs [48]. The two muxes listened to the two topics

generating messages to each controller. The mux regarding the front wheels

- 18 -

listened to two topics, one published from the Nav2 node and one where the

message was published with the steering script. The advantage of using a

mux, besides being able to listen to inputs from two topics, is that the

developer can order them in priority. In our case, we put a higher priority on

the message generated by the steering script which enabled the ability to

intervene with the manual control in case the model got stuck. The mux sent

the prioritized info through the previously created node to convert the

message to a position format and to get the Ackermann angle.

The mux regarding the rear wheels needed more configuration. Since Nav2

generates both angular and linear messages, the angular part of the message

needs to be filtered away. Sending both linear and angular messages to the

diff drive controller would cause the rear wheels to move at different speeds.

Another node, “Twist-to-linear”, was then created which only sent the linear

part of the twist message to the topic on which the controller subscribed.

Apart from that implementation, the mux regarding the rear wheels was

implemented in the same way, with the Nav2 message being prioritized.

Figure 10 shows the relationship between the different system components

used in our ROS2 configuration

Figure 10 – Overview of the remapping and restructuring of the messages generated by Nav2 and the

Steering Script.

Upon testing the navigation, we noticed that the model in Rviz and Gazebo

moved differently. We decided to investigate the odometry settings and

realized that only the diff drive controller published odometry, causing the

- 19 -

model to move strangely in Rviz. To correct this, we needed to create a

custom node that calculated the odometry and published it as a fixed frame.

The created node retrieved information about the wheels and joints by

subscribing to the “/joint_states” topic. The topic holds information about the

velocity and position of every wheel as well as the front steering joints. In

order to estimate the position and direction of the vehicle, a steering angle

and linear velocity needed to be obtained. The steering angle was calculated

by using the mean of the two front steering joint’s positions. The linear

velocity was obtained by calculating the mean of the velocity of the rear

wheel. The main reason behind only using the rear wheels was that we had

an issue with the front wheels that kept spinning even though the vehicle

stopped. This is not something that affected the performance of the model, so

the most direct way of avoiding the potential problem was to use the rear

wheels for estimating the speed. The linear velocity was then used to calculate

the angular velocity.

 Figure 11- Ackermann steering kinematics with angular and linear velocities [15].

𝑎𝑛𝑔𝑙𝑒 =

(ɸinner + ɸ𝑜𝑢𝑡𝑒𝑟)

2

(5)

𝑣 =

𝜔𝑖 + 𝜔𝑜

2
∗ 𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠

(6)

 𝜔 = 𝑣 ∗ 𝑎𝑡𝑎𝑛(𝑎𝑛𝑔𝑙𝑒) (7)

- 20 -

Where ɸ𝑖nner is the angle of the right wheel, and ɸ𝑜𝑢𝑡𝑒𝑟 is the angle of the left

wheel, as explained in equations 3 and 4. ω𝑖 , ω𝑜 is the rotational velocity of

the right, respectively left rear wheels. The linear velocity is v in this case and

𝜔 is the angular velocity.

Furthermore, to update the position of the model, the following equations

were used:

 𝑡ℎ𝑒𝑡𝑎 = 𝜔 ∗ 𝑑𝑡 (8)

 𝑥 = 𝑣 ∗ cos(𝑡ℎ𝑒𝑡𝑎) ∗ 𝑑𝑡 (9)

 𝑦 = 𝑣 ∗ 𝑠𝑖𝑛(𝑡ℎ𝑒𝑡𝑎) ∗ 𝑑𝑡 (10)

Where dt is the time elapsed between each callback of the code, the position

and orientation are then published on the topic “/my_odom”.

To use the updated odometry obtained from the wheel speeds and positions,

we then needed to create a translator component between the odometry

message and the base link. So, a new node was created that subscribed to the

odometry message and broadcasted a transformed version of it between the

base link of the world and the odometry, thus enabling a fixed frame to use.

3.6.2 Setting Up Nav2

Once the odometry was updated to get a more accurate representation, it was

time to continue with the SLAM and Nav2 implementation. We ran the

SLAM on the same environment as before and noticed that the estimation of

the position of the model was improved, which also led to a more accurate

Figure 12– Code snippet generating the odometry message published on the

“/my_odom” topic

- 21 -

scan. Nav2, however, proved more complex to get an improvement on. The

navigation stack contains several launch files and a parameter file, where the

developer can change the parameters of the currently used plugins or replace

them with other ones. Nav2 was originally configured to work with a

differential drive robot, which meant that the planning and behavior of the

robot in case of a detected collision differed from what was desired.

Thus, for the model to be able to perform the desired actions, some plugins

had to be modified:

1. The original controller plugin, “DWB Controller” [49], was swapped

out for the “Regulated Pure Pursuit” [50] controller, which is more

suitable for an Ackermann-like steering [51].

2. The original planner plugin “NavFn Planner” [52] was swapped with

the “SmacPlannerHybrid” [53]. The main difference between the

planners is that the NavFn planner finds a straight plan and disregards

the orientation of the vehicle since differential drive robots can turn in

place. However, the SmacPlannerHybrid generates a global plan that

takes the goal direction into account.

3. Finally, the standard recovery behaviors were changed. Originally,

three commands would be sent to the model in case of an error or an

impending collision. One to spin the vehicle around, one to reverse

the vehicle, and one to wait. In our case, we would just like the vehicle

to stop in case of a collision or an error, so the two first behaviors were

removed.

Once the plugins had been changed to fit our setup better, parameter tuning

could be performed with regards to speed, distance to obstacles, and goal

precision.

3.7 Experimental Evaluation

To analyze the performance of our implementation of SLAM and

Navigation2, multiple experiments were conducted. The experiments aimed

to evaluate the performance of both the SLAM and Navigation2 node

configurations. As stated before, both SLAM and Navigation2 are configured

with two different parameter files. Since there are millions of potential

parameter configurations, the experiments were not aimed at finding the

optimal parameter configuration (if it exists), but rather to determine if our

chosen parameters are able to comply with the project’s requirements.

3.7.1 SLAM Performance

To evaluate the performance of SLAM, different configurations of the

simulated lidar were tested. Since our simulations run on a virtual machine

with limited RAM, we needed to take processing power into consideration.

With this in mind, the goal was to find a value for the range of the lidar that

was sufficient for navigating in an indoor environment and required relatively

- 22 -

low computational power to simulate. Afterwards, when an adequate lidar

range had been determined, parameter tuning could be performed on the

chosen configuration. Parameter tuning would then be performed using a

mostly heuristic approach using the initial configuration as a starting point.

3.7.2 Navigation2 Performance

To test the Navigation2 performance and check whether the requirements of

the project were met, we conducted three different tests:

• Trajectory matching test

• Replan

• Collision

The Trajectory matching test is based on computing the mean distance and

standard deviation from the desired destination and vehicle when moving

from point A to B while avoiding obstacles. The test also showed the average

distance from the vehicle to the walls, obstacles, and the goal at selected

points in Figure 13.

Figure 13 – Visualization of the three points where measurements will be taken of the position of the

vehicle in relation to either obstacles or the final goal.

Five simulation runs were performed, where the goal was set at point number

3 in Figure 13. Meanwhile, the distance from the vehicle to the closest

obstacle was measured at points number 2 and 1. The distances were

- 23 -

measured from the center of the vehicle. As well as distances to the goal and

obstacles, the time of each run was measured. The model ran at 1 m/s with an

acceleration of 0.5 m/s.

The replan test focused on determining the shortest distance to an obstacle at

which the vehicle recognized the need to replan its trajectory and successfully

navigate around the obstacle. The testing was performed by adding an

obstacle in the planned path at different distances from the lidar sensor located

at the front of the vehicle, see Figure 19. If the model was able to pass, the

closest distance to the obstacle was measured.

The collision test builds upon the results in the replan test, distances shorter

than the shortest distance avoidable in the replan test were tested here. In the

collision test, we tested the brake distance for the model by adding an obstacle

at different distances in front of the vehicle. The longest distance was 1 meter

and then it was incrementally lowered by 0.1 meters until the vehicle had a

collision with the obstacle.

- 24 -

- 25 -

4 Results and Analysis

This section aims to describe the outcome of the experiments outlined in the

methodology section, as well as the overall development of the project.

4.1 SLAM Performance

Different settings and parameters were tested during the implementation part

of the project to optimize performance. One significant change that was made

was reducing the range of the lidar. The full list of parameters and their

specific values can be found in Appendix C.

By decreasing the lidar range, the amount of data that needed to be processed

was reduced. This resulted in faster processing speeds and more efficient

operation of the SLAM algorithm, which made it easier to drive around, map

up the environment, and improve the overall performance. The 15-meter

distance was found to be sufficient for our application by incrementally

decreasing the 30-meter range by 5 meters and comparing the performance.

15 meters provided a good balance between processing speed and the ability

to detect obstacles at a reasonable distance considering the maximum speed

of the vehicle being 1 m/s.

Figure 14 - Demo map in Gazebo Figure 15 - Gazebo-map produced by SLAM

4.2 Navigation2 Performance

This section will showcase the results of the experiments described in 3.7.2

Upon completion of the project, the model can move from point A to B while

considering the obstacles in its path. As shown in the experiments, the model

can plan an initial path to the goal, as well as identify obstacles and replan in

case of obstruction.

In terms of obstacle avoidance and path planning, some features were more

important than others, these being:

- 26 -

Global cost map: 2D grid representation of the robot’s environment used for

long-term planning. The cost map assigns a cost to each cell in the map based

on the likelihood of a collision with an obstacle.

Cost_travel_multiplier: Used to determine how much the model should steer

away from high-cost areas.

Global footprint: represents the physical shape of the model and is used for

global planning.

We wanted the model to be able to avoid obstacles but not steer away from

paths that were possible to take. To do this, the global cost map inflation

radius was increased from 0.55 to 1, causing the global planner to plan further

away from obstacles. The “cost_scaling_factor” was decreased from 3.0 to

2.0, which makes it easier for the planner to plan through higher-cost areas if

needed. Furthermore, the global footprint was set to match the car’s shape,

with minimal padding, which enables planning closer to the obstacles.

Combining these three changes allows the model to take the safer path when

possible but allows for paths closer to obstacles when needed. These values

were produced by trial and error and changed until we were satisfied with the

result.

In the documentation for Nav2 regarding the tuning of the parameters, the

chosen value of 2.0 for Cost_travel_multiplier is described as a tradeoff value

when deciding whether to prioritize tight turns close to an obstacle or wide

turns to avoid a collision.

The discussed changes have been performed by changing parameters in a

configuration file for Nav2. No programming has been made that directly

affects the navigation, rather nodes and scripts that enable the car to move

and locate.

4.2.1 Trajectory matching test

The test was performed as described in section 3.7.2; the test generated the

following results.

Table 1: Mean and standard deviation calculated from measurements from the center of the

vehicle. Measurements from each simulation run can be found in appendix E.

Vehicle position
turn (m) (1)

Vehicle position
obstacle (m) (2)

Vehicle position
destination (m) (3)

Time
(s)

Mean 1,10 0,63 0,28 32

Standard
Deviation 0,27 0,07 0,10 1,87

The results show that the parameter tuning discussed in the previous section

had a noticeable effect. The car prefers to navigate further from obstacles, as

seen in the measurements from point 1. However, the measurements from

point 2 shows that it is capable of navigating closer to obstacles if needed.

- 27 -

Figure 16 – Measurement point 1. Measuring the distance from the center of the vehicle to the closest

obstacle, which in this case is the wall. The planned path to the goal is visualized in the right window

of the picture.

Figure 17 – Measurement point 2. Measuring the distance from the center of the vehicle to the closest

obstacle, either the cylindrical obstacles or the wall. The planned path is visualized in the right

window of the picture.

Figure 18 – Measurement point 3. Measuring the distance from the initial goal to the actual position

of the vehicle. The distance here is measured from the center of the vehicle as well.

- 28 -

4.2.2 Replan

The replan test, shown in Figure 19 was focused on determining the minimum

distance to an obstacle at which the vehicle recognized the need to replan its

trajectory and successfully navigate around the obstacle.

As shown in Table 2, at the distance of 5 meters from the front of the vehicle

to the obstacle, the vehicle successfully replanned the route and reached the

goal. The closest distance between the vehicle and the obstacle was 1.14m.

Similarly, at 4 meters, the vehicle successfully replanned the path and reached

the goal with the closest distance of 1.43m to the obstacle. Likewise, as the

distance to the obstacle decreased to 3 meters, the vehicle replanned its path

and avoided the obstacle with the closest distance of 0.90m to the target.

However, when the distance was reduced to 2.5 meters and below, the vehicle

was unable to replan and execute the path to avoid the obstacle, which

resulted in the vehicle stopping.

These results show that the vehicle successfully recognized the need to replan

its trajectory and navigate around the obstacle when the obstacle distance was

5, 4, and 3 meters. But, at distances of 2.5 meters and below, the vehicle failed

to replan the path. This is probably due to the vehicle’s mobility constraints,

the turning radius of 2.35 meters combined with the speed and effectiveness

of the replanning algorithm not being optimal.

Figure 19 – Replan test with 3 m distance to the obstacle in Gazebo (Left) and Rviz (Right)

- 29 -

Table 2: Test results of the replanning test where the distance to the obstacle is measured

from the lidar located at the front, closest distance while passing is measured from the center

of the vehicle.

Distance to Obstacle (m) Closest distance while passing (m) Target reached

5 1,14 Yes

4 1,43 Yes

3 0,90 Yes

2,5 N/A No

2 N/A No

4.2.3 Collision

The collision test aimed to evaluate the brake distance of the model by

introducing obstacles at different distances in front of the vehicle. As can be

seen in Table 3, the vehicle managed to stop without a collision with distances

over 60cm from the vehicle to the obstacle. This is probably due to the

deacceleration value of 0.5 m/s, a value which was chosen by taking into

account the velocity of 1 m/s. The update frequency of the costmap could also

be an issue because it provides information about the available paths and

ensures that the robot has updated information about obstacles and available

free space.

Table 3: The results from the collision test, the distance to the obstacle is measured from the

lidar sensor which is located at the front of the vehicle.

Distance to Obstacle (m) Remaining distance (m) Crash (Yes/No)

1 0,27 No

0,9 0,17 No

0,8 0,14 No

0,7 0,06 No

0,6 0 Yes

- 30 -

- 31 -

5 Discussion

This section introduces a discussion on some of the challenges faced during

the development of the project, as well as the limitations regarding the

accuracy and scope of the finalized vehicle model.

5.1 SLAM Performance

The result of the experiment resulted in a 2D-lidar configuration and range of

15m, with computational requirements in mind. The selected configuration is

specified to run on the limited system that we ran the simulation on and can

be changed in case of access to more processing power and a need for more

range. The parameters of SLAM were tuned according to the lidar range.

During development, it was found that the odometry of the vehicle had a

bigger impact on localization when mapping with SLAM than the parameters

chosen.

5.2 Navigation Performance

5.2.1 Trajectory matching test

As discussed briefly in the results section, the model has a preferred distance

to obstacles when navigating, but, if necessary, it can navigate closer to the

obstacles to reach the goal. On average, the model missed the target by 0.28

meters, with a standard deviation of 0.1 meters which in our case is an

acceptable distance. This result was expected since the tolerance was set to

0.25 meters in the Nav2 parameters, which means that the planner will

consider the model to have reached the goal when in this range. Reducing the

tolerance could improve the results, however, it would put higher demands

on the other parameters to make sure that the navigation is accurate enough.

If the tolerance is too low, the model wouldn’t consider itself to have reached

the goal, despite being at an acceptable distance considering the size of the

vehicle.

5.2.2 Replan

The replanning test was a test of both the ability to navigate past an obstacle

as well as a test of the mobility constraints of the robot. One issue encountered

here was that, since two paths were available to pass the object with similar

lengths and cost, the planner sometimes alternated between them. This caused

the robot to delay the avoidance maneuver. This can be seen in the results,

where it would be expected that the distance to the obstacle would be greater

or at least similar for the simulation run with a 5-meter distance to the obstacle

compared to the one with a 4-meter distance. This issue could potentially be

avoided by further tuning the parameters, with emphasis on the replanning

frequency. This would allow the planner to choose one path and by the time

replanning is considered, the paths are no longer the same length, causing one

of them to be chosen instead of alternating.

- 32 -

5.2.3 Collision

The results of the collision test show that the vehicle was able to stop and

avoid collisions at distances of 1 meter, 0.9 meters, 0.8 meters, and 0.7 meters.

At a distance of 0.6 meters, the vehicle was unable to stop before colliding

with the obstacle.

Several different factors could contribute to this distance. Like said before,

the deacceleration of 0.5 m/s could potentially be an issue. By increasing this

the vehicle should be able to come to a stop faster. Additionally, friction

between the tires and the ground could also influence the stopping distance.

The update frequency of the costmap could also contribute to the stopping

distance because of its key role to create cost areas around obstacles. If the

frequency is set too low, the vehicle may not be aware of a suddenly appeared

obstacle. To address this issue, it is important to ensure that the frequency is

set properly to match the environment and the vehicles dynamics.

However, increasing the update frequency of the costmap means increasing

load on processing power which could put a strain on the system. Therefore,

it is necessary to find a good balance between the update frequency and

controller frequency.

5.2.4 Comparative Analysis

In [54] the authors introduced a methodology aimed at acting as a guide for

the necessary steps required to deploy Navigation2 on an existing custom-

built robot operating with ROS2. The Navigation2 configuration was tested

in a virtual environment, Gazebo, which was modeled to replicate the real-

world environment.

To evaluate the transferability of the setup, the authors of the paper ran a

similar test on both a real-life robot as well as a simulated one in Gazebo. The

two tests in both a simulated environment and a real environment

demonstrated that the same Navigation2 configuration resulted in the same

maneuvers being carried out. Furthermore, in this project we have followed

roughly the same steps highlighted in [54] and the main differences are mostly

in the configuration parameters which are highly dependent upon the actual

vehicle one desires to simulate. This shows that transferring and

implementing a Nav2 configuration into a real physical system is entirely

plausible and in fact has already been achieved by following roughly the same

methodology. Thus, we can conclude that we have proven the feasibility of

automating the real electric vehicle.

5.3 Limitations

Although the project produced a working virtual model that can move from

point A to B while avoiding obstacles, the model still has some limitations

worth noting.

- 33 -

As mentioned previously in the report, the model cannot reverse, which

means that the car’s mobility is somewhat limited. The reason behind not

allowing the car to reverse was that the project was supplied with one physical

lidar aimed to be mounted at the front. This meant it would only be able to

detect objects in front of the car. Due to this, it was thought that, from a safety

standpoint, it was reasonable not to allow the car to reverse.

Not allowing reversing also brings another limitation to the performance. If

the model was to deviate from the target when close to the goal, it cannot

correct it. So, either it must find a way to loop around to reach the target or

the goal tolerance of the navigation stack can be increased to allow more

deviation from the final goal.

Another limitation of the model is maneuvering in open space without

obstacles or walls nearby. Due to the range being set at 15m, the SLAM will

not be provided with any lidar scans if there are no obstacles within a radius

of 15m from the sensor. This will cause the model to localize only with the

help of odometry, which isn’t perfect. This causes some confusion for the

planner at times and leads to a decrease in precision.

Currently, the model can only navigate in a previously mapped environment.

However, this does not pose much of an issue since the vehicle is intended to

be used in closed areas.

The model would need complementing to be used as a base for the real

vehicle, as several integral parts would need changing to control it:

Steering the robot has been performed by sending commands directly to the

joints, as opposed to the real vehicle, which will be controlled by actuators.

To further replicate the real vehicle, these actuators would need to be

simulated as well.

The model is only configured to map and navigate using a 2D lidar, which is

not what will be used in the vehicle. This was a way of saving time due to the

quicker configuration regarding the limited time of the project, as well as

saving processing power.

5.4 Challenges

As described previously in the report, the project was supplied with a virtual

box containing ROS2 Humble, which is the latest release of ROS2. While this

has advantages in terms of longevity, it also presents some challenges.

One advantage of it is the latest release is that it is likely to have a longer life

span than the older distributions. This is good, considering the community of

the older distributions may become inactive and stop providing updates to

packages.

One issue with this, however, is that all the necessary packages for performing

our project are not yet developed for Humble. Previous distributions offer

- 34 -

support for an Ackermann controller, which makes steering and odometry

calculating a lot easier for the user. The Ackermann controller will be

provided to ROS2 Humble in due time, so the configuration of this project

might seem outdated by then.

Overall, our experience using ROS2 Humble highlighted both the advantages

and disadvantages of using the latest ROS2 distribution. While it offers

longevity and access to up-to-date features, it may not always be the best

choice, depending on the type of project that is to be conducted.

5.5 Sustainable Development

This final section aims to analyze the project from different sustainability

perspectives.

Economical

Performing virtual testing is considered cheaper since it is less time-

consuming and brings a lower risk of any hardware being damaged. Since the

testing can be performed virtually, there is no need to transport the vehicle or

the people working on it.

Environmental

As discussed in the economic part, virtual testing decreases the transport

necessary and eventual hardware reparations. Furthermore, creating a virtual

environment and model enables the developers to try different configurations

without needing to order new parts.

Safety

The biggest safety risk when developing autonomous cars is that the vehicle

performs in an erratic and unexpected way. Virtually simulating the

performance before reduces this risk. However, it is a risk to assume that the

vehicle performs exactly like the virtual model since a lot of parameters and

conditions need to be simulated correctly.

- 35 -

6 Conclusion

This project explored the virtualization of an electric vehicle, and

collaboration with the company has allowed the authors to design, develop,

and test this virtual avatar of the car.

This thesis work has proven that although it isn’t ideal to create a custom

control setup for an Ackermann steering robot, it is possible in a simulated

environment. Through custom-written nodes to convert messages to the right

message types as well as updating the odometry from wheel speeds and

positions, a working autonomous model was created.

The developed model was able to achieve the goals set out in the beginning

of the work, by navigating from point A to B while simultaneously avoiding

obstacles. The results proved that navigation was performed with an error

margin of 0.28 meters, which is deemed a success considering the size of the

vehicle. Furthermore, if avoiding an obstacle was deemed impossible, the car

would come to a stop if the obstacle appeared more than 0.6 meters away

from the lidar sensor.

Although the model has some limitations, including the inability to reverse,

due to safety constraints, and maneuver in open spaces without obstacles or

walls nearby, it provides a solid starting point for future work.

For potential future work, the authors recommend using a previous

distribution of ROS2 or awaiting further controller support for Ackermann-

steer robots. In addition, to enable the vehicle reverse drive, it is

recommended to incorporate a lidar or RGB camera located at the rear.

The identified areas for future development present promising opportunities

for significant advancements in this field. Moreover, the assumption that the

virtual setup will translate into real-life scenarios is supported by the work

conducted by [54]. Their successful implementation of Nav2 on a real robot

showcases the potential practical application of our virtual testing setup.

Overall, this project has demonstrated the feasibility of virtual testing for

autonomous vehicles and has identified several areas for potential future

development, which could lead to significant advancements in this field.

- 36 -

- 37 -

7 References

1. Takaya, K., Asai, T., Kroumov, V., & Smarandache, F. (2016,

October). Simulation environment for mobile robots testing using

ROS and Gazebo. In 2016 20th International Conference on System

Theory, Control and Computing (ICSTCC) (pp. 96-101). IEEE.

2. Semcon, “About Us.” https://semcon.com/uk/about-us/. Accessed 31

January 2023.

3. Yao, S., Zhang, J., Hu, Z., Wang, Y., & Zhou, X. (2018).

Autonomous‐driving vehicle test technology based on virtual reality.

The Journal of Engineering, 2018(16), 1768-1771.

4. Shabalina, K., Sagitov, A., Su, K. L., Hsia, K. H., & Magid, E. (2019).

Avrora unior car-like robot in gazebo environment. In International

Conference on artificial life and robotics (pp. 116-119).

5. S. Fu, C. Zhang, W. Zhang and X. Niu, "Design and Simulation of

Tracked Mobile Robot Path Planning," 2021 IEEE 4th International

Conference on Big Data and Artificial Intelligence (BDAI), Qingdao,

China, 2021, pp. 86-90, doi: 10.1109/BDAI52447.2021.9515251.

6. Shimchik, I., Sagitov, A., Afanasyev, I., Matsuno, F., & Magid, E.

(2016). Golf cart prototype development and navigation simulation

using ROS and Gazebo. In MATEC Web of Conferences (Vol. 75, p.

09005). EDP Sciences.

7. A. AbdelHamed, G. Tewolde and J. Kwon, "Simulation Framework

for Development and Testing of Autonomous Vehicles," 2020 IEEE

International IOT, Electronics and Mechatronics Conference

(IEMTRONICS), Vancouver, BC, Canada, 2020, pp. 1-6, doi:

10.1109/IEMTRONICS51293.2020.9216334.

8. S. Macenski, T. Foote, B. Gerkey, C. Lalancette, W. Woodall, “Robot

Operating System 2: Design, architecture, and uses in the wild,”

Science Robotics vol. 7, May 2022.

9. S. Macenski, F. Martín, R. White, J. Clavero. The Marathon 2: A

Navigation System. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2020.

10. Blimo Kabinscooter Plus.

https://www.blimo.se/elfordon/promenadscooter/blimo-

kabinscooter-plus Accessed 6 March 2023

11. Xacro Albergo, N., Rathi, V., & Ore, J. P. (2022, May).

Understanding Xacro Misunderstandings. In 2022 International

Conference on Robotics and Automation (ICRA) (pp. 6247-6252).

IEEE.

12. Daneshmand, M., Helmi, A., Avots, E., Noroozi, F., Alisinanoglu, F.,

Arslan, H. S., ... & Anbarjafari, G. (2018). 3d scanning: A

comprehensive survey. arXiv preprint arXiv:1801.08863.

- 38 -

13. D. V. Nam and K. Gon-Woo, "Solid-State LiDAR based-SLAM: A

Concise Review and Application," 2021 IEEE International

Conference on Big Data and Smart Computing (BigComp), Jeju

Island, Korea (South), 2021, pp. 302-305, doi:

10.1109/BigComp51126.2021.00064.

14. Zhang, H., Zhang, Y., Liu, C., & Zhang, Z. (2023). Energy efficient

path planning for autonomous ground vehicles with ackermann

steering. Robotics and Autonomous Systems, 104366.

15. Eisele R. Ackerman Steering • Open Source is Everything [Internet].

Xarg.org. 2019. Available from:

https://www.xarg.org/book/kinematics/ackerman-steering/

16. Friedrich, B. (2016). The effect of autonomous vehicles on traffic.

Autonomous Driving: Technical, Legal and Social Aspects, 317-334.

17. Faisal, A., Kamruzzaman, M., Yigitcanlar, T., & Currie, G. (2019).

Understanding autonomous vehicles. Journal of transport and land

use, 12(1), 45-72.

18. Robot Operating System Documentation, “Understanding Nodes.”

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-

Tools/Understanding-ROS2-Nodes/Understanding-ROS2-

Nodes.html . Accessed 30 January 2023.

19. Robot Operating System Documentation, “Understanding Topics.”

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-

Tools/Understanding-ROS2-Topics/Understanding-ROS2-

Topics.html. Accessed 30 January 2023.

20. Robot Operating System Documentation, “Understanding Services.”

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-

Tools/Understanding-ROS2-Services/Understanding-ROS2-

Services.html. Accessed 30 January 2023.

21. Robot Operating System Documentation, “Understanding Actions.”

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-

Tools/Understanding-ROS2-Actions/Understanding-ROS2-

Actions.html. Accessed 30 January 2023.

22. Bakken, D. (2001). Middleware. Encyclopedia of Distributed

Computing, 11.

23. Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V.,

Tsouroukdissian, A. R., Bohren, J., ... & Perdomo, E. F. (2017).

ros_control: A generic and simple control framework for ROS. The

Journal of Open Source Software, 2(20), 456-456.

24. Nourani-Vatani, N., Roberts, J., & Srinivasan, M. V. (2008, January).

IMU aided 3D visual odometry for car-like vehicles. In Proceedings

of the 2008 Australasian Conference on Robotics and Automation,

ACRA 2008 (pp. 1-8). Australian Robotics and Automation

Association.

- 39 -

25. Rico, F. M. (2022). A Concise Introduction to Robot Programming

with ROS2. CRC Press.

26. ROS Index [Internet]. index.ros.org. [cited 2023 May 8]. Available

from: https://index.ros.org/p/robot_state_publisher/

27. ROS Index [Internet]. index.ros.org. [cited 2023 May 8]. Available

from: https://index.ros.org/p/joint_state_publisher/

28. M. G. Ocando, N. Certad, S. Alvarado and Á. Terrones, "Autonomous

2D SLAM and 3D mapping of an environment using a single 2D

LIDAR and ROS," 2017 Latin American Robotics Symposium (LARS)

and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil,

2017, pp. 1-6, doi: 10.1109/SBR-LARS-R.2017.8215333.

29. Macenski, S., & Jambrecic, I. (2021). SLAM Toolbox: SLAM for the

dynamic world. Journal of Open Source Software, 6(61), 2783.

30. Kohlbrecher, S., Von Stryk, O., Meyer, J., & Klingauf, U. (2011,

November). A flexible and scalable SLAM system with full 3D

motion estimation. In 2011 IEEE international symposium on safety,

security, and rescue robotics (pp. 155-160). IEEE.

31. Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved

techniques for grid mapping with rao-blackwellized particle filters.

IEEE transactions on Robotics, 23(1), 34-46.

32. A. Mohan and A. R. Krishnan, "Design and Simulation of an

Autonomous Floor Cleaning Robot with Optional UV

Sterilization," 2022 IEEE 2nd Mysore Sub Section International

Conference (MysuruCon), Mysuru, India, 2022, pp. 1-6, doi:

10.1109/MysuruCon55714.2022.9972558.

33. Robot Operating System Documentation, “Overview and usage or

RQt” http://docs.ros.org/en/humble/Concepts/About-RQt.html

Accessed 6 March 2023

34. Chen, H. (2022). Development of teaching material for Robot

Operating System (ROS): creation and control of robots.

35. Cyberbotics., ”Introduction to Webots,” Cyberbotics Ltd., [Online].

Available from: https://cyberbotics.com/doc/guide/introduction-to-

webots. Accessed 7 May 2023.

36. Coppelia Robotics. CoppeliaSim [Internet]. [cited 07-05-2023].

Available from: https://www.coppeliarobotics.com/

37. Echeverria, G., Lassabe, N., Degroote, A., & Lemaignan, S. (2011,

May). Modular open robots simulation engine: Morse. In 2011 ieee

international conference on robotics and automation (pp. 46-51).

IEEE.

38. Farley, A., Wang, J., & Marshall, J. A. (2022). How to pick a mobile

robot simulator: A quantitative comparison of CoppeliaSim, Gazebo,

MORSE and Webots with a focus on accuracy of motion. Simulation

Modelling Practice and Theory, 120, 102629.

- 40 -

39. S. Teixeira, R. Arrais and G. Veiga, "Cloud Simulation for

Continuous Integration and Deployment in Robotics," 2021 IEEE

19th International Conference on Industrial Informatics (INDIN),

Palma de Mallorca, Spain, 2021, pp. 1-8, doi:

10.1109/INDIN45523.2021.9557476.

40. Kortelainen, M. (2023). A short guide to ROS 2 Humble Hawksbill.

41. Microsoft. Visual Studio Code [Internet]. Visualstudio.com.

Microsoft; 2016. Available from: https://code.visualstudio.com/

42. GitHub. GitHub [Internet]. GitHub. Available from:

https://github.com/

43. 22.04 LTS [Internet]. Ubuntu. [cited 2023 May 8]. Available from:

https://ubuntu.com/blog/tag/22-04-lts

44. ROS Index [Internet]. index.ros.org. [cited 2023 May 8]. Available

from: https://index.ros.org/p/teleop_twist_keyboard/github-ros2-

teleop_twist_keyboard/

45. De Rose, M. (2021). LiDAR-based Dynamic Path Planning of a

mobile robot adopting a costmap layer approach in ROS2 (Doctoral

dissertation, Politecnico di Torino).

46. Zhang, X., Lai, J., Xu, D., Li, H., & Fu, M. (2020). 2d lidar-based

slam and path planning for indoor rescue using mobile robots. Journal

of Advanced Transportation, 2020, 1-14.

47. Jiang, S., Wang, S., Yi, Z., Zhang, M., & Lv, X. (2022). Autonomous

Navigation System of Greenhouse Mobile Robot Based on 3D Lidar

and 2D Lidar SLAM. Frontiers in Plant Science, 13.

48. twist_mux - ROS Wiki [Internet]. wiki.ros.org. [cited 2023 May 5].

Available from: http://wiki.ros.org/twist_mux

49. DWB Controller — Navigation 2 1.0.0 documentation [Internet].

navigation.ros.org. [cited 2023 Jun 3]. Available from:

https://navigation.ros.org/configuration/packages/configuring-dwb-

controller.html

50. Regulated Pure Pursuit — Navigation 2 1.0.0 documentation

[Internet]. navigation.ros.org. [cited 2023 Jun 3]. Available from:

https://navigation.ros.org/configuration/packages/configuring-

regulated-pp.html

51. Tuning Guide — Navigation 2 1.0.0 documentation [Internet].

navigation.ros.org. Available from:

https://navigation.ros.org/tuning/index.html

52. NavFn Planner — Navigation 2 1.0.0 documentation [Internet].

navigation.ros.org. [cited 2023 Jun 3]. Available from:

https://navigation.ros.org/configuration/packages/configuring-

navfn.html

53. Smac Hybrid-A* Planner — Navigation 2 1.0.0 documentation

[Internet]. navigation.ros.org. [cited 2023 Jun 3]. Available from:

- 41 -

https://navigation.ros.org/configuration/packages/smac/configuring-

smac-hybrid.html

54. Horelican, T. (2022). Utilizability of Navigation2/ROS2 in Highly

Automated and Distributed Multi-Robotic Systems for Industrial

Facilities. IFAC-PapersOnLine, 55(4), 109-114.

- 42 -

- 43 -

8 Appendices

- 44 -

Appendix A – URDF code describing the vehicle

- 45 -

- 46 -

- 47 -

- 48 -

- 49 -

- 50 -

Appendix B – Nav2 Params

- 51 -

- 52 -

- 53 -

- 54 -

- 55 -

- 56 -

- 57 -

- 58 -

Appendix C – SLAM Parameters

- 59 -

Appendix D – Launch file which launches all nodes except Nav2, SLAM

and steering script

- 60 -

- 61 -

Appendix E – Measurements from trajectory matching test

Vehicle position
turn (m)

Vehicle position
obstacle (m)

Vehicle position
destination (m)

Time
(s)

X1 16,05 15,7 17,2 31

Y1 1,81 8,19 12,86
Distance to
obstacle/goal 1,26 0,7 0,11

Vehicle position
turn (m)

Vehicle position
obstacle (m)

Vehicle position
destination (m)

Time
(s)

X2 16,15 15,54 17,21 30

Y2 1,75 8,26 11,27
Distance to
obstacle/goal 1,37 0,54 0,27

Vehicle position
turn (m)

Vehicle position
obstacle (m)

Vehicle position
destination (m)

Time
(s)

X3 15,77 15,66 17,19 31

Y3 1,52 8,48 13,45
Distance to
obstacle/goal 1,25 0,66 0,31

Vehicle position
turn (m)

Vehicle position
obstacle (m)

Vehicle position
destination (m)

Time
(s)

X4 15,5 15,59 17,35 34

Y4 1,78 8,28 13,74
Distance to
obstacle/goal 0,88 0,59 0,34

Vehicle position
turn (m)

Vehicle position
obstacle (m)

Vehicle position
destination (m)

Time
(s)

X5 15,47 15,68 17,14 34

Y5 1,93 8,05 13,9
Distance to
obstacle/goal 0,74 0,68 0,38

