

Master thesis
Embedded and Intelligent Systems 120 credits

A Conjugate Residual Solver with Kernel
Fusion for massive MIMO Detection

Embedded and Intelligent Systems 120 credits

Halmstad 17 April 2023

Ioannis Broumas

School of Information Science, Computer and Electrical Engineering

Halmstad University

PO Box 823, SE-301 18 HALMSTAD

Sweden

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

Master Thesis

2023

Author: Ioannis Broumas

Supervisor: Tiago Fernandes Cortinhal

Examiner: Slawomir Nowaczyk

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

Ioannis Broumas

© Ioannis Broumas, 2023. All rights reserved.

 i

Master thesis report IDE 12XX

School of Information Science, Computer and Electrical Engineering

Halmstad University

 iii

Abstract

Wireless communication technology has radically altered how we communicate.

Mobile devices now feature applications for web browsing, multimedia services, video

conferencing, etc. Massive Multiple-Input Multiple-Output (m-MIMO) is an emerging

technology promising to meet these market demands. However, the performance of a

massive MIMO system dependents heavily on the signal detection technology. A mass

amount of data received at the base station must be processed in parallel with ultra-

low latency. Moreover, massive MIMO is under constant development thus, the

supporting hardware platform needs to be flexible while the detection algorithms need

to be efficient, of low complexity, and highly parallel.

Graphics Processing Units (GPU) are hardware accelerators with hundreds of parallel

floating-point units, offering access to high-performance computing. Their popularity

boomed when a friendly programming environment and easy-to-use libraries were

made available. Nowadays GPUs have become a tool widely used by engineers,

scientists, and businessmen to speed up heavy computational tasks in deep learning,

scientific computation, or even create farms for cryptocurrency mining.

However, these readily available libraries often comprise of a highly optimized yet

limited set of linear algebra operations. Unnecessary data communications often

dominate the execution time of applications that are built with these libraries thus the

applications fail to exploit the accelerators full potential. Attention then turns to kernel

fusion, an optimization technique where the main idea is to merge two or more

operations into one large but equivalent operation to potentially improve the overall

performance.

In this thesis report a GPU implementation of an uplink detector for massive MIMO

Software-Defined Radio (SDR) systems is presented. Coded in CUDA C, the linear

detector employs the Conjugate Residual method to iteratively approximate the

inverse matrix required in the equalization process. The algorithm’s inherent

parallelism is explored under two approaches that allow to complete unroll and

gradually fuse all the separate kernels of the iterative solver until reaching a top-down

hardcoded implementation of a single kernel. Two ways of taking advantage of the

fast on chip memories for further optimization are tested. Results show the significant

performance gains of kernel fusion for iterative solvers in the case of massive MIMO

where many small matrices must be processed in parallel.

 v

Contents

1 Introduction ___ 6

1.1 Motivation ___ 6

1.2 Contribution ___ 7

1.3 Thesis Outline ___ 8

2 Background and Related Work __ 9

2.1 Software Defined Radio ___ 9

2.2 Massive MIMO ___ 9
2.2.1 Detection ___ 10

2.3 GPU Parallel Computing ___ 12
2.3.1 The CUDA Programming Model ___ 13
2.3.2 The CUDA Execution Model ___ 14
2.3.3 CUDA Memory Model __ 14

3 Implementation __ 16

3.1 Pre-processing __ 16

3.2 Conjugate Residual Method ___ 17

3.3 cuBLAS ___ 18

3.4 Kernel Fusion ___ 19

3.5 Unrolling ___ 20

4 Results __ 27

4.1 Calculations ___ 27

4.2 Simulation Results ___ 28

5 Conclusions __ 35

6 Bibliography __ 45

List of Figures

Figure 1. Simplified massive MIMO system model. ___ 10
Figure 2. CPU-GPU architecture and interconnection as a heterogenous compute node. ___________ 13
Figure 3. Hierarchical memory in modern computer architectures. __________________________________ 15
Figure 4. The Conjugate Residual algorithm for m-MIMO linear detection. __________________________ 17
Figure 5. Analysis of the data dependencies and flow of the fully unrolled CR algorithm. ___________ 21
Figure 6. Warp shuffle operations. ___ 26
Figure 7. Execution time in 10-3s for different fusion levels. ___ 29
Figure 8. Stall reasons for the implementation one warp per matrix/vector without the use of
shared memory. ___ 31
Figure 9. Stall reasons for the implementation one warp per matrix/vector with matrix A in shared
memory. __ 32
Figure 10. Stall reasons for the implementation one warp per matrix/vector with vector r in shared
memory. __ 33
Figure 11. Plot number of matrices versus time of execution in milliseconds for the implementations
where a single thread is assigned to a matrix/vector. ___ 33
Figure 12. Plot number of matrices versus time of execution in 10-3 seconds for the implementations
where a warp is assigned to a matrix/vector.__ 34

List of Tables

Table 1. Device properties of the GPU used. __ 13
Table 2. CUDA memory model __ 15
Table 3. Operation at each step of the algorithm and the equivalent cuBLAS function. _____________ 18
Table 4. Read-write operations for single and fused kernel implementations. _______________________ 27
Table 5. Total number of read-write operations for the CR algorithm after 3 iterations. ___________ 27
Table 6. Complex operations for the CR algorithm. __ 28
Table 7. Calculation of used shared memory and thread ratio. _______________________________________ 28
Table 8. Execution times in 10-3 seconds for different fusion levels. ___________________________________ 29
Table 9. Execution times in 10-3 seconds for one thread per matrix/vector, with and without using
shared memory. ___ 30
Table 10. Executions times in 10-3 seconds for one warp per matrix/vector, with and without using
shared memory. ___ 30
Table 11. GPU Utilization for the implementation without the use of shared memory. ______________ 31
Table 12. GPU Utilization for the implementation with matrix A loaded in shared memory. _______ 32
Table 13. GPU Utilization for the implementation with vector r loaded in shared memory. ________ 32

Acronyms and Abbreviations

3GPP third Generation Partnership Project

5G fifth Generation

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BS Base Station

CG Conjugate Gradient method

CISC Complex Instruction Set Computer

CPU Central Processing Unit

CR Conjugate Residual method

CSI Channel State Information

CUDA Compute Unified Device Architecture

DSP Digital Signal Processor

e.g. for example (from the latin exempli gratia)

FLOP Floating Point Operations

FPGA Field Programmable Gate Array

GMRES Generalized Minimal RESidual method

GPP General Purpose Processor

GSM Global System for Mobile communication

GPU Graphics Processing Unit

GP-GPU General-Purpose Graphics Processing Unit

i.i.d. Independent and Identically Distributed

IC Integrated Circuit

ICI Inter-Carrier Interference

ICT Information and Communication Technology

IEEE Institute of Electrical and Electronics Engineers

ILP Instruction Level Parallelism

IO Input Output

IoT Internet of Things

ISI Inter-Symbol Interference

LOS Line-of-Sight

MAC Multiply-Accumulate

MF Matched Filter

MGS Modified Gram-Schmidt

MIMD Multiple-Instruction Multiple-Data

MIMO Multiple-Input Multiple-Output

MINRES MINimal RESidual method

MISD Multiple-Instruction Single-Data

MMSE Minimum Mean Square Error

MPI Message Passing Interface

MRT Maximum-Ratio Transmission

MSE Mean Square Error

MMSE Minimum Mean Square Error

MU Multi User

MU-MIMO Multi User MIMO

m-MIMO Massive MIMO

NS Neumann Series

OFDM Orthogonal Frequency-Division Multiplexing

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PER Packet Error Rate

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

QRD QR Decomposition

RF Radio Frequency

RISC Reduced Instruction Set Computer

RZF Regularized Zero Forcing

SDR Software Defined Radio

SER Symbol Error Rate

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SINR Signal-to-Interference plus Noise Ratio

SISD Single Instruction Single Data

SM Stream Multiprocessor

SNR Signal to Noise Ratio

VLSI Very Large-Scale Integration

ZF Zero Forcing

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

6

Chapter 1

1 Introduction

Wireless communication technology has radically altered how we communicate [1].

Mobile devices now feature applications for web browsing, multimedia services,

video conferencing, etc. As technology progresses, user demands are increasing and

so is the bandwidth required to support them [2]. To cope with the exploding traffic

growth rate and provide extensive coverage, researchers from both academia and

industry must push to the limits to design novel wireless network technologies [1].

Massive Multiple-Input Multiple-Output (m-MIMO) is an emerging technology

promising to overcome these challenges. Large antenna arrays at the base station

(BS) beamform signals directly to the target user equipment (UE) resulting in near

zero interference [3]. The configuration can be employed to either improve resilience

to fading, increase data-rates, or support multiple users over the same time and

frequency slot [4].

Graphics Processing Units (GPUs) are hardware accelerators with hundreds of

computing cores available for parallel execution. Hardware and software

advancements in the GPUs architecture and programming environment gave the

opportunity to scientists and engineers to exploit the GPUs computing power for

high performance computing making them a tool widely used today in deep

learning, scientific computation and many more compute intense applications.

As many scientific and engineering applications do, signal processing in massive

MIMO requires a sequence of linear algebra operations. The easiest way to compute

these operations is to assign all matrix and vector computations to the GPU using

library functions. The performance bottleneck of such generic implementations is the

cost of memory access inside linear algebra kernels. Using library kernels leaves out

a key optimization strategy for memory-bound computations which is to make

efficient reuse of the processed data. Custom-built kernels present opportunities for

memory optimization by combining multiple operations and keeping data in fast

memory for efficient reuse when possible.

1.1 Motivation

The performance of a massive MIMO system is greatly dependent on the signal

detection technology. The large number of antennas deployed at the base station in a

massive MIMO system, generates mass amount of data, thus higher demands on

radiofrequency (RF) and baseband processing algorithms [5]. The processing

complexity scales with the number of base station (BS) antennas, the number of user

equipment (UE), or both [3]. The detection algorithms need to be efficient, of low

complexity, and highly parallel [5].

 Chapter 1. Introduction

7

The execution time of applications with heavy or complex computations is

drastically reduced using parallel architectures. However, utilizing parallel

architectures is not trivial and it takes strong effort to parallelize an application [6].

Moreover, massive MIMO is a technology under development; researchers are facing

numerous challenges delivering it to the market. Detection algorithms are evolving,

the communication standards and protocols are updated regularly. Consequently,

the hardware platform needs to be flexible enough to absorb such changes [5].

Combinations of algorithms and architectures has been proposed and implemented

in the literature. In [3] the authors present a programmable 16-lane SIMD ASIP for

Massive MIMO where three different algorithms are mapped onto the ASIP. In [7] a

low complexity optimized Coordinate Descent has been proposed with a

corresponding high-throughput FPGA design for large-MIMO systems. While such

hardware implementations achieve high throughput, the flexibility offered is limited

with respect to different system configurations.

GPUs are a tool widely used by engineers and scientists to speed up heavy

computational tasks in deep learning, scientific computation etc. Previous work in [8]

[9] [10] showed that GPUs could successfully be used for massive MIMO baseband

processing. The authors in [8] [10] use an iterative solver, the Conjugate Gradient

which also belongs to the Krylov subspace methods. In their implementations they

include both built-in libraries and custom kernels with fusion optimization

techniques while they provide some details of the implementation. However, they

avoid fusing down to a single kernel, and they do not discuss the difference in

performance their fused kernels have compared to the generic library kernels.

Residual based algorithms for massive MIMO detection have also been proposed in

[11]. The algorithms tested are the MINimal RESidual (MINRES), Generalized

Minimal RESidual (GMRES), and Conjugate Residual (CR) algorithm. The authors

show that CR is an algorithm feasible for massive MIMO detection with a low

computational complexity. They propose hardware implementations on FPGAs and

do not discuss how the algorithm could be implemented in a more flexible hardware

platform like a GPU.

In [12] [13] [14] the authors elaborate on the performance gains of kernel fusion for

iterative solvers and basic linear algebra routines. They mainly focus on scientific

computing where parallel computing is used to process input data of large sized

matrices-vectors but that does not imply that kernel fusion would yield similar

results in the case of massive MIMO where the input data comprise of many small

matrices-vectors that must be processed in parallel.

1.2 Contribution

This thesis presents a comparison of a GPU implementation of the Conjugate

Residual method as a sequence of generic library kernels against implementations of

the method with custom kernels to expose the performance gains of a key

optimization strategy, kernel fusion, for memory-bound operations which is to make

efficient reuse of the processed data.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

8

For massive MIMO the iterative solver is to be employed at the linear detection stage

to overcome the computational bottleneck of the matrix inversion required in the

equalization process, which is 𝒪(𝑛3) for direct solvers. A detailed analysis of how

one more of the Krylov subspace methods that is feasible for massive MIMO can be

implemented on a GPU as a unified kernel is given.

Further, to show that kernel fusion can improve the execution performance not only

when the input data is large matrices-vectors as in scientific computing but also in

the case of massive MIMO and possibly similar cases where the input data is a large

number of small matrices-vectors that must be processed in parallel.

In more details, focusing on the small number of iterations required for the solver to

achieve a close enough approximation of the exact solution in the case of massive

MIMO, and the case where the number of users matches the size of a warp, two

different approaches that allow to fully unroll the algorithm and gradually fuse all

the separate kernels into a single, until reaching a top-down hardcoded

implementation are proposed and tested.

Targeting to overcome the algorithms computational burden which is the matrix-

vector product, further optimization techniques such as two ways to utilize the fast

on-chip memories, preloading the matrix in shared memory and preloading the

vector in shared memory, are tested and proposed to achieve high efficiency and

high parallelism.

1.3 Thesis Outline

Chapter 2 The necessary background and relevant work is discussed, including

Software Defined Radio (SDR), massive MIMO detection algorithms, GPU hardware

architecture and programming model.

Chapter 3 The Conjugate Residual algorithm for massive MIMO detection is

presented. A systematic analysis of the algorithm, kernel fusion and optimization

strategies for GPU implementation are discussed.

Chapter 4 Calculations and performance results of different implementations.

Chapter 5 Results analysis, conclusion, and future work proposals.

 Chapter 2. Background and Related Work

9

9

Chapter 2

2 Background and Related Work

2.1 Software Defined Radio

Realizing universal communication requires smoothly integrating and utilizing

numerous current and upcoming wireless communication protocols. Many of the

available communication devices contain several nonprogrammable processors, each

dedicated to the physical layer of a protocol. This solution is not scalable and

eventually not feasible [2].

Software-defined radio (SDR) is a highly flexible, low-cost solution. Wireless

protocols are implemented in software and executed on the same hardware platform,

thus enabling rapid prototyping, easy troubleshooting, and multimode operation.

New protocols and functions can be incorporated through simple updates, avoiding

expensive and troublesome hardware modifications. SDR aims to substitute the

application-specific integrated circuit (ASIC) processors used in the baseband

processing with a fully programmable hardware platform [2].

GPUs' high parallel computational power has been proposed and successfully

employed for SDR. GPUs offer higher flexibility than ASICs and digital signal

processors (DSP), while they are much easier to program when compared to field

programmable gate arrays (FPGA) [5]. Moreover, software-controlled scratchpad

memories, like the ones available on GPUs, perform better than cache structures in

the case of protocols that use a stream computation system with low data temporal

locality [2]. For MIMO communication, GPU solutions have been presented for

scheduling [15], Low-Density Parity Check (LDPC) decoding [9], digital

predistortion (DPD) [16] [17] and in [18] for mobile GPUs, and more.

2.2 Massive MIMO

Modern communication systems use multiple antennas at the transceiver to enhance

link performance, a technique known as multiple-input multiple-output (MIMO).

MIMO can be expanded further to multi-user MIMO (MU-MIMO), where users are

separated by their location in space, enabling denser networks and increased

capacity. The latest concept of these large antenna array techniques is known as

massive MIMO (m-MIMO).

The configuration of a massive MIMO system is shown in figure 1. A mass number

of antennas is deployed at the base station to serve an analogously small number of

user equipment. An essential requirement for this advanced spatial multiplexing to

be successful is the channel estimate, upon which downlink (DL) precoders and

uplink (UL) detectors can be implemented.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

10

Figure 1. Simplified massive MIMO system model.

The transmitted signal vector and received vector are denoted by

𝐬 = [𝑠1, 𝑠2, . . , 𝑠𝑈]𝑇 and 𝐲 = [𝑦1, 𝑦2, . . , 𝑦𝐵]𝑇 , respectively, where 𝐬 ∈ ℂ𝑈 , 𝐲 ∈ ℂ𝐵 . Then

the system model is described as

 𝐲 = 𝐇𝐬 + 𝐧 (2.1)

where 𝐇 ∈ ℂ𝐵𝑥𝑈 is an B × U uplink channel matrix, 𝐧 ∈ ℂ𝐵 is the vector representing

Additive White Gaussian Noise (AWGN) with zero-mean and variance 𝜎2.

Massive MIMO technology achieves higher data rates than other small-scale systems

by simultaneously broadcasting several data streams over the same frequency band.

Downlink beamforming (precoding) yields improved spectral efficiency and reduced

interference, while the technology has also the potential to decrease the costs at the

BS [10]. Algorithms for traditional wireless communications are also found in m-

MIMO technology, with the exception that here a greater number of data must be

processed in parallel [19].

2.2.1 Detection

As the signal propagates through the medium, it is subject to distortions,

attenuation, and various frequencies are delayed. Distortions caused to a symbol by

neighbouring symbols is called inter-symbol interference (ISI), while distortions on a

carrier due to neighbouring carriers is called inter-carrier interference (ICI). These

distortions result in data errors at the decoded data at the receiver. To

counterbalance these distortions channel equalization is performed on the received

data. Theoretically, channel equalizers have the exact inverse frequency response of

the channel. However, a perfect equalizer cannot be designed; thus, ISI will be

present. Moreover, noise in the data is also amplified during the equalization

process. Hence, an equalizer must balance ISI, noise, and implementation complexity

[20].

Signal detection algorithms for massive MIMO can be categorized into linear and

nonlinear. Nonlinear algorithms yield high accuracy in recovering the transmitted

 Chapter 2. Background and Related Work

11

11

signal but at the cost of higher implementation complexity. On the opposite side,

linear algorithms are of lower complexity; their accuracy however is lower [5].

During the linear equalization process, the received signal is passed through a linear

filter [20]. Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) are two

popular detection algorithms. These algorithms determine the linear filter

coefficients by deforming the channel matrix H and solving the linear matrix

equation in (Eq. 2.1) [5].

Orthogonal Frequency-Division Multiplexing (OFDM) is a data transmission method

also used in massive MIMO. In OFDM, the overall bandwidth is divided into several

subcarriers that carry different signals at the same data rate and are transmitted over

their corresponding narrowband frequencies.

In an uplink OFDM massive MIMO system, user data bits are encoded and mapped

onto constellation points in a finite alphabet Ω which are then broadcasted over the

wireless channel. With 𝑦𝑏,𝑘 as the signal received at the bth antenna for the kth

subcarrier at the base station, and 𝑠𝑢,𝑘 as the broadcasted signal from the uth user and

kth subcarrier, then:

 𝐲𝐤 = 𝐇𝐤𝐬𝐤 + 𝐧𝐤 (2.2)

where 𝐲𝐤 ∈ ℂ𝐵 is a vector constructed as [𝑦1,𝑘, 𝑦2,𝑘 , . . , 𝑦𝐵,𝑘]
𝑇

, 𝐬𝐤 ∈ Ω𝑈 is a vector

constructed as [𝑠1,𝑘, 𝑠2,𝑘 , . . , 𝑠𝑈,𝑘]
𝑇

, 𝐇𝐤 ∈ ℂ𝐵𝑥𝑈 is the B × U complex channel matrix and

𝐧𝐤 ∈ ℂ𝐵 is the noise vector [𝑛1,𝑘, 𝑛2,𝑘, . . , 𝑛𝐵,𝑘]
𝑇
with each entry 𝑛𝑏,𝑘 assumed to be an

i.i.d zero-mean complex Gaussian random variable with variance N0.

Zero Forcing

In zero-forcing equalization both sides of Eq. (1.1) are left multiplied by the conjugate

transpose 𝐇𝐇 of the channel matrix, ignoring additive noise n [5].

 𝐇𝐇𝐲 = 𝐇𝐇𝐇𝐬 (2.3)

With matched-filter vector

 𝐲𝐌𝐅 = 𝐇𝐇𝐲 (2.4)

The Gram matrix

 𝐆 = 𝐇𝐇𝐇 (2.5)

The detection for the transmitted signal s is:

 𝐬 = (𝐇𝐇𝐇)
−𝟏

𝐇𝐇𝐲 = (𝐇𝐇𝐇)
−𝟏

𝐲𝐌𝐅 = (𝐆)−𝟏𝐲𝐌𝐅 (2.6)

In Eq. (1.5) the noise is ignored. Therefore, if 𝐖𝒁𝑭 is an equalization matrix with

 𝐖𝒁𝑭 = (𝐇𝐇𝐇)
−𝟏

𝐇𝐇 = (𝐆)−𝟏𝐇𝐇 (2.7)

And

 𝐖𝒁𝑭𝐇 = 𝐈 (2.8)

where I is the identity matrix.

The transmitted signal s can be estimated as:

 �̂� = 𝐖𝒁𝑭(𝐇𝐬 + 𝐧) = 𝐬 + 𝐖𝒁𝑭𝐧 (2.9)

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

12

In ZF equalization the estimated signal �̂� is equal to the transmitted signal s when the

additive noise n is zero. ZF equalization can eliminate ISI and yield good results

under high signal to noise ratio (SNR) [5]. However, noise ends up being amplified

[20].

Minimum Mean Square Equalizer

The MMSE detection algorithm tries to minimize the difference between the

estimated signal �̂� = 𝐖𝐲 and the transmitted signal s. The objective function is:

 �̂� = 𝐖MMSE = argmin
𝐖

E‖𝐬 − 𝐖𝐲‖𝟐 (2.10)

Solving Eq. (1.9) leads to

 𝐖MMSE = (𝐇𝐇𝐇 +
N0

Es
𝐈𝐍𝐭

)
−𝟏

𝐇𝐇 (2.11)

where 𝐍𝟎 is the spectral density of noise, 𝐄𝐬 is the spectral density of the signal, and

𝐈𝐍𝐭
 is the identity matrix [5]. In comparison, the MMSE performs better than the ZF

equalizer, especially at low SNR [20].

In both ZF and MMSE detection algorithms, the calculation of a matrix inverse is

required. With the channel matrix H being large in massive MIMO systems, this

matrix inverse operation is difficult to realize in hardware in the signal detection

circuit. Many algorithms have been proposed to bypass the intricacies of the matrix

inversion operation. Some of the most popular being the Neumann Series

Approximation (NSA) algorithm, the Chebyshev iteration algorithm, the Jacobi

iteration algorithm, and the Conjugate Gradient algorithm [5].

2.3 GPU Parallel Computing

A Graphics Processing Unit (GPU) is a commercially available off-the-shelf solution

with hundreds of parallel floating-point units that offers access to high-performance

computing. GPUs became very popular among programmers of scientific

applications when their computing power was combined with programming

languages that made GPU programming easier [21].

The GPU architecture is centred on a scalable array of Streaming Multiprocessors

(SMs), with each SM allowing hundreds of threads to execute concurrently.

Practically all types of parallelism are represented: multithreading, Multiple

Instruction Multiple Data (MIMD), Single Instruction Multiple Data (SIMD), and

instruction-level parallelism [22]. In this thesis the GPU used was the GeForce

920MX by NVIDIA. In table 1 the results are shown of a device configuration query

of the graphics card that was used.

 Chapter 2. Background and Related Work

13

13

GeForce 920MX

GPU Architecture Maxwell

CUDA Capability Major/Minor version number 5.0

Streaming Multiprocessors 2

CUDA Cores 256

GPU Clock rate 993 MHz (0.99 GHz)

Memory Speed 1800 MHz

Memory Clock rate 900 MHz

Memory Interface Width 64-bit

Memory Bandwidth (GB/sec) 14.40

L2 Cache Size 1048576 bytes

Total amount of shared memory per block 65536 bytes

Maximum number of threads per multiprocessor 2048

Maximum number of threads per block 1024

No of kernels that can execute concurrently 1

Table 1. Device properties of the GPU used.

2.3.1 The CUDA Programming Model

A GPU serves as a co-processor to a CPU. As shown in figure 2, GPUs operate in

combination with a CPU-based host connected through a PCI-Express bus. In GPU

computing terms, the CPU is referenced as the host while the GPU as the device [22].

Figure 2. CPU-GPU architecture and interconnection as a heterogenous compute node.

A heterogeneous application comprises two parts: the host code and the device code.

Host code is executed on the CPU while device code is executed on the GPU. The

application is initialized by the CPU. The environment, code, and data are managed

by the CPU code before transferring the heavy computation tasks on the device [22].

Compute Unified Device Architecture (CUDA) is a general-purpose parallel

computing platform developed by NVIDIA Corporation that enables parallel

computing on NVIDIA GPUs [23]. Developers can access the platform through

extensions to industry-standard programming languages, like C/C++, Fortran, and

Python [22]. This thesis is focused on CUDA C programming.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

14

Host code and device code are separated during compile by NVIDIA’s CUDA nvcc

compiler. The host code, written in standard C, is compiled with C compilers. The

device code is in CUDA C, an extension of ANSI C with keywords for marking data-

parallel functions named kernels, is compiled by nvcc [22].

Accelerated libraries are also available for CUDA. For example: cuBLAS Basic Linear

Algebra Subprograms (BLAS) library [24], cuFFT Fast Fourier Transforms [25],

cuSOLVER Direct Linear Solvers [26]. While in [27] the authors present their

implementation of a library specifically built for MIMO communication systems.

2.3.2 The CUDA Execution Model

In CUDA threads are packed into blocks and a collection of blocks form a grid.

Launching a kernel grid, allocates the blocks of the grid onto available SMs for

execution. Multiple thread blocks may be resident on one SM and remain there until

their execution completes. Threads of a thread block can execute concurrently only

on the SM that they are allocated to [22].

CUDA coined the term Single Instruction Multiple Thread (SIMT) architecture to

organize and run threads in groups of 32 called warps. Thread blocks allocated to a

SM are partitioned into warps. Threads in a warp execute the same instruction

simultaneously. Threads have distinct instruction address counters, register states,

and execute the instruction on thread dedicated data [22].

Once each SM has partitioned the thread blocks assigned to it into warps, they are

scheduled for execution by the warp scheduler. Warps can be scheduled in any

order, but the number of active warps is limited by SM resources [22]. Threads of a

warp execute in a lock-step mode and warps are minimum scheduling units in SMs

[28]. The warp scheduler of an SM can switch between eligible warps with no added

overhead. If a warp for some reason is idle (for example stalled in a synchronization

barrier), then the warp scheduler can select another warp that is available to execute

thus effectively hiding instruction latencies [22].

2.3.3 CUDA Memory Model

Memory in modern computer architectures is hierarchically organized, thus the

name ‘’Hierarchical Memory’’. From the engineering side, it is not yet possible to

create a high-capacity memory with high access speed [29]. A typical memory

hierarchy is illustrated in figure 3.

 Chapter 2. Background and Related Work

15

15

Figure 3. Hierarchical memory in modern computer architectures.

The CUDA memory model offers programmers explicit control over many types of

memory, the characteristics and behaviours of these memories vary as illustrated in

table 2.

Memory On/Off chip Cached Access Scope Lifetime

Register Off n/a R/W Thread Thread

Local Off * R/W Thread Thread

Shared On n/a R/W Block Block

Global Off * R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

* Cached only on devices with compute capability 2.x

Table 2. CUDA memory model

Shared memory, also referred to as software cache or scratchpad memory, is the

most important in a GPU. The programmer has full control of the data elements to be

cached thus reaching data caching efficiencies up to 100% [30].

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

16

Chapter 3

3 Implementation

The equalization process requires the computation of a pseudo-inverse of the

channel matrix H. It consists of two matrix multiplications, one matrix inversion, and

one matrix-vector multiplication. The most compute intense of these operations is

the matrix inverse [19].

Solving equations of the form Ax = b is an elementary assignment in linear algebra

and scientific computing [31]. For m-MIMO the equivalent of matrix A would be the

Gram matrix A = G for ZF equalization, while for MMSE equalization the equivalent

of matrix A would be the regularized Gram matrix 𝐀 = 𝐇𝐇𝐇 + (𝐍𝟎 𝐄𝐬⁄)𝐈𝐍𝐭
. The

straightforward solution to calculating A-1 is to decompose the matrix. Hardware

implementations of the matrix inversion have higher complexity and cost. The three

main methods to compute the matrix inverse are explicit inversion (direct methods),

implicit inversion (indirect methods), and polynomial expansion [19].

In the cases where A is symmetric and positive definite the Cholesky decomposition

is the most efficient among direct methods like LU or QR [31]. In [3] the authors map

three different direct methods onto the ASIP: basic QRD, extended QRD, and

Cholesky decomposition. Direct methods can produce an exact solution, however,

because of their high computing time they are not ideal for large systems.

Iterative numerical methods are techniques of lower complexity and memory

footprint than direct methods [8]. Starting from an initial guess, iterative methods

seek for an approximate solution of the linear system [32]. In [33] the authors present

a matrix inversion based on Chebyshev and Newton iterations, in [34] a detection

algorithm is proposed based on the Jacobi (JA) and Gauss–Seidel (GS) methods, in

[35] a Neumann series based low-computational complexity method is presented.

3.1 Pre-processing

At the pre-processing stage the matrix is prepared to be inverted. This involves the

calculation of the Gram matrix (Hermitian symmetric matrix) G

𝐆 = 𝐇𝐇𝐇

the computation of the matched filtering vector 𝐲𝐌𝐅

𝐲𝐌𝐅 = 𝐇𝐇𝐲

and in the case of MMSE detection one more step that is the calculation of the

regularized Gram matrix

𝐇𝐇𝐇 +
N0

Es
𝐈𝐍𝐭

= 𝐆 +
N0

Es
𝐈𝐍𝐭

 Chapter 2. Background and Related Work

17

17

3.2 Conjugate Residual Method

Krylov subspace methods are regarded to be the most important amongst iterative

methods [36]. In a system of n linear equations Ax = b, if xo is an approximate

starting value of the solution of the equation (here the matched filter vector is used),

these techniques based on projection processes, focus on minimizing the residual

norm ro = b – Axo by generating a series of approximate solutions.

The Conjugate Gradient (CG) and the Generalized Minimal RESidual (GMRES)

methods are extensively used Krylov subspace methods for solving symmetric/non-

symmetric positive definite (SPD) linear systems iteratively. Previous work in [10] [8]

shows that CG based precoder/detector for m-MIMO can reduce the computational

complexity while achieving good bit-error-rate (BER) performance.

The Conjugate Residual (CR) algorithm, shown in figure 4, has a similar structure as

CG and can be applied in the case where A is Hermitian. Shown in [8] [10] [11] three

iterations of the solver are sufficient to reach a close enough approximation of the

exact solution for m-MIMO, while according to [11] matrix A can be Hermitian and

CR is feasible for massive MIMO detection.

Figure 4. The Conjugate Residual algorithm for m-MIMO linear detection.

Compared to the Conjugated Gradient algorithm, the Conjugate Residual has one

less matrix-vector product, but one more vector update [36].

Like the other Krylov subspace methods, the CR method deals with arithmetic

operations on matrices/vectors. Typically, the parallel implementation of these

operations is easy and more effective when dealing with large vectors. The algorithm

requires to store matrix A, and five vectors: x, p, Ap, r, Ar. The computational

requirements are the matrix-vector multiplication 𝑨𝒓𝒋, the inner products (𝒓𝒋, 𝑨𝒓𝒋),

(𝑨𝒑𝒋, 𝑨𝒑𝒋) and (𝒓𝒋+𝟏, 𝑨𝒓𝒋+𝟏), and four axpys operations (y ← ax + y where x and y

ALGORITHM: Conjugate Residual solver for m-MIMO linear detection

Input: A and 𝑦𝑀𝐹

1. Compute 𝑥0 ≔ 0, 𝑟0 ∶= 𝑦𝑀𝐹 , 𝑝𝑜 ∶= 𝑟0

 𝑚𝑜 ≔ 𝐴𝑟𝑜 , 𝑒𝑜 ≔ 𝐴𝑝𝑜

2. For j = 0, 1, …, until k do:

3. 𝑎𝑗 ∶= (𝑟𝑗 , 𝑚𝑗) ‖𝑒𝑗‖
2

⁄

4. 𝑥𝑗+1 ∶= 𝑥𝑗 + 𝑎𝑗𝑝𝑗

5. 𝑟𝑗+1 ∶= 𝑟𝑗 − 𝑎𝑗𝑒𝑗

6. 𝑚𝑗+1 ≔ 𝐴𝑟𝑗+1

7. 𝛽𝑗 ∶= (𝑟𝑗+1, 𝑚𝑗+1) (𝑟𝑗 , 𝑚𝑗)⁄

8. 𝑝𝑗+1 ∶= 𝑟𝑗+1 + 𝛽𝑗𝑝𝑗

9. 𝑒𝑗+1 = 𝑚𝑗+1 + 𝛽𝑗𝑒𝑗

10. EndDo

Output: �̂� = 𝑥𝑗

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

18

are vectors and a is a scalar) to obtain 𝒙𝒋+𝟏, 𝒓𝒋+𝟏, 𝒑𝒋+𝟏, 𝑨𝒑𝒋+𝟏. The computation of

𝑨𝒓 is dominant thus, the key in implementing the algorithm efficiently.

These matrix/vector operations can be implemented using the cuBLAS [24] library;

however, to reduce the overhead of sharing intermediate results between kernels

these operations are implemented and fused into kernels.

3.3 cuBLAS

An iterative solver, like the Conjugate Residual method, can be implemented on a

GPU by expressing the main iteration as a sequence of elemental kernels executed in

the order dictated by the data dependencies. The cuBLAS library provides support

for dense linear algebraic computations on the GPU. Developed and maintained by

lead experts; cuBLAS routines are highly optimized and serve as building blocks for

linear algebra algorithms. Shown in table 3, the operation at each step of the

algorithm in figure 4 and the equivalent cuBLAS function.

Step Operation cuBLAS Function

1. 𝒆𝒐 = 𝑨𝒑𝒐 , 𝒎𝒐 = 𝑨𝒓𝒐 Matvec cublasCgemv

3. 𝒂𝒋_𝒅𝒊𝒗𝒊𝒅𝒆𝒏𝒕 = 𝒓𝒋
𝑯𝑨𝒓𝒋 Dot cublasCdotu

3. 𝒂𝒋_𝒅𝒊𝒗𝒊𝒔𝒐𝒓 = ‖𝒆𝒋‖
𝟐
 Norm cublasScnrm2

3. 𝒂𝒋 scalar operation -

4. 𝒙𝒋+𝟏 = 𝒙𝒋 + 𝒂𝒋𝒑𝒋 axpy cublasCaxpy

5. 𝒓𝒋+𝟏 = 𝒓𝒋 − 𝒂𝒋𝑨𝒑𝒋 axpy cublasCaxpy

6. 𝒎𝒋 = 𝑨𝒓𝒋 Matvec cublasCgemv

7. 𝜷𝒋_𝒅𝒊𝒗𝒊𝒅𝒆𝒏𝒕 = 𝒓𝒋
𝑯𝒎𝒋 Dot cublasCdotu

7. 𝜷𝒋_𝒅𝒊𝒗𝒊𝒔𝒐𝒓 = 𝒓𝒋−𝟏
𝑯 𝒎𝒋−𝟏 Dot cublasCdotu

7. 𝜷𝒋 scalar operation -

8. 𝒑𝒋+𝟏 ∶= 𝒓𝒋+𝟏 + 𝜷𝒋𝒑𝒋 axpy cublasCaxpy

9. 𝒆𝒋 = 𝒎𝒋 + 𝜷𝒋𝒆𝒋−𝟏 axpy cublasCaxpy

Table 3. Operation at each step of the algorithm and the equivalent cuBLAS function.

Taking advantage of these highly optimized and readily available cuBLAS routines

allows for rapid prototyping and deployment at a low programming effort.

However, launching a sequence of ordered kernels does not yield optimal

performance. For every kernel launch the contents of the registers, caches, and

shared memory created by the previous kernel are flushed and data that could be

reused are not persistent throughout the program execution. Unnecessary data

round trips dominate the execution time of the application thus the design fails to

exploit the accelerators full potential. Moreover, cuBLAS is not an open-source

library; end users do not have the ability to tweak and adjust these routines.

 Chapter 2. Background and Related Work

19

19

3.4 Kernel Fusion

Host code and device code are separated at compile time. Host code, written in

standard C, is compiled with C compilers, and executed on the CPU. Device code,

written in CUDA C, comprises of data-parallel functions named kernels. Kernels are

standalone computational routines that are dispatched to NVIDIA GPUs for parallel

execution.

Kernel fusion is an optimization technique that targets to exploit the spatial and

temporal locality of the data, hide memory access latencies, and minimize the

overhead added from separate kernel calls. The major potential performance gain

comes from eliminating global memory accesses for sharing intermediate results.

The main idea of kernel fusion is to merge two or more kernels into one large but

equivalent kernel to potentially improve the overall performance. For example,

suppose there are two kernels that operate on a vector. The AddKernel, which adds a

constant to each element of the vector and the MulKernel, which comes after and

multiplies the vector elements by a value. The sequence of operations would then be:

• AddKernel

1. Read an element of the vector from memory.

2. Add a constant.

3. Write result back to memory.

• MulKernel

1. Read an element of the vector from memory.

2. Multiply by some value.

3. Write result back to memory.

If these two independent kernels would be fused, then the FusedKernel would

combine the source code of the AddKernel and the MulKernel in order. The

sequence of operations would then be:

• FusedKernel

1. Read an element of the vector from memory.

2. Add a constant.

3. Multiply by a value.

4. Write result back to memory.

Now the instructions from the MulKernel have direct access to the output of the

AddKernel without the cost of memory read instructions. That is step 1 of the

MulKernel is eliminated. Further, since the output of the AddKernel is only used by

the MulKernel, the associated cost of the memory write instruction is avoided. That

is step 3 of the AddKernel is eliminated.

The FusedKernel produces the exact same result as the AddKernel followed by the

MulKernel does, but instead with the overhead of only one kernel launch instead of

two, the cost of one read instruction instead of two, and the cost of one write

instruction instead of two. This overall cost reduction translates to improved

performance, faster execution time. Reducing the number of read-write to memory

instructions is very important specifically for memory-bound operations, with a

performance gain that is usually proportional to the number of reductions.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

20

Different fusion methods are the inner thread, inner block, inter thread block and are

explained in [37]. Also, in [38] the authors present a horizontal fusion method.

Two or more kernels can be fused/merged if their properties match. They should

have the same dimensionality, that is the same number of threads per block and the

same number of blocks. If there are no data dependencies between the kernels then

they can always be fused, whereas in the case there is a read-after-write data

dependency between them then the kernels need to perform a mapped access on

their data.

3.5 Unrolling

A thread strategy which fulfils the requirements of kernel fusion and would allow all

the kernels to be fused is required. One thread strategy that allows all kernels to be

fused would be to assign one thread per matrix. Since a single thread is processing

the data, this strategy ensures that program execution follows data dependencies.

The second, to map one thread to one row or column of matrix A and one element of

each vector. Since the size of the matrix to be inverted is 32x32, it follows that one

warp is assigned per matrix.

According to [8] [10] three iterations are sufficient to reach a good approximation of

the exact solution in the case of m-MIMO. Unrolling the three iterations for loop is an

affordable programming effort when the goal is to fully merge the algorithm into a

single kernel. A pre-processing analysis of the data dependencies and order of

execution paves the way to systematic fusion and to fully unroll the algorithm into a

single kernel, shown in figure 5.

 Chapter 2. Background and Related Work

21

21

 1. 𝑦𝑀𝐹 = 𝐻𝐻𝑦 (preprocess)

 2. 𝑟𝑜 = 𝑦𝑀𝐹 𝑝𝑜 = 𝑦𝑀𝐹 𝑥𝑜 = 0

 3. 𝑚𝑜 = 𝐴𝑟𝑜 𝑒𝑜 = 𝐴𝑝𝑜
Fusion L4

 4. 𝑎𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = (𝑟𝑜, 𝑚𝑜) 𝑎𝑜_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = ‖𝑒𝑜‖2

 5. 𝑎𝑜 = 𝑎𝑜 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡/𝑎𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟

 6. 𝑥1 = 𝑥𝑜 + 𝑎𝑜𝑝𝑜 𝑟1 = 𝑟𝑜 − 𝑎𝑜𝑒𝑜 Fusion L1

 7. 𝑚1 = 𝐴𝑟1
Fusion L3

 8. 𝛽𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = (𝑟1, 𝑚1) 𝛽𝑜_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = 𝑎𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡

 9. 𝛽𝑜 = 𝛽𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝛽𝑜_𝑑𝑖𝑣𝑖𝑠𝑜𝑟⁄

 10. 𝑝1 = 𝑟1 + 𝛽𝑜𝑝𝑜 𝑒1 = 𝑚1 + 𝛽𝑜𝑒𝑜
Fusion L2

 11. 𝑎1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = 𝛽𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝑎1_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = ‖𝑒1‖2

 12. 𝑎1 = 𝑎1 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡/𝑎1 𝑑𝑖𝑣𝑖𝑠𝑜𝑟

 13. 𝑥2 = 𝑥1 + 𝑎1𝑝1 𝑟2 = 𝑟1 − 𝑎1𝑒1 Fusion L1

 14. 𝑚2 = 𝐴𝑟2
Fusion L3

 15. 𝛽1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = (𝑟2, 𝑚2) 𝛽1_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = 𝑎1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡

 16. 𝛽1 = 𝛽1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝛽1_𝑑𝑖𝑣𝑖𝑠𝑜𝑟⁄

 17. 𝑝2 = 𝑟2 + 𝛽1𝑝1 𝑒2 = 𝑚2 + 𝛽1𝑒1
Fusion L2

 18. 𝑎2_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = 𝛽1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝑎2_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = ‖𝑒2‖2

 19. 𝑎2 = 𝑎2_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡/𝑎2_𝑑𝑖𝑣𝑖𝑠𝑜𝑟

 20. 𝑥3 = 𝑥2 + 𝑎2𝑝2

Figure 5. Analysis of the data dependencies and flow of the fully unrolled CR algorithm.

For the first step the axpy operations would be fused. There are four axpy operations

in the CR algorithm in figure 4, steps 4, 5, 8, 9. Since there are no data dependencies

between step 4 and step 5, they can be merged into one single routine. Similar for

step 8 and step 9. Highlighted in a blue box in figure 5, instead of having a separate

kernel to update each vector while switching control between CPU/GPU with the

exit of each kernel, consequently adding unnecessary overhead of kernel launches,

the kernels are merged into a single kernel which updates both vectors. Below is

shown how the kernel could be implemented.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

22

__global__ void FusedCaxpy(cuComplex alpha, cuComplex *x, cuComplex *p,

 cuComplex *r, cuComplex *e)

{

 unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < SZ)

 {

 x[idx] = cuCaddf(x[idx], cuCmulf(alpha, p[idx]));

 r[idx] = cuCsubf(r[idx], cuCmulf(alpha, e[idx]));

 }

}

The second step would be to fuse the axpy operations with the norm of the vector,

lines 10, 11 in figure 5 marked in a green box. After updating an element of the

vector e, the result is written to memory and then retrieved again from memory with

the launch of the kernel that computes the norm of vector e. By fusing the kernels,

the updated element is used directly to calculate a partial result of the vector norm e,

without having to load it again from memory. Fusing these kernels results in

increasing the number of arithmetic operations carried out by each thread and

furthermore since the axpy operation and the norm are computed for the same

vector, e, the number of loads is reduced by n (n the length of the vector). Below is

shown how the kernel could be implemented.

__global__ void AxpyNorm(float *alpha, cuComplex beta, cuComplex *p,

 cuComplex *r, cuComplex *e, cuComplex *m)

{

 unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < SZ)

 {

 p[idx] = cuCaddf(r[idx], cuCmulf(beta, p[idx])); // AXPY

 cuComplex ee = e[idx]; // Load to a register

 ee = cuCaddf(m[idx], cuCmulf(beta, ee)); // AXPY

 e[idx] = ee; // Store to memory

 float a = (ee.x * ee.x) + (ee.y * ee.y);

 // reduce & broadcast

 a += __shfl_xor_sync(0xffffffff, a, 16, 32);

 a += __shfl_xor_sync(0xffffffff, a, 8, 32);

 a += __shfl_xor_sync(0xffffffff, a, 4, 32);

 a += __shfl_xor_sync(0xffffffff, a, 2, 32);

 a += __shfl_xor_sync(0xffffffff, a, 1, 32);

 // Thread zero of the warp stores to memory

 if (threadIdx.x & 31)

 Chapter 2. Background and Related Work

23

23

 alpha[threadIdx.x>>5] = sqrtf(a);

 }

}

The third step would be to merge the matrix-vector product operations with the dot

product, lines 7,8 in figure 5 marked in red box. After calculating an element of the

vector m, the result is written in memory and then retrieved again from memory

with the launch of the kernel that computes the dot product (r, m). By fusing the

kernels, the calculated element of vector m and the element of vector r are used

directly, without loading them again from memory, to calculate a partial result of the

inner product (r, m). Below is shown how the kernel could be implemented.

__global__ void MatVecDot (cuComplex *A, cuComplex *r, cuComplex *m,

cuComplex *beta_divident)

{

 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;

 cuComplex mm = {0.0f, 0.0f}; // Register

 if (idx < SZ)

 {

 // Matrix-vector product

 for (int i = 0; i < N; i++) {

 mm = cuCaddf(mm, cuCmulf(r[i] , A[idx*N + i]));

 }

 m[idx] = mm; // Store to memory

 __syncthreads();

 // Dot

 cuComplex beta = cuCmulf(cuConjf(r[idx]), mm);

 // reduce & broadcast

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 16, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 8, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 4, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 2, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 1, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 16, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 8, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 4, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 2, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 1, 32);

 // Thread zero of the warp stores to memory

 if (threadIdx.x & 31)

 beta_divident[threadIdx.x >> 5] = beta;

 }

}

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

24

The fourth step would be to merge the matrix-vector operation 𝐀𝐫𝐨 with the dot

product and the vector norm ‖𝒆𝒐‖𝟐 at the beginning of the first iteration, lines 1, 2 in

figure 5 marked in yellow box. Since 𝒓𝒐 = 𝒑𝒐 and 𝒆𝒐 = 𝑨𝒑𝒐 = 𝒎𝒐 = 𝑨𝒓𝒐 , after

calculating an element of the vectors 𝒆𝒐 = 𝒎𝒐, the result is not written in memory

and then loaded again for the computation of the vector norm e and again for the dot

product (r, m), instead the result is used directly, avoiding unnecessary load

operations, to compute the partial results of the inner product and the norm. Below

is shown how the kernel could be implemented.

__global__ void MatVecDotNrm (cuComplex *A, cuComplex *r, cuComplex *m,

cuComplex *e, cuComplex *alpha_divident, float *alpha_divisor)

{

 unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;

 cuComplex mm = {0.0f, 0.0f}; // Register

 if (idx < SZ)

 {

 // Matrix-vector product

 for (int i = 0; i < N; i++) {

 mm = cuCaddf(mm, cuCmulf(r[i] , A[idx*N + i]));

 }

 m[idx] = mm; // Store to memory

 e[idx] = mm; // Store to memory

 __syncthreads();

 // Dot

 cuComplex beta = cuCmulf(cuConjf(r[idx]), mm);

 // Reduce & broadcast

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 16, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 8, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 4, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 2, 32);

 beta.x += __shfl_xor_sync(0xffffffff, beta.x, 1, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 16, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 8, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 4, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 2, 32);

 beta.y += __shfl_xor_sync(0xffffffff, beta.y, 1, 32);

 // Norm

 float a = (mm.x * mm.x) + (mm.y * mm.y);

 // Reduce & broadcast

 a += __shfl_xor_sync(0xffffffff, a, 16, 32);

 Chapter 2. Background and Related Work

25

25

 a += __shfl_xor_sync(0xffffffff, a, 8, 32);

 a += __shfl_xor_sync(0xffffffff, a, 4, 32);

 a += __shfl_xor_sync(0xffffffff, a, 2, 32);

 a += __shfl_xor_sync(0xffffffff, a, 1, 32);

 // Thread zero of the warp stores to memory

 if (threadIdx.x & 31){

 alpha_divident[threadIdx.x >> 5] = beta;

 alpha_divisor[threadIdx.x >> 5] = a;

 }

 }

}

Finally, by completely unrolling the loop iteration and hardcoding the algorithm

allows for an early exit, that means steps 5-9 in figure 4 do not need to be calculated

for the last iteration.

Matrix-Vector multiplication

The matrix-vector Ar product is the main computational burden of the CR algorithm

[36]. It is a memory-bound operation with low arithmetic intensity. The authors in [8]

use the cublasCgemmBatched function from the cuBLAS library for the matrix-matrix

and matrix-vector multiplications which computes a batch of small complex matrix

products.

To reduce the complexity the symmetric property of the Hermitian matrix A could

be exploited. However, as the authors in [39] explain that the obstacle in designing

an efficient SYmmetric Matrix Vector (SYMV) multiplication kernel is the data

storage format. The symmetric matrix would be stored as the upper or lower

triangular part for which it is difficult to achieve coalesced load and store memory

access.

At every iteration of the algorithm matrix A and vector r must be loaded. To use

memory bandwidth efficiently matrix A or the vector r can be cached in shared

memory from there they can be reached at a much higher speed than the global

memory. During the multiplication process each row of matrix A is used only once

while vector r is loaded for each row of the matrix A, this observation is not enough

to draw safe conclusions on which approach would yield best results in the case of

massive MIMO therefore both must be tested. A limiting factor of the kernel size

would then be the number of matrices or vectors that can fit in the available shared

memory.

Reductions as part of scalar products

The CR algorithms requires the computation of scalar products, which include global

reductions operations (dot product, vector norm). Reductions pose a bottleneck

when executing on parallel platforms, because of the synchronization barriers and

communication between the processors.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

26

CUDA’s built-in function that allows threads in a block to coordinate and

synchronize with each other is __syncthreads. It acts as a barrier at which a thread

must stall execution and is allowed to proceed only when all threads in the block

have reached the barrier. Synchronization barriers reduce the capability of hiding

instruction latencies.

Typical implementations of reductions on GPUs make use of the shared memory

and/or the atomicadd function to accomplish such computations, like the authors did

in [8]. However, the small cache size in GPUs poses the limit for the simultaneous

reduction of multiple vectors and furthermore atomics does not run at full memory

bandwidth [40]. A more efficient way is to use warp shuffle commands. Threads

active in a warp can exchange values between registers directly without the use of

shared memory. For the special case where the number of users is 32, then the

number of elements in each of the vectors is 32 and perfectly matches the size of a

warp. That is reduction on a vector of size of 32 elements can be done with only a

warp shuffle command. Shared memory usage is then eliminated, only a single

instruction is required, and the level of explicit synchronization is reduced. In figure

5 a representation of the warp shuffle operation.

Figure 6. Warp shuffle operations.

 27

Chapter 4

4 Results

4.1 Calculations

Shown in [8] [10] [11], Krylov Subspace Methods and the CR algorithm are of lower

computational complexity than direct methods like Cholesky decomposition 𝒪(𝑛3).

Compared to the Conjugate Gradient it requires one less matrix-vector multiplication

but one more vector update [36]. Shown in table 4, the number of read-write to

memory instructions for each operation that is required during the execution of the

CR algorithm are calculated when a kernel is executing only a single operation and

when a fused kernel is executing multiple operations for matrices of size n×n and

vectors of size n.

 Operation Read Write

Single

Matvec 2n2 N

Dot n 1

Norm n 1

Axpy 2n N

Fused

axpy + norm 2n n + 1

matvec + dot 2n2 n + 1

matvec + dot + norm 2n2 n + 2

Table 4. Read-write operations for single and fused kernel implementations.

For the CR algorithm three iterations are sufficient to reach a good approximation of

the exact solution in the case of m-MIMO according to [8] [10] [11]. Shown in table 5

the number of read-write instructions that would be required for the CR algorithm

after three iterations if it is implemented as a sequence of separate kernels each

executing a single operation and if it is implemented as a single fully fused with

early exit kernel when the input matrix is of size n×n and the vectors of size n.

Separate 8n2 + 54n + 12

fully fused + early exit 6n2 + 21n

Table 5. Total number of read-write operations for the CR algorithm after 3 iterations.

The total number of complex multiplications and additions for the CR algorithm

after k iterations when the input matrix is of size n×n and the vectors of size n is

given in table 6.

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

28

Operation

Addition n2 + k (n2 + 7n)

Multiplication n2 + k (n2 + 7n)

Table 6. Complex operations for the CR algorithm.

*k = number of iterations, n = number of elements

In an uplink m-MIMO system with 128 BS antennas and 32 users, A would be 32x32:

𝑯32×128
𝐻 ∙ 𝑯128×32 = 𝑮32×32 = 𝑨32×32

vector r would be 32x1:

𝐻32×128
𝐻 ∙ 𝒚128×1 = 𝒚𝑀𝐹

32×1 = 𝒓32×1

To calculate matrix A in a per-subcarrier basis and since there are no data

dependencies between subcarriers then in a massive MIMO OFDM system where the

number of subcarriers, 𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑟𝑖𝑒𝑟𝑠 , can reach 128 and the number of symbols,

𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠, can reach 64 then the number of matrices A to be inverted in parallel can

reach up to:

𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑟𝑖𝑒𝑟𝑠 × 𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠 = 128 × 64 = 8192

For a GPU with 65536 bytes of available shared memory and 2048 active threads per

SM, then the number of instances of matrix A or vector r that can be fitted into

shared memory and the ratio of used threads over the available is given in table 7.

Size

(bytes)
Instances Threads

Thread

Ratio

A 8192 8 256 12.5%

r 256 64 2048 100%

Table 7. Calculation of used shared memory and thread ratio.

4.2 Simulation Results

Shown in table 8, the execution time in 10-3 seconds for an ascending number

(𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚) of input matrices 𝐀32×32 that must be processed in parallel, when

starting from an implementation of the CR algorithm as a sequence of separate built-

in library kernels and gradually replacing the separate kernels with custom fused

until reaching a single fully fused kernel, under the thread strategy of one warp per

matrix/vector.

 29

𝐀32×32

𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚

Execution Time

Separate Axpy
Axpy

+norm

matvec

+ dot

matvec+dot

+norm

early

exit

single

kernel

128 0.55 0.53 0.52 0.52 0.51 0.39 0.20

256 1.17 1.16 1.16 1.16 1.16 0.88 0.47

512 2.31 2.29 2.31 2.31 2.31 1.76 0.93

1024 4.81 4.87 4.86 4.78 4.76 3.60 1.82

2048 10.23 10.26 10.12 9.92 9.87 7.41 3.63

4096 21.28 20.82 20.68 20.19 19.97 15.18 7.24

8192 42.54 41.68 41.25 40.34 39.85 30.35 14.16

Table 8. Execution times in 10-3 seconds for different fusion levels.

Figure 7. Execution time in 10-3s for different fusion levels.

Shown in table 9, the execution time in 10-3 seconds for an ascending number

(𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚) of input matrices 𝐀32×32 that must be processed in parallel, when the

shared memory is not used, when matrix A is loaded in shared memory, and when

vector r is loaded in shared memory, for a fully fused kernel under the thread

strategy of one thread per matrix/vector.

42.54 41.68 41.25 40.34 39.85

30.35

14.16

Execution time (10-3s) vs Fusion level

separate axpy axpy+norm matvec+dot matvec+dot+norm early exit single kernel

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

30

𝐀32×32

𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚

Time

Shared Memory

- A r

128 0.97 1.68 0.70

256 2.06 3.37 1.30

512 4.36 6.71 2.64

1024 8.79 13.41 5.56

2048 17.96 26.69 10.89

4096 36.17 53.38 21.50

8192 72.69 106.52 42.13

Table 9. Execution times in 10-3 seconds for one thread per matrix/vector, with and without

using shared memory.

Shown in table 10, the execution time in 10-3 seconds for an ascending number

(𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚) of input matrices 𝐀32×32 that must be processed in parallel, when the

shared memory is not used, when matrix A is loaded in shared memory, and when

vector r is loaded in shared memory, for a fully fused kernel under the thread

strategy of one warp per matrix/vector.

𝐀32×32

𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚

Time

Shared Memory

- A r

128 0.20 0.27 0.19

256 0.47 0.53 0.46

512 0.93 1.16 0.87

1024 1.82 2.12 1.69

2048 3.63 3.87 3.32

4096 7.24 7.29 6.51

8192 14.16 14.36 12.84

Table 10. Executions times in 10-3 seconds for one warp per matrix/vector, with and without

using shared memory.

On table 11 and on figure 8 the results are presented from the NVIDIA Visual

Profiler for the implementation without the use of shared memory.

 31

Variable Achieved Theoretical Device Limit

Occupancy Per SM

Active Blocks 3 32

Active Warps 44.73 48 64

Active Threads 1536 2048

Occupancy 69.9% 75% 100%

Registers

Registers/Thread 35 65536

Shared Memory

Shared Memory/Block 0 65536

Block Limit 0 32

Table 11. GPU Utilization for the implementation without the use of shared memory.

Figure 8. Stall reasons for the implementation one warp per matrix/vector without the use of

shared memory.

On table 12 and on figure 9 the results are presented from the NVIDIA Visual

Profiler for the implementation with matrix A loaded in shared memory.

Variable Achieved Theoretical Device Limit

Occupancy Per SM

Active Blocks 2 32

Active Warps 7.98 8 64

Active Threads 256 2048

Occupancy 12.5% 12.5% 100%

Registers

Registers/Thread 34 65536

Shared Memory

Shared Memory/Block 8192 65536

Block Limit 8 32

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

32

Table 12. GPU Utilization for the implementation with matrix A loaded in shared memory.

Figure 9. Stall reasons for the implementation one warp per matrix/vector with matrix A in

shared memory.

On table 13 and on figure 10 the results are presented from the NVIDIA Visual

Profiler for the implementation with vector r loaded in shared memory.

Variable Achieved Theoretical Device Limit

Occupancy Per SM

Active Blocks 6 32

Active Warps 40.83 48 64

Active Threads 1536 2048

Occupancy 63.8% 75% 100%

Registers

Registers/Thread 35 65536

Shared Memory

Shared Memory/Block 2048 65536

Block Limit 32 32

Table 13. GPU Utilization for the implementation with vector r loaded in shared memory.

 33

Figure 10. Stall reasons for the implementation one warp per matrix/vector with vector r in

shared memory.

On figure 11 the plot of the results is shown for number of matrices versus time of

execution for all implementations of a fully fused kernel under the thread strategy of

one thread assigned per matrix/vector.

Figure 11. Plot number of matrices versus time of execution in milliseconds for the

implementations where a single thread is assigned to a matrix/vector.

On figure 12 the plot of the results is shown for number of matrices versus time of

execution for all implementations of a fully fused kernel under the thread strategy of

assigning one warp per matrix/vector.

0

20

40

60

80

100

120

0 1024 2048 3072 4096 5120 6144 7168 8192

Excution time (10-3s) vs Size

Single Single + A shared Single + r shared

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

34

Figure 12. Plot number of matrices versus time of execution in 10-3 seconds for the

implementations where a warp is assigned to a matrix/vector.

Results are considered only for the runtime of the CR kernel and do not include the

pre-processing stage (calculation of Gram matrix and matched filter vector).

0

2

4

6

8

10

12

14

0 1024 2048 3072 4096 5120 6144 7168 8192

Execution time (10-3s) vs Size

warp warp + A shared warp + r shared

 35

Chapter 5

5 Conclusions

By merging kernels, the total number of read/write operations, as seen from the

calculations in tables 4 and 5, can be dramatically reduced. The results of fusion can

be seen in table 8 and figure 7 where the execution time starting from 42.54

milliseconds for a separate kernel implementation gradually drops to 14.16

milliseconds for a fully fused. The findings align with previous related work in [14]

[37] [41].

Complete unrolling of the algorithm cuts down the overhead of the loop iteration

(eliminating instructions that control the loop), allows the compiler in the

background to optimize the code further, and any if-else statements or temporary

variables that would be used between iterations are skipped.

Fusing multiple axpy operations increases the workload assigned to each thread. The

gain is higher when the vector norm is to be computed after the vector update. The

number of loads is reduced by n (n the length of the vector), while the compute

intensity added from the calculation of the norm helps hiding the memory latency of

the GPU.

For the matrix/vector+dot fusion, the computational intensity assigned to every

thread is increased and the number of loads is reduced by 2n. The gain is higher in

the case where the vector r is loaded into shared memory and can be fetched at

higher speed. At the beginning of the first iteration the vector norm can also be

added (matvec+dot+norm), the number of loads is then reduced by 3n.

For every fusion between two or more kernels, the added overhead from separate

kernel launches is avoided, the number of global synchronizations, and the number

of data movements from GPU to CPU is reduced.

A thread strategy of assigning one thread per matrix/vector is the simplest way of

merging the algorithm in a single kernel. Results in table 9 show that this strategy is

not optimal and even with the use of shared memory does not meet the massive

MIMO requirements for under 10 milliseconds coherence time.

Assigning one warp per matrix/vector and making extensive use of warp shuffle

commands enables total fusion and ease of control of the groups of matrix/vector

that are computed. The calculation of the dot products and vector norms are done

using less compiler instructions and without the need of shared memory.

The implementation without the use of shared memory uses 35 registers per thread,

reaches 1536 active threads, and results in 14.16 milliseconds execution time. Shown

in tables 10 and 12, the implementation with matrix A loaded in shared memory fits

exactly eight (8) instances of matrix A, uses 34 registers per thread, reaches 256 active

threads, and executes in 14.36 milliseconds. Execution time between these two

implementations is quite close which is a hint that if shared memory could fit more

A Conjugate Residual Solver with Kernel Fusion

for massive MIMO Detection

36

matrices, then the kernel would reach more active threads and possibly lower

execution time.

Best performance is achieved for the implementation with vector r loaded in shared

memory. Shown in tables 10 and 13, forty-eight (48) instances of vector r are loaded

in shared memory, 35 registers per thread are used, 1536 active threads are reached,

and the execution time is 12.84 milliseconds.

From the above implementations, none achieves max thread level parallelism.

Limiting factors are either the size of available shared memory, case where matrix A

is loaded in shared memory, or the number of registers per thread. For a machine

with 65536 available registers and 2048 threads, the maximum number of registers

per thread is 32. Register allocation explains the difference seen in calculations on

table 7 and actual results in table 13. Developers do not have full control over the

number of registers per thread therefore different compiler settings or versions

should be tested. On the other hand, as explained in [42] max thread level

parallelism does not always yield optimal performance.

Compared to work done in [8] the algorithm is fully fused into a single kernel,

shared memory is used for preloading matrix A or vector r, not for sharing

intermediate results of dot products or vector norms. Results cannot be compared

directly since the GPUs used differ greatly, here a small laptop GPU, and further

investigation using different GPUs and compiler settings is required.

The cuBLAS implementation of matrix-vector product is highly optimized, beyond

the reach of the implementation in this work, but unfortunately the source code is

private. It would of great interest if such an implementation could be incorporated to

this work.

As proposed in [41], the algorithm is fully unrolled into a single kernel and a barrier

for synchronization and data exchange while a block is active, is implemented. This

was achieved using warp shuffle commands and matches the case where the number

of users in massive MIMO detection is 32. Loading vector r into shared memory

yields the best performance. Results show that kernel fusion is also beneficial for the

case of massive MIMO (many relatively small matrices that must be calculated in

parallel) and an approach for the Conjugate Residual algorithm is presented.

The programming model of CUDA has a programmer friendly interface, with lots of

tools for visualising and debugging code, but still programming GPUs is error prone.

Unrolling the algorithm and hardcoding often leads to unreadable code. Tuning

kernels for memory efficiency is a complex task that degrades the productivity with

most of the working hours eventually being consumed in debugging. All these could

also possibly explain why the authors in previous works decided to combine generic

kernels from libraries with custom kernel implementations.

Future work could be the fusion of the preconditioned CR algorithm. Performance

gains by using techniques presented in [43] for the multiplication of a matrix by its

transpose and the affect it would have on the numerical stability of the algorithm

could be explored. The kernel fusion could then begin at the pre-processing stage of

the equalizer. Great attention has been drawn on implementations using mixed

precision and half precision data types for iterative solvers [44]. A half precision

 37

implementation could be tested for further performance gains and how much it

affects the numerical stability of the algorithm.

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

38

 39

Disclaimer

This thesis work is available to all readers and researchers for study without regard

to race, color, religion, sex, sexual orientation, marital status, pregnancy, parental

status, national origin, ethnic background, age, disability, political opinion, social

status, veteran status, union membership or genetics.

The contents of these pages are provided as an information guide only. They are

intended to enrich information regarding the subject matter covered. The advice and

strategies contained herein may not be suitable for your situation. You should

consult with a professional where appropriate. The author shall not be liable for any

loss of profit or any other commercial damages, including but not limited to special,

incidental, consequential, or other damages.

Reasonable efforts have been made to publish reliable data and information, but the

author cannot assume responsibility for the validity of all materials or the

consequences of their use. No responsibility is accepted by or on behalf of the author

for any errors, omissions or misleading statements on these pages or any site to

which these pages connect.

If any copyright material has not been acknowledged, please contact so it may be

rectified in the future.

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

40

 41

Notation

Upper-case boldface letters are used to denote matrices (e.g., X, Y), while column or

row vectors are denoted with lower-case boldface letters (e.g., x, y). Scalars are

denoted by lower/upper-case italic letters (e.g., x, y, X, Y) and sets by calligraphic

letters (e.g., X, Y).

The following mathematical notations are used:

ℝ, ℝ𝒏, ℝ𝒎×𝒏 Set of real numbers, n-vectors, m × n matrices

ℂ, ℂ𝒏, ℂ𝒎×𝒏 Set of complex numbers, n-vectors, m × n

matrices

𝒙 ∈ 𝑺 x is a member of the set S

𝐱𝐢 The ith element of a vector x

𝐀𝐢𝐣 The (i, j)th element of a matrix A

𝐀∗ The complex conjugate of A

𝐀𝐓 The transpose of A

𝐀𝐇 The conjugate transpose of A

𝐀−𝟏 The inverse of a square matrix A

ℜ(x) Real part of x

ℑ(x) Imaginary part of x

‖𝒙‖𝟐 The L2-norm

𝐱𝐲 Dot product of vectors x and y

𝐈𝑴𝑴 The M × M identity matrix

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

42

 43

Acknowledgments

I would like to thank Tiago Fernandes Cortinhal for his continuous support and

encouragement during my thesis work.

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

44

 45

6 Bibliography

[1] E. Björnson, J. Hoydis och S. L., Massive MIMO Networks: Spectral, Energy, and

Hardware Efficiency, Publishers Inc., 2017.

[2] V. Madisetti, Wireless, Networking, Radar, Sensor Array Processing, and

Nonlinear Signal Processing, CRC Press, 2018.

[3] S. Malkowsky, ”Massive MIMO: Prototyping, Proof-of-Concept and

Implementation,” Doctoral dissertation, University of Lund, 2019.

[4] A. Paulraj, R. Nabar och D. Gore, Introduction to space-time wireless

communications, 2003: Cambridge university press.

[5] L. Liu, G. Peng och S. Wei, Massive MIMO Detection Algorithm and VLSI

Architecture, Springer Singapore, 2019.

[6] R. Couturier, Designing scientific applications on GPUs, CRC Press, 2013.

[7] M. Wu, C. Dick, J. R. Cavallaro och C. Studer, ”FPGA design of a coordinate

descent data detector for large-scale MU-MIMO,” 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1894-1897, 2016.

[8] K. Li, B. Yin, M. Wu, J. R. Cavallaro och C. Studer, ”Accelerating massive MIMO

uplink detection on GPU for SDR systems,” IEEE dallas circuits and systems

conference (DCAS), pp. 1-4, 2015.

[9] C. Tarver, M. Tonnemacher, H. Chen, J. C. Zhang och J. R. Cavallaro, ”GPU-

based LDPC decoding for vRAN systems in 5G and beyond,” IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1-5, October 2020.

[10] B. Yin, ”Low complexity detection and precoding for massive MIMO systems:

Algorithm, architecture, and application.,” Doctoral dissertation, 2014.

[11] C. Zhang, Y. Yang, S. Zhang, Z. Zhang och X. You, ”Residual-Based Detections

and Unified Architecture for Massive MIMO,” Journal of Signal Processing

Systems, vol. 91, nr 9, pp. 1039-1052, 2019.

[12] M. M. Dehnavi, D. M. Fernández och D. Giannacopoulos, ”Enhancing the

performance of conjugate gradient solvers on graphic processing units,” IEEE

Transactions on Magnetics, vol. 5, nr 47, pp. 1162-1165, 2011.

[13] J. Filipovič, M. Madzin, J. Fousek och L. Matyska, ”Optimizing CUDA code by

kernel fusion: application on BLAS.,” The Journal of Supercomputing, vol. 10, nr 71,

pp. 3934-3957, 2015.

[14] H. Anzt, S. Tomov, P. Luszczek, W. Sawyer och J. Dongarra, ”Acceleration of

GPU-based Krylov solvers via data transfer reduction,” The International Journal

of High Performance Computing Applications, vol. 3, nr 29, pp. 366-383, 2015.

[15] Y. Huang, S. Li, Y. T. Hou och W. Lou, ”GPF: A GPU-based Design to Achieve~

100 μs Scheduling for 5G NR,” Proceedings of the 24th Annual International

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

46

Conference on Mobile Computing and Networking, pp. 207-222, 2018.

[16] P. P. Campo, V. Lampu, A. Meirhaeghe, J. Boutellier, L. Anttila och M. Valkama,

”Digital predistortion for 5G small cell: GPU implementation and RF

measurements,” Journal of Signal Processing Systems, pp. 1-12, 2019.

[17] C. Tarver, A. Singhal och J. R. Cavallaro, ”GPU-Based Linearization of MIMO

Arrays,” IEEE Workshop on Signal Processing Systems (SiPS), pp. 1-5, October

2020.

[18] K. Li, A. Ghazi, C. Tarver, J. Boutellier, M. Abdelaziz, L. Anttila, M. Juntti, M.

Valkama och J. R. Cavallaro, ”Parallel digital predistortion design on mobile

GPU and embedded multicore CPU for mobile transmitters,” Journal of Signal

Processing Systems, vol. 89, nr 3, pp. 417-430, 2017.

[19] F. L. Luo och C. J. Zhang, Signal Processing for 5G: Algorithms and

Implementations, John Wiley & Sons, 2016.

[20] H. Malepati, Digital media processing: DSP algorithms using C, Newnes, 2010.

[21] L. J. Hennessy och A. D. Patterson, Computer Architecture A Quantitative

Approach Fifth Edition, Elsevier Inc., 2012.

[22] J. Cheng, M. Grossman och T. McKercher, Professional CUDA C Programming,

John Wiley & Sons Inc., 2014.

[23] D. Storti och M. Yurtoglu, CUDA for engineers: an introduction to high-

performance parallel computing, Addison-Wesley Professional, 2015.

[24] NVIDIA, ”cuBLAS,” [Online]. Available: https://developer.nvidia.com/cublas.

[25] NVIDIA, ”cuFFT,” [Online]. Available: https://developer.nvidia.com/cufft.

[26] NVIDIA, ”cuSOLVER,” [Online]. Available:

https://developer.nvidia.com/cusolver.

[27] C. R. Sánchez, A. M. V. Maciá och A. G. Salvador, ”Efficient soft-output

detectors: Multi-core and GPU implementations in MIMOPack library,”

International Conference on Pervasive and Embedded Computing and Communication

Systems (PECCS), pp. 1-10, 2015.

[28] A. Li, B. Zheng, G. Pekhimenko och F. Long, ”Automatic horizontal fusion for

GPU kernels,” 2022 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), pp. 14-27, April 2022.

[29] M. Geshi, The Art of High Performance Computing for Computational Science,

Vol. 1, Springer, 2019.

[30] T. Soyata, GPU parallel program development using CUDA, CRC Press, 2018.

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling och B. P. Flannery, Numerical

Recipes The Art of Scientific Computing Third Edition, Cambridge University

Press, 2007.

[32] D. Bertaccini och F. Durastante, Iterative methods and preconditioning for large

and sparse linear systems with applications, CRC Press, 2018.

[33] S. Hashima och M. Osamu, ”Fast matrix inversion methods based on Chebyshev

 47

and Newton iterations for zero forcing precoding in massive MIMO systems,”

EURASIP Journal on Wireless Communications and Networking, nr 1, pp. 1-12, 2020.

[34] M. A. Albreem, M. H. Alsharif och S. Kim, ”A robust hybrid iterative linear

detector for massive MIMO uplink systems,” Symmetry, vol. 2, nr 12, p. 306,

2020.

[35] H. Prabhu, ”Hardware implementation of baseband processing for massive

MIMO,” Lund University, Doctoral dissertation, 2017.

[36] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and

Applied Mathematics, 2003.

[37] G. Wang, Y. Lin och Y. Wei, ”Kernel Fusion : an Effective Method for Better

Power Efficiency on Multithreaded,” 2010 IEEE/ACM Int'l Conference on Green

Computing and Communications & Int'l Conference on Cyber, Physical and Social

Computing, pp. 344-350.

[38] A. Li, B. Zheng, G. Pekhimenko och F. Long, ”Automatic horizontal fusion for

GPU kernels,” arXiv preprint arXiv:2007.01277, 2020.

[39] R. Nath, S. Tomov, T. T. Dong och J. Dongarra, ”Optimizing symmetric dense

matrix-vector multiplication on GPUs.,” Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis, pp.

1-10, 2011.

[40] B. Crovella, ”Oak Ridge National Laboratory,” [Online]. Available:

https://www.olcf.ornl.gov/wp-

content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf. [Använd

May 2022].

[41] S. Tarsa, T. H. Lin och H. Kung, ”Performance Gains in Conjugate Gradient

Computation with Linearly Connected GPU Multiprocessors,” USENIX HotPar,

nr 12, 2012.

[42] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang och D. Fan, ”CRAT: Enabling

coordinated register allocation and thread-level parallelism optimization for

GPUs.,” IEEE Transactions on Computers, vol. 67, nr 6, pp. 890-897, 2017.

[43] V. Arrigoni, F. Maggioli, A. Massini och E. Rodolà, ”Efficiently Parallelizable

Strassen-Based Multiplication of a Matrix by its Transpose,” i 50th International

Conference on Parallel Processing, 2021.

[44] A. e. a. Abdelfattah, ”A survey of numerical linear algebra methods utilizing

mixed-precision arithmetic,” The International Journal of High Performance

Computing Applications, vol. 35, nr 4, pp. 344-369, 2021.

[45] T. F. Collins, R. Getz, D. Pu och A. M. Wyglinski, Software-Defined Radio for

Engineers, Artech House, 2018.

[46] D. B. Kirk och W. H. Wen-Mei, Programming Massively Parallel Processors A

Hands-on Approach Second Edition, Morgan Kaufmann, 2016.

[47] J. R. Shewchuk, An introduction to the conjugate gradient method without the

agonizing pain, 1994.

A Conjugate Residual Solver with Kernel Fusion for massive MIMO Detection

48

 49

