
 

 

Master thesis 
Embedded and Intelligent Systems 120 credits 

A Conjugate Residual Solver with Kernel 
Fusion for massive MIMO Detection 
 

Embedded and Intelligent Systems 120 credits 

Halmstad 17 April 2023 

Ioannis Broumas 

 

 

 

 
 



__________________________________ 
 

School of Information Science, Computer and Electrical Engineering 

Halmstad University 

PO Box 823, SE-301 18 HALMSTAD 

Sweden 

 

A Conjugate Residual Solver with Kernel Fusion 

for massive MIMO Detection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Master Thesis 

 

 

2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author: Ioannis Broumas 

Supervisor: Tiago Fernandes Cortinhal 

Examiner: Slawomir Nowaczyk 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Conjugate Residual Solver with Kernel Fusion 

for massive MIMO Detection  

Ioannis Broumas  

 

 

© Ioannis Broumas, 2023. All rights reserved.  



 

 i 

Master thesis report IDE 12XX  

School of Information Science, Computer and Electrical Engineering  

Halmstad University  

 

 

 





 

 iii 

Abstract 

Wireless communication technology has radically altered how we communicate. 

Mobile devices now feature applications for web browsing, multimedia services, video 

conferencing, etc. Massive Multiple-Input Multiple-Output (m-MIMO) is an emerging 

technology promising to meet these market demands. However, the performance of a 

massive MIMO system dependents heavily on the signal detection technology. A mass 

amount of data received at the base station must be processed in parallel with ultra-

low latency. Moreover, massive MIMO is under constant development thus, the 

supporting hardware platform needs to be flexible while the detection algorithms need 

to be efficient, of low complexity, and highly parallel. 

Graphics Processing Units (GPU) are hardware accelerators with hundreds of parallel 

floating-point units, offering access to high-performance computing. Their popularity 

boomed when a friendly programming environment and easy-to-use libraries were 

made available. Nowadays GPUs have become a tool widely used by engineers, 

scientists, and businessmen to speed up heavy computational tasks in deep learning, 

scientific computation, or even create farms for cryptocurrency mining. 

However, these readily available libraries often comprise of a highly optimized yet 

limited set of linear algebra operations. Unnecessary data communications often 

dominate the execution time of applications that are built with these libraries thus the 

applications fail to exploit the accelerators full potential. Attention then turns to kernel 

fusion, an optimization technique where the main idea is to merge two or more 

operations into one large but equivalent operation to potentially improve the overall 

performance. 

In this thesis report a GPU implementation of an uplink detector for massive MIMO 

Software-Defined Radio (SDR) systems is presented. Coded in CUDA C, the linear 

detector employs the Conjugate Residual method to iteratively approximate the 

inverse matrix required in the equalization process. The algorithm’s inherent 

parallelism is explored under two approaches that allow to complete unroll and 

gradually fuse all the separate kernels of the iterative solver until reaching a top-down 

hardcoded implementation of a single kernel. Two ways of taking advantage of the 

fast on chip memories for further optimization are tested. Results show the significant 

performance gains of kernel fusion for iterative solvers in the case of massive MIMO 

where many small matrices must be processed in parallel. 
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Chapter 1  

1 Introduction  

Wireless communication technology has radically altered how we communicate [1]. 

Mobile devices now feature applications for web browsing, multimedia services, 

video conferencing, etc. As technology progresses, user demands are increasing and 

so is the bandwidth required to support them [2]. To cope with the exploding traffic 

growth rate and provide extensive coverage, researchers from both academia and 

industry must push to the limits to design novel wireless network technologies [1]. 

Massive Multiple-Input Multiple-Output (m-MIMO) is an emerging technology 

promising to overcome these challenges. Large antenna arrays at the base station 

(BS) beamform signals directly to the target user equipment (UE) resulting in near 

zero interference [3]. The configuration can be employed to either improve resilience 

to fading, increase data-rates, or support multiple users over the same time and 

frequency slot [4]. 

Graphics Processing Units (GPUs) are hardware accelerators with hundreds of 

computing cores available for parallel execution. Hardware and software 

advancements in the GPUs architecture and programming environment gave the 

opportunity to scientists and engineers to exploit the GPUs computing power for 

high performance computing making them a tool widely used today in deep 

learning, scientific computation and many more compute intense applications.  

As many scientific and engineering applications do, signal processing in massive 

MIMO requires a sequence of linear algebra operations. The easiest way to compute 

these operations is to assign all matrix and vector computations to the GPU using 

library functions. The performance bottleneck of such generic implementations is the 

cost of memory access inside linear algebra kernels. Using library kernels leaves out 

a key optimization strategy for memory-bound computations which is to make 

efficient reuse of the processed data. Custom-built kernels present opportunities for 

memory optimization by combining multiple operations and keeping data in fast 

memory for efficient reuse when possible. 

1.1 Motivation  

The performance of a massive MIMO system is greatly dependent on the signal 

detection technology. The large number of antennas deployed at the base station in a 

massive MIMO system, generates mass amount of data, thus higher demands on 

radiofrequency (RF) and baseband processing algorithms [5]. The processing 

complexity scales with the number of base station (BS) antennas, the number of user 

equipment (UE), or both [3]. The detection algorithms need to be efficient, of low 

complexity, and highly parallel [5]. 
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The execution time of applications with heavy or complex computations is 

drastically reduced using parallel architectures. However, utilizing parallel 

architectures is not trivial and it takes strong effort to parallelize an application [6]. 

Moreover, massive MIMO is a technology under development; researchers are facing 

numerous challenges delivering it to the market. Detection algorithms are evolving, 

the communication standards and protocols are updated regularly. Consequently, 

the hardware platform needs to be flexible enough to absorb such changes [5]. 

Combinations of algorithms and architectures has been proposed and implemented 

in the literature. In [3] the authors present a programmable 16-lane SIMD ASIP for 

Massive MIMO where three different algorithms are mapped onto the ASIP. In [7] a 

low complexity optimized Coordinate Descent has been proposed with a 

corresponding high-throughput FPGA design for large-MIMO systems. While such 

hardware implementations achieve high throughput, the flexibility offered is limited 

with respect to different system configurations.  

GPUs are a tool widely used by engineers and scientists to speed up heavy 

computational tasks in deep learning, scientific computation etc. Previous work in [8] 

[9] [10] showed that GPUs could successfully be used for massive MIMO baseband 

processing. The authors in [8] [10] use an iterative solver, the Conjugate Gradient 

which also belongs to the Krylov subspace methods. In their implementations they 

include both built-in libraries and custom kernels with fusion optimization 

techniques while they provide some details of the implementation. However, they 

avoid fusing down to a single kernel, and they do not discuss the difference in 

performance their fused kernels have compared to the generic library kernels.  

Residual based algorithms for massive MIMO detection have also been proposed in 

[11]. The algorithms tested are the MINimal RESidual (MINRES), Generalized 

Minimal RESidual (GMRES), and Conjugate Residual (CR) algorithm. The authors 

show that CR is an algorithm feasible for massive MIMO detection with a low 

computational complexity. They propose hardware implementations on FPGAs and 

do not discuss how the algorithm could be implemented in a more flexible hardware 

platform like a GPU. 

In [12] [13] [14] the authors elaborate on the performance gains of kernel fusion for 

iterative solvers and basic linear algebra routines. They mainly focus on scientific 

computing where parallel computing is used to process input data of large sized 

matrices-vectors but that does not imply that kernel fusion would yield similar 

results in the case of massive MIMO where the input data comprise of many small 

matrices-vectors that must be processed in parallel.  

1.2 Contribution  

This thesis presents a comparison of a GPU implementation of the Conjugate 

Residual method as a sequence of generic library kernels against implementations of 

the method with custom kernels to expose the performance gains of a key 

optimization strategy, kernel fusion, for memory-bound operations which is to make 

efficient reuse of the processed data. 



A Conjugate Residual Solver with Kernel Fusion 

for massive MIMO Detection     

 

 

8 

For massive MIMO the iterative solver is to be employed at the linear detection stage 

to overcome the computational bottleneck of the matrix inversion required in the 

equalization process, which is 𝒪(𝑛3) for direct solvers. A detailed analysis of how 

one more of the Krylov subspace methods that is feasible for massive MIMO can be 

implemented on a GPU as a unified kernel is given. 

Further, to show that kernel fusion can improve the execution performance not only 

when the input data is large matrices-vectors as in scientific computing but also in 

the case of massive MIMO and possibly similar cases where the input data is a large 

number of small matrices-vectors that must be processed in parallel. 

In more details, focusing on the small number of iterations required for the solver to 

achieve a close enough approximation of the exact solution in the case of massive 

MIMO, and the case where the number of users matches the size of a warp, two 

different approaches that allow to fully unroll the algorithm and gradually fuse all 

the separate kernels into a single, until reaching a top-down hardcoded 

implementation are proposed and tested.  

Targeting to overcome the algorithms computational burden which is the matrix-

vector product, further optimization techniques such as two ways to utilize the fast 

on-chip memories, preloading the matrix in shared memory and preloading the 

vector in shared memory, are tested and proposed to achieve high efficiency and 

high parallelism.  

1.3 Thesis Outline  

Chapter 2 The necessary background and relevant work is discussed, including 

Software Defined Radio (SDR), massive MIMO detection algorithms, GPU hardware 

architecture and programming model.  

Chapter 3 The Conjugate Residual algorithm for massive MIMO detection is 

presented. A systematic analysis of the algorithm, kernel fusion and optimization 

strategies for GPU implementation are discussed. 

Chapter 4 Calculations and performance results of different implementations. 

Chapter 5 Results analysis, conclusion, and future work proposals. 
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Chapter 2  

2 Background and Related Work  

2.1 Software Defined Radio 

Realizing universal communication requires smoothly integrating and utilizing 

numerous current and upcoming wireless communication protocols.  Many of the 

available communication devices contain several nonprogrammable processors, each 

dedicated to the physical layer of a protocol. This solution is not scalable and 

eventually not feasible [2]. 

Software-defined radio (SDR) is a highly flexible, low-cost solution. Wireless 

protocols are implemented in software and executed on the same hardware platform, 

thus enabling rapid prototyping, easy troubleshooting, and multimode operation. 

New protocols and functions can be incorporated through simple updates, avoiding 

expensive and troublesome hardware modifications. SDR aims to substitute the 

application-specific integrated circuit (ASIC) processors used in the baseband 

processing with a fully programmable hardware platform [2]. 

GPUs' high parallel computational power has been proposed and successfully 

employed for SDR.  GPUs offer higher flexibility than ASICs and digital signal 

processors (DSP), while they are much easier to program when compared to field 

programmable gate arrays (FPGA) [5]. Moreover, software-controlled scratchpad 

memories, like the ones available on GPUs, perform better than cache structures in 

the case of protocols that use a stream computation system with low data temporal 

locality [2]. For MIMO communication, GPU solutions have been presented for 

scheduling [15], Low-Density Parity Check (LDPC) decoding [9], digital 

predistortion (DPD) [16] [17] and in [18] for mobile GPUs, and more. 

2.2 Massive MIMO 

Modern communication systems use multiple antennas at the transceiver to enhance 

link performance, a technique known as multiple-input multiple-output (MIMO). 

MIMO can be expanded further to multi-user MIMO (MU-MIMO), where users are 

separated by their location in space, enabling denser networks and increased 

capacity. The latest concept of these large antenna array techniques is known as 

massive MIMO (m-MIMO). 

The configuration of a massive MIMO system is shown in figure 1. A mass number 

of antennas is deployed at the base station to serve an analogously small number of 

user equipment. An essential requirement for this advanced spatial multiplexing to 

be successful is the channel estimate, upon which downlink (DL) precoders and 

uplink (UL) detectors can be implemented. 
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Figure 1. Simplified massive MIMO system model. 

The transmitted signal vector and received vector are denoted by  

𝐬 =  [𝑠1, 𝑠2, . . , 𝑠𝑈]𝑇  and 𝐲 =  [𝑦1, 𝑦2, . . , 𝑦𝐵]𝑇 , respectively, where 𝐬 ∈ ℂ𝑈 , 𝐲 ∈ ℂ𝐵 . Then 

the system model is described as 

 𝐲 = 𝐇𝐬 + 𝐧 (2.1) 

where 𝐇 ∈ ℂ𝐵𝑥𝑈 is an B × U uplink channel matrix, 𝐧 ∈ ℂ𝐵 is the vector representing 

Additive White Gaussian Noise (AWGN) with zero-mean and variance 𝜎2. 

Massive MIMO technology achieves higher data rates than other small-scale systems 

by simultaneously broadcasting several data streams over the same frequency band. 

Downlink beamforming (precoding) yields improved spectral efficiency and reduced 

interference, while the technology has also the potential to decrease the costs at the 

BS [10]. Algorithms for traditional wireless communications are also found in m-

MIMO technology, with the exception that here a greater number of data must be 

processed in parallel [19]. 

2.2.1 Detection 

As the signal propagates through the medium, it is subject to distortions, 

attenuation, and various frequencies are delayed. Distortions caused to a symbol by 

neighbouring symbols is called inter-symbol interference (ISI), while distortions on a 

carrier due to neighbouring carriers is called inter-carrier interference (ICI).  These 

distortions result in data errors at the decoded data at the receiver. To 

counterbalance these distortions channel equalization is performed on the received 

data. Theoretically, channel equalizers have the exact inverse frequency response of 

the channel. However, a perfect equalizer cannot be designed; thus, ISI will be 

present. Moreover, noise in the data is also amplified during the equalization 

process. Hence, an equalizer must balance ISI, noise, and implementation complexity 

[20]. 

Signal detection algorithms for massive MIMO can be categorized into linear and 

nonlinear. Nonlinear algorithms yield high accuracy in recovering the transmitted 
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signal but at the cost of higher implementation complexity. On the opposite side, 

linear algorithms are of lower complexity; their accuracy however is lower [5]. 

During the linear equalization process, the received signal is passed through a linear 

filter [20]. Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) are two 

popular detection algorithms. These algorithms determine the linear filter 

coefficients by deforming the channel matrix H and solving the linear matrix 

equation in (Eq. 2.1) [5]. 

Orthogonal Frequency-Division Multiplexing (OFDM) is a data transmission method 

also used in massive MIMO. In OFDM, the overall bandwidth is divided into several 

subcarriers that carry different signals at the same data rate and are transmitted over 

their corresponding narrowband frequencies.  

In an uplink OFDM massive MIMO system, user data bits are encoded and mapped 

onto constellation points in a finite alphabet Ω which are then broadcasted over the 

wireless channel. With 𝑦𝑏,𝑘  as the signal received at the bth antenna for the kth 

subcarrier at the base station, and 𝑠𝑢,𝑘 as the broadcasted signal from the uth user and 

kth subcarrier, then: 

 𝐲𝐤 = 𝐇𝐤𝐬𝐤 + 𝐧𝐤 (2.2) 

where 𝐲𝐤 ∈ ℂ𝐵  is a vector constructed as [𝑦1,𝑘, 𝑦2,𝑘 , . . , 𝑦𝐵,𝑘]
𝑇

, 𝐬𝐤 ∈ Ω𝑈  is a vector 

constructed as [𝑠1,𝑘, 𝑠2,𝑘 , . . , 𝑠𝑈,𝑘]
𝑇

, 𝐇𝐤 ∈ ℂ𝐵𝑥𝑈  is the B × U complex channel matrix and 

𝐧𝐤 ∈ ℂ𝐵 is the noise vector [𝑛1,𝑘, 𝑛2,𝑘, . . , 𝑛𝐵,𝑘]
𝑇
with each entry 𝑛𝑏,𝑘 assumed to be an 

i.i.d zero-mean complex Gaussian random variable with variance N0. 

Zero Forcing 

In zero-forcing equalization both sides of Eq. (1.1) are left multiplied by the conjugate 

transpose 𝐇𝐇 of the channel matrix, ignoring additive noise n [5].  

 𝐇𝐇𝐲 =  𝐇𝐇𝐇𝐬 (2.3) 

With matched-filter vector 

 𝐲𝐌𝐅 =  𝐇𝐇𝐲 (2.4) 

The Gram matrix 

 𝐆 = 𝐇𝐇𝐇 (2.5) 

The detection for the transmitted signal s is: 

 𝐬 = (𝐇𝐇𝐇)
−𝟏

𝐇𝐇𝐲 = (𝐇𝐇𝐇)
−𝟏

𝐲𝐌𝐅 = (𝐆)−𝟏𝐲𝐌𝐅 (2.6) 

In Eq. (1.5) the noise is ignored. Therefore, if 𝐖𝒁𝑭 is an equalization matrix with 

 𝐖𝒁𝑭 = (𝐇𝐇𝐇)
−𝟏

𝐇𝐇 = (𝐆)−𝟏𝐇𝐇 (2.7) 

And 

 𝐖𝒁𝑭𝐇 = 𝐈 (2.8) 

where I is the identity matrix. 

The transmitted signal s can be estimated as: 

 �̂� = 𝐖𝒁𝑭(𝐇𝐬 + 𝐧) = 𝐬 + 𝐖𝒁𝑭𝐧 (2.9) 
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In ZF equalization the estimated signal �̂� is equal to the transmitted signal s when the 

additive noise n is zero. ZF equalization can eliminate ISI and yield good results 

under high signal to noise ratio (SNR) [5]. However, noise ends up being amplified 

[20].  

Minimum Mean Square Equalizer 

The MMSE detection algorithm tries to minimize the difference between the 

estimated signal �̂� = 𝐖𝐲 and the transmitted signal s. The objective function is: 

 �̂� = 𝐖MMSE = argmin
𝐖

E‖𝐬 − 𝐖𝐲‖𝟐 (2.10) 

Solving Eq. (1.9) leads to 

 𝐖MMSE = (𝐇𝐇𝐇 +
N0

Es
𝐈𝐍𝐭

)
−𝟏

𝐇𝐇 (2.11) 

where 𝐍𝟎 is the spectral density of noise, 𝐄𝐬 is the spectral density of the signal, and 

𝐈𝐍𝐭
 is the identity matrix [5]. In comparison, the MMSE performs better than the ZF 

equalizer, especially at low SNR [20].  

In both ZF and MMSE detection algorithms, the calculation of a matrix inverse is 

required. With the channel matrix H being large in massive MIMO systems, this 

matrix inverse operation is difficult to realize in hardware in the signal detection 

circuit. Many algorithms have been proposed to bypass the intricacies of the matrix 

inversion operation. Some of the most popular being the Neumann Series 

Approximation (NSA) algorithm, the Chebyshev iteration algorithm, the Jacobi 

iteration algorithm, and the Conjugate Gradient algorithm [5]. 

2.3 GPU Parallel Computing 

A Graphics Processing Unit (GPU) is a commercially available off-the-shelf solution 

with hundreds of parallel floating-point units that offers access to high-performance 

computing. GPUs became very popular among programmers of scientific 

applications when their computing power was combined with programming 

languages that made GPU programming easier [21]. 

The GPU architecture is centred on a scalable array of Streaming Multiprocessors 

(SMs), with each SM allowing hundreds of threads to execute concurrently. 

Practically all types of parallelism are represented: multithreading, Multiple 

Instruction Multiple Data (MIMD), Single Instruction Multiple Data (SIMD), and 

instruction-level parallelism [22]. In this thesis the GPU used was the GeForce 

920MX by NVIDIA. In table 1 the results are shown of a device configuration query 

of the graphics card that was used. 

 

 

 

 

 



  Chapter 2. Background and Related Work   

 

 

13 

13 

GeForce 920MX 

GPU Architecture Maxwell 

CUDA Capability Major/Minor version number 5.0 

Streaming Multiprocessors 2 

CUDA Cores 256 

GPU Clock rate 993 MHz (0.99 GHz) 

Memory Speed 1800 MHz 

Memory Clock rate 900 MHz 

Memory Interface Width 64-bit 

Memory Bandwidth (GB/sec) 14.40 

L2 Cache Size 1048576 bytes 

Total amount of shared memory per block 65536 bytes 

Maximum number of threads per multiprocessor 2048 

Maximum number of threads per block 1024 

No of kernels that can execute concurrently 1 

Table 1. Device properties of the GPU used. 

2.3.1 The CUDA Programming Model 

A GPU serves as a co-processor to a CPU. As shown in figure 2, GPUs operate in 

combination with a CPU-based host connected through a PCI-Express bus. In GPU 

computing terms, the CPU is referenced as the host while the GPU as the device [22]. 

 

 

Figure 2.  CPU-GPU architecture and interconnection as a heterogenous compute node.  

A heterogeneous application comprises two parts: the host code and the device code. 

Host code is executed on the CPU while device code is executed on the GPU. The 

application is initialized by the CPU. The environment, code, and data are managed 

by the CPU code before transferring the heavy computation tasks on the device [22]. 

Compute Unified Device Architecture (CUDA) is a general-purpose parallel 

computing platform developed by NVIDIA Corporation that enables parallel 

computing on NVIDIA GPUs [23]. Developers can access the platform through 

extensions to industry-standard programming languages, like C/C++, Fortran, and 

Python [22]. This thesis is focused on CUDA C programming. 
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Host code and device code are separated during compile by NVIDIA’s CUDA nvcc 

compiler. The host code, written in standard C, is compiled with C compilers. The 

device code is in CUDA C, an extension of ANSI C with keywords for marking data-

parallel functions named kernels, is compiled by nvcc [22]. 

Accelerated libraries are also available for CUDA. For example: cuBLAS Basic Linear 

Algebra Subprograms (BLAS) library [24], cuFFT Fast Fourier Transforms [25], 

cuSOLVER Direct Linear Solvers [26]. While in [27] the authors present their 

implementation of a library specifically built for MIMO communication systems. 

2.3.2 The CUDA Execution Model 

In CUDA threads are packed into blocks and a collection of blocks form a grid. 

Launching a kernel grid, allocates the blocks of the grid onto available SMs for 

execution. Multiple thread blocks may be resident on one SM and remain there until 

their execution completes. Threads of a thread block can execute concurrently only 

on the SM that they are allocated to [22].  

CUDA coined the term Single Instruction Multiple Thread (SIMT) architecture to 

organize and run threads in groups of 32 called warps. Thread blocks allocated to a 

SM are partitioned into warps. Threads in a warp execute the same instruction 

simultaneously. Threads have distinct instruction address counters, register states, 

and execute the instruction on thread dedicated data [22].  

Once each SM has partitioned the thread blocks assigned to it into warps, they are 

scheduled for execution by the warp scheduler. Warps can be scheduled in any 

order, but the number of active warps is limited by SM resources [22]. Threads of a 

warp execute in a lock-step mode and warps are minimum scheduling units in SMs 

[28]. The warp scheduler of an SM can switch between eligible warps with no added 

overhead. If a warp for some reason is idle (for example stalled in a synchronization 

barrier), then the warp scheduler can select another warp that is available to execute 

thus effectively hiding instruction latencies [22]. 

2.3.3 CUDA Memory Model 

Memory in modern computer architectures is hierarchically organized, thus the 

name ‘’Hierarchical Memory’’. From the engineering side, it is not yet possible to 

create a high-capacity memory with high access speed [29]. A typical memory 

hierarchy is illustrated in figure 3. 
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Figure 3. Hierarchical memory in modern computer architectures. 

The CUDA memory model offers programmers explicit control over many types of 

memory, the characteristics and behaviours of these memories vary as illustrated in 

table 2. 

 

Memory On/Off chip Cached Access Scope Lifetime 

Register Off n/a R/W Thread Thread 

Local Off * R/W Thread Thread 

Shared On n/a R/W Block Block 

Global Off * R/W All threads + host Host allocation 

Constant Off Yes R All threads + host Host allocation 

Texture Off Yes R All threads + host Host allocation 

* Cached only on devices with compute capability 2.x 

Table 2. CUDA memory model 

Shared memory, also referred to as software cache or scratchpad memory, is the 

most important in a GPU. The programmer has full control of the data elements to be 

cached thus reaching data caching efficiencies up to 100% [30]. 
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Chapter 3 

3 Implementation 

The equalization process requires the computation of a pseudo-inverse of the 

channel matrix H. It consists of two matrix multiplications, one matrix inversion, and 

one matrix-vector multiplication. The most compute intense of these operations is 

the matrix inverse [19]. 

Solving equations of the form Ax = b is an elementary assignment in linear algebra 

and scientific computing [31]. For m-MIMO the equivalent of matrix A would be the 

Gram matrix A = G for ZF equalization, while for MMSE equalization the equivalent 

of matrix A would be the regularized Gram matrix 𝐀 =  𝐇𝐇𝐇 +  (𝐍𝟎 𝐄𝐬⁄ )𝐈𝐍𝐭
. The 

straightforward solution to calculating A-1 is to decompose the matrix. Hardware 

implementations of the matrix inversion have higher complexity and cost. The three 

main methods to compute the matrix inverse are explicit inversion (direct methods), 

implicit inversion (indirect methods), and polynomial expansion [19]. 

In the cases where A is symmetric and positive definite the Cholesky decomposition 

is the most efficient among direct methods like LU or QR [31]. In [3] the authors map 

three different direct methods onto the ASIP: basic QRD, extended QRD, and 

Cholesky decomposition. Direct methods can produce an exact solution, however, 

because of their high computing time they are not ideal for large systems. 

Iterative numerical methods are techniques of lower complexity and memory 

footprint than direct methods [8]. Starting from an initial guess, iterative methods 

seek for an approximate solution of the linear system [32]. In [33] the authors present 

a matrix inversion based on Chebyshev and Newton iterations, in [34] a detection 

algorithm is proposed based on the Jacobi (JA) and Gauss–Seidel (GS) methods, in 

[35] a Neumann series based low-computational complexity method is presented. 

3.1 Pre-processing 

At the pre-processing stage the matrix is prepared to be inverted. This involves the 

calculation of the Gram matrix (Hermitian symmetric matrix) G 

𝐆 = 𝐇𝐇𝐇 

the computation of the matched filtering vector 𝐲𝐌𝐅 

𝐲𝐌𝐅 =  𝐇𝐇𝐲 

and in the case of MMSE detection one more step that is the calculation of the 

regularized Gram matrix 

𝐇𝐇𝐇 +
N0

Es
𝐈𝐍𝐭

= 𝐆 +
N0

Es
𝐈𝐍𝐭
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3.2 Conjugate Residual Method 

Krylov subspace methods are regarded to be the most important amongst iterative 

methods [36]. In a system of n linear equations Ax = b, if xo is an approximate 

starting value of the solution of the equation (here the matched filter vector is used), 

these techniques based on projection processes, focus on minimizing the residual 

norm ro = b – Axo by generating a series of approximate solutions. 

The Conjugate Gradient (CG) and the Generalized Minimal RESidual (GMRES) 

methods are extensively used Krylov subspace methods for solving symmetric/non-

symmetric positive definite (SPD) linear systems iteratively. Previous work in [10] [8] 

shows that CG based precoder/detector for m-MIMO can reduce the computational 

complexity while achieving good bit-error-rate (BER) performance. 

The Conjugate Residual (CR) algorithm, shown in figure 4, has a similar structure as 

CG and can be applied in the case where A is Hermitian. Shown in [8] [10] [11] three 

iterations of the solver are sufficient to reach a close enough approximation of the 

exact solution for m-MIMO, while according to [11] matrix A can be Hermitian and 

CR is feasible for massive MIMO detection. 

 

Figure 4. The Conjugate Residual algorithm for m-MIMO linear detection. 

Compared to the Conjugated Gradient algorithm, the Conjugate Residual has one 

less matrix-vector product, but one more vector update [36]. 

Like the other Krylov subspace methods, the CR method deals with arithmetic 

operations on matrices/vectors. Typically, the parallel implementation of these 

operations is easy and more effective when dealing with large vectors. The algorithm 

requires to store matrix A, and five vectors: x, p, Ap, r, Ar. The computational 

requirements are the matrix-vector multiplication 𝑨𝒓𝒋, the inner products (𝒓𝒋, 𝑨𝒓𝒋), 

(𝑨𝒑𝒋, 𝑨𝒑𝒋) and (𝒓𝒋+𝟏, 𝑨𝒓𝒋+𝟏), and four axpys operations (y ← ax + y where x and y 

ALGORITHM: Conjugate Residual solver for m-MIMO linear detection 

Input: A and 𝑦𝑀𝐹 

1. Compute 𝑥0 ≔ 0, 𝑟0 ∶= 𝑦𝑀𝐹 , 𝑝𝑜 ∶= 𝑟0  

 𝑚𝑜 ≔ 𝐴𝑟𝑜 , 𝑒𝑜 ≔ 𝐴𝑝𝑜 

2. For j = 0, 1, …, until k do: 

3.  𝑎𝑗 ∶= (𝑟𝑗 , 𝑚𝑗) ‖𝑒𝑗‖
2

⁄  

4.  𝑥𝑗+1 ∶= 𝑥𝑗 + 𝑎𝑗𝑝𝑗 

5.  𝑟𝑗+1 ∶= 𝑟𝑗 − 𝑎𝑗𝑒𝑗 

6.  𝑚𝑗+1 ≔ 𝐴𝑟𝑗+1 

7.  𝛽𝑗 ∶= (𝑟𝑗+1, 𝑚𝑗+1) (𝑟𝑗 , 𝑚𝑗)⁄  

8.  𝑝𝑗+1 ∶= 𝑟𝑗+1 + 𝛽𝑗𝑝𝑗 

9.  𝑒𝑗+1 = 𝑚𝑗+1 + 𝛽𝑗𝑒𝑗 

10. EndDo 

Output: �̂� =  𝑥𝑗  
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are vectors and a is a scalar) to obtain 𝒙𝒋+𝟏, 𝒓𝒋+𝟏, 𝒑𝒋+𝟏, 𝑨𝒑𝒋+𝟏. The computation of 

𝑨𝒓 is dominant thus, the key in implementing the algorithm efficiently. 

These matrix/vector operations can be implemented using the cuBLAS [24] library; 

however, to reduce the overhead of sharing intermediate results between kernels 

these operations are implemented and fused into kernels. 

3.3 cuBLAS 

An iterative solver, like the Conjugate Residual method, can be implemented on a 

GPU by expressing the main iteration as a sequence of elemental kernels executed in 

the order dictated by the data dependencies. The cuBLAS library provides support 

for dense linear algebraic computations on the GPU. Developed and maintained by 

lead experts; cuBLAS routines are highly optimized and serve as building blocks for 

linear algebra algorithms. Shown in table 3, the operation at each step of the 

algorithm in figure 4 and the equivalent cuBLAS function. 

 

Step  Operation cuBLAS Function 

1. 𝒆𝒐 = 𝑨𝒑𝒐 , 𝒎𝒐 = 𝑨𝒓𝒐 Matvec cublasCgemv 

3. 𝒂𝒋_𝒅𝒊𝒗𝒊𝒅𝒆𝒏𝒕 =  𝒓𝒋
𝑯𝑨𝒓𝒋 Dot cublasCdotu 

3. 𝒂𝒋_𝒅𝒊𝒗𝒊𝒔𝒐𝒓 =  ‖𝒆𝒋‖
𝟐
 Norm cublasScnrm2 

3. 𝒂𝒋 scalar operation - 

4. 𝒙𝒋+𝟏 = 𝒙𝒋 + 𝒂𝒋𝒑𝒋 axpy cublasCaxpy 

5. 𝒓𝒋+𝟏 = 𝒓𝒋 − 𝒂𝒋𝑨𝒑𝒋 axpy cublasCaxpy 

6. 𝒎𝒋 = 𝑨𝒓𝒋 Matvec cublasCgemv 

7. 𝜷𝒋_𝒅𝒊𝒗𝒊𝒅𝒆𝒏𝒕 =  𝒓𝒋
𝑯𝒎𝒋 Dot cublasCdotu 

7. 𝜷𝒋_𝒅𝒊𝒗𝒊𝒔𝒐𝒓 =  𝒓𝒋−𝟏
𝑯 𝒎𝒋−𝟏 Dot cublasCdotu 

7. 𝜷𝒋 scalar operation - 

8. 𝒑𝒋+𝟏 ∶= 𝒓𝒋+𝟏 + 𝜷𝒋𝒑𝒋 axpy cublasCaxpy 

9. 𝒆𝒋 = 𝒎𝒋 + 𝜷𝒋𝒆𝒋−𝟏 axpy cublasCaxpy 

Table 3. Operation at each step of the algorithm and the equivalent cuBLAS function. 

Taking advantage of these highly optimized and readily available cuBLAS routines 

allows for rapid prototyping and deployment at a low programming effort. 

However, launching a sequence of ordered kernels does not yield optimal 

performance. For every kernel launch the contents of the registers, caches, and 

shared memory created by the previous kernel are flushed and data that could be 

reused are not persistent throughout the program execution. Unnecessary data 

round trips dominate the execution time of the application thus the design fails to 

exploit the accelerators full potential. Moreover, cuBLAS is not an open-source 

library; end users do not have the ability to tweak and adjust these routines. 
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3.4 Kernel Fusion 

Host code and device code are separated at compile time. Host code, written in 

standard C, is compiled with C compilers, and executed on the CPU. Device code, 

written in CUDA C, comprises of data-parallel functions named kernels. Kernels are 

standalone computational routines that are dispatched to NVIDIA GPUs for parallel 

execution. 

Kernel fusion is an optimization technique that targets to exploit the spatial and 

temporal locality of the data, hide memory access latencies, and minimize the 

overhead added from separate kernel calls. The major potential performance gain 

comes from eliminating global memory accesses for sharing intermediate results. 

The main idea of kernel fusion is to merge two or more kernels into one large but 

equivalent kernel to potentially improve the overall performance. For example, 

suppose there are two kernels that operate on a vector. The AddKernel, which adds a 

constant to each element of the vector and the MulKernel, which comes after and 

multiplies the vector elements by a value. The sequence of operations would then be: 

• AddKernel 

1. Read an element of the vector from memory. 

2. Add a constant. 

3. Write result back to memory. 

• MulKernel 

1. Read an element of the vector from memory. 

2. Multiply by some value. 

3. Write result back to memory. 

If these two independent kernels would be fused, then the FusedKernel would 

combine the source code of the AddKernel and the MulKernel in order. The 

sequence of operations would then be: 

• FusedKernel 

1. Read an element of the vector from memory. 

2. Add a constant. 

3. Multiply by a value. 

4. Write result back to memory. 

Now the instructions from the MulKernel have direct access to the output of the 

AddKernel without the cost of memory read instructions. That is step 1 of the 

MulKernel is eliminated. Further, since the output of the AddKernel is only used by 

the MulKernel, the associated cost of the memory write instruction is avoided. That 

is step 3 of the AddKernel is eliminated. 

The FusedKernel produces the exact same result as the AddKernel followed by the 

MulKernel does, but instead with the overhead of only one kernel launch instead of 

two, the cost of one read instruction instead of two, and the cost of one write 

instruction instead of two. This overall cost reduction translates to improved 

performance, faster execution time. Reducing the number of read-write to memory 

instructions is very important specifically for memory-bound operations, with a 

performance gain that is usually proportional to the number of reductions. 
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Different fusion methods are the inner thread, inner block, inter thread block and are 

explained in [37]. Also, in [38] the authors present a horizontal fusion method.  

Two or more kernels can be fused/merged if their properties match. They should 

have the same dimensionality, that is the same number of threads per block and the 

same number of blocks. If there are no data dependencies between the kernels then 

they can always be fused, whereas in the case there is a read-after-write data 

dependency between them then the kernels need to perform a mapped access on 

their data.  

3.5 Unrolling 

A thread strategy which fulfils the requirements of kernel fusion and would allow all 

the kernels to be fused is required. One thread strategy that allows all kernels to be 

fused would be to assign one thread per matrix. Since a single thread is processing 

the data, this strategy ensures that program execution follows data dependencies. 

The second, to map one thread to one row or column of matrix A and one element of 

each vector. Since the size of the matrix to be inverted is 32x32, it follows that one 

warp is assigned per matrix.  

According to [8] [10] three iterations are sufficient to reach a good approximation of 

the exact solution in the case of m-MIMO. Unrolling the three iterations for loop is an 

affordable programming effort when the goal is to fully merge the algorithm into a 

single kernel. A pre-processing analysis of the data dependencies and order of 

execution paves the way to systematic fusion and to fully unroll the algorithm into a 

single kernel, shown in figure 5. 
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 1.  𝑦𝑀𝐹 =  𝐻𝐻𝑦 (preprocess)  

 2. 𝑟𝑜 = 𝑦𝑀𝐹 𝑝𝑜 = 𝑦𝑀𝐹 𝑥𝑜 = 0   

 3.  𝑚𝑜 = 𝐴𝑟𝑜 𝑒𝑜 = 𝐴𝑝𝑜  
Fusion L4 

 4. 𝑎𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 =  (𝑟𝑜, 𝑚𝑜) 𝑎𝑜_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = ‖𝑒𝑜‖2 

 5.  𝑎𝑜 =  𝑎𝑜 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡/𝑎𝑜 𝑑𝑖𝑣𝑖𝑠𝑜𝑟    

 6. 𝑥1 = 𝑥𝑜 + 𝑎𝑜𝑝𝑜 𝑟1 = 𝑟𝑜 − 𝑎𝑜𝑒𝑜 Fusion L1 

     

 7.   𝑚1 = 𝐴𝑟1   
Fusion L3 

 8. 𝛽𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = (𝑟1,  𝑚1) 𝛽𝑜_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = 𝑎𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 

 9.  𝛽𝑜 = 𝛽𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝛽𝑜_𝑑𝑖𝑣𝑖𝑠𝑜𝑟⁄     

 10. 𝑝1 = 𝑟1 + 𝛽𝑜𝑝𝑜 𝑒1 = 𝑚1 + 𝛽𝑜𝑒𝑜 
Fusion L2 

 11. 𝑎1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 =  𝛽𝑜_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝑎1_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = ‖𝑒1‖2 

 12.  𝑎1 =  𝑎1 𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡/𝑎1 𝑑𝑖𝑣𝑖𝑠𝑜𝑟    

 13. 𝑥2 = 𝑥1 + 𝑎1𝑝1 𝑟2 = 𝑟1 − 𝑎1𝑒1 Fusion L1 

     

 14.   𝑚2 = 𝐴𝑟2   
Fusion L3 

 15. 𝛽1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 = (𝑟2,  𝑚2) 𝛽1_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = 𝑎1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 

 16.  𝛽1 = 𝛽1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝛽1_𝑑𝑖𝑣𝑖𝑠𝑜𝑟⁄     

 17. 𝑝2 = 𝑟2 + 𝛽1𝑝1 𝑒2 = 𝑚2 + 𝛽1𝑒1 
Fusion L2 

 18. 𝑎2_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 =  𝛽1_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡 𝑎2_𝑑𝑖𝑣𝑖𝑠𝑜𝑟 = ‖𝑒2‖2 

 19.  𝑎2 =  𝑎2_𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑡/𝑎2_𝑑𝑖𝑣𝑖𝑠𝑜𝑟    

 20.  𝑥3 = 𝑥2 + 𝑎2𝑝2    

Figure 5. Analysis of the data dependencies and flow of the fully unrolled CR algorithm. 

For the first step the axpy operations would be fused. There are four axpy operations 

in the CR algorithm in figure 4, steps 4, 5, 8, 9. Since there are no data dependencies 

between step 4 and step 5, they can be merged into one single routine. Similar for 

step 8 and step 9. Highlighted in a blue box in figure 5, instead of having a separate 

kernel to update each vector while switching control between CPU/GPU with the 

exit of each kernel, consequently adding unnecessary overhead of kernel launches, 

the kernels are merged into a single kernel which updates both vectors. Below is 

shown how the kernel could be implemented. 
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__global__ void FusedCaxpy(cuComplex alpha, cuComplex *x, cuComplex *p,  

                            cuComplex *r, cuComplex *e)  

{ 

    unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x; 

 

    if (idx < SZ) 

    { 

        x[idx] = cuCaddf(x[idx], cuCmulf(alpha, p[idx])); 

        r[idx] = cuCsubf(r[idx], cuCmulf(alpha, e[idx])); 

    } 

} 

 

The second step would be to fuse the axpy operations with the norm of the vector, 

lines 10, 11 in figure 5 marked in a green box. After updating an element of the 

vector e, the result is written to memory and then retrieved again from memory with 

the launch of the kernel that computes the norm of vector e. By fusing the kernels, 

the updated element is used directly to calculate a partial result of the vector norm e, 

without having to load it again from memory. Fusing these kernels results in 

increasing the number of arithmetic operations carried out by each thread and 

furthermore since the axpy operation and the norm are computed for the same 

vector, e, the number of loads is reduced by n (n the length of the vector). Below is 

shown how the kernel could be implemented. 

 

__global__ void AxpyNorm(float *alpha, cuComplex beta, cuComplex *p, 

 cuComplex *r, cuComplex *e, cuComplex *m)  

{ 

    unsigned int idx = threadIdx.x + blockIdx.x * blockDim.x; 

 

    if (idx < SZ) 

    { 

        p[idx] = cuCaddf(r[idx], cuCmulf(beta, p[idx])); // AXPY 

 

        cuComplex ee = e[idx]; // Load to a register 

        ee = cuCaddf(m[idx], cuCmulf(beta, ee)); // AXPY 

        e[idx] = ee; // Store to memory 

 

        float a = (ee.x * ee.x) + (ee.y * ee.y); 

        // reduce & broadcast 

        a += __shfl_xor_sync(0xffffffff, a, 16, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 8, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 4, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 2, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 1, 32); 

        // Thread zero of the warp stores to memory 

        if (threadIdx.x & 31) 
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            alpha[threadIdx.x>>5] = sqrtf(a); 

    } 

} 

 

The third step would be to merge the matrix-vector product operations with the dot 

product, lines 7,8 in figure 5 marked in red box. After calculating an element of the 

vector m, the result is written in memory and then retrieved again from memory 

with the launch of the kernel that computes the dot product (r, m). By fusing the 

kernels, the calculated element of vector m and the element of vector r are used 

directly, without loading them again from memory, to calculate a partial result of the 

inner product (r, m). Below is shown how the kernel could be implemented. 

 

__global__ void MatVecDot (cuComplex *A, cuComplex *r, cuComplex *m, 

cuComplex *beta_divident)  

{ 

    unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; 

    cuComplex mm = {0.0f, 0.0f}; // Register 

 

    if (idx < SZ)  

    { 

   // Matrix-vector product 

        for (int i = 0; i < N; i++) { 

            mm = cuCaddf( mm, cuCmulf( r[i] , A[idx*N + i]) ); 

        } 

 

        m[idx] = mm; // Store to memory 

 

        __syncthreads(); 

 

        // Dot 

        cuComplex beta = cuCmulf( cuConjf(r[idx]), mm );  

        // reduce & broadcast 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 16, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 8, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 4, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 2, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 1, 32); 

 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 16, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 8, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 4, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 2, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 1, 32); 

   // Thread zero of the warp stores to memory 

        if (threadIdx.x & 31) 

            beta_divident[threadIdx.x >> 5] = beta; 

    } 

} 
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The fourth step would be to merge the matrix-vector operation 𝐀𝐫𝐨 with the dot 

product and the vector norm ‖𝒆𝒐‖𝟐 at the beginning of the first iteration, lines 1, 2 in 

figure 5 marked in yellow box. Since 𝒓𝒐 = 𝒑𝒐  and 𝒆𝒐 = 𝑨𝒑𝒐 = 𝒎𝒐 = 𝑨𝒓𝒐 , after 

calculating an element of the vectors 𝒆𝒐 = 𝒎𝒐, the result is not written in memory 

and then loaded again for the computation of the vector norm e and again for the dot 

product (r, m), instead the result is used directly, avoiding unnecessary load 

operations, to compute the partial results of the inner product and the norm. Below 

is shown how the kernel could be implemented. 

 

__global__ void MatVecDotNrm (cuComplex *A, cuComplex *r, cuComplex *m, 

cuComplex *e, cuComplex *alpha_divident, float *alpha_divisor)  

{ 

    unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; 

 

    cuComplex mm = {0.0f, 0.0f}; // Register 

    if (idx < SZ)  

    { 

        // Matrix-vector product 

        for (int i = 0; i < N; i++) { 

            mm = cuCaddf( mm, cuCmulf( r[i] , A[idx*N + i]) ); 

        } 

 

        m[idx] = mm; // Store to memory 

        e[idx] = mm; // Store to memory 

 

        __syncthreads(); 

 

        // Dot 

        cuComplex beta = cuCmulf( cuConjf(r[idx]), mm );  

        // Reduce & broadcast 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 16, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 8, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 4, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 2, 32); 

        beta.x += __shfl_xor_sync(0xffffffff, beta.x, 1, 32); 

 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 16, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 8, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 4, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 2, 32); 

        beta.y += __shfl_xor_sync(0xffffffff, beta.y, 1, 32); 

 

        // Norm 

        float a = (mm.x * mm.x) + (mm.y * mm.y); 

 

        // Reduce & broadcast 

        a += __shfl_xor_sync(0xffffffff, a, 16, 32); 
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        a += __shfl_xor_sync(0xffffffff, a, 8, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 4, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 2, 32); 

        a += __shfl_xor_sync(0xffffffff, a, 1, 32); 

   // Thread zero of the warp stores to memory 

        if (threadIdx.x & 31){ 

            alpha_divident[threadIdx.x >> 5] = beta; 

            alpha_divisor[threadIdx.x >> 5] = a; 

        } 

    } 

} 

 

Finally, by completely unrolling the loop iteration and hardcoding the algorithm 

allows for an early exit, that means steps 5-9 in figure 4 do not need to be calculated 

for the last iteration. 

Matrix-Vector multiplication 

The matrix-vector Ar product is the main computational burden of the CR algorithm 

[36]. It is a memory-bound operation with low arithmetic intensity. The authors in [8] 

use the cublasCgemmBatched function from the cuBLAS library for the matrix-matrix 

and matrix-vector multiplications which computes a batch of small complex matrix 

products. 

To reduce the complexity the symmetric property of the Hermitian matrix A could 

be exploited. However, as the authors in [39] explain that the obstacle in designing 

an efficient SYmmetric Matrix Vector (SYMV) multiplication kernel is the data 

storage format. The symmetric matrix would be stored as the upper or lower 

triangular part for which it is difficult to achieve coalesced load and store memory 

access. 

At every iteration of the algorithm matrix A and vector r must be loaded. To use 

memory bandwidth efficiently matrix A or the vector r can be cached in shared 

memory from there they can be reached at a much higher speed than the global 

memory. During the multiplication process each row of matrix A is used only once 

while vector r is loaded for each row of the matrix A, this observation is not enough 

to draw safe conclusions on which approach would yield best results in the case of 

massive MIMO therefore both must be tested. A limiting factor of the kernel size 

would then be the number of matrices or vectors that can fit in the available shared 

memory.  

Reductions as part of scalar products 

The CR algorithms requires the computation of scalar products, which include global 

reductions operations (dot product, vector norm). Reductions pose a bottleneck 

when executing on parallel platforms, because of the synchronization barriers and 

communication between the processors.  
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CUDA’s built-in function that allows threads in a block to coordinate and 

synchronize with each other is __syncthreads. It acts as a barrier at which a thread 

must stall execution and is allowed to proceed only when all threads in the block 

have reached the barrier. Synchronization barriers reduce the capability of hiding 

instruction latencies. 

Typical implementations of reductions on GPUs make use of the shared memory 

and/or the atomicadd function to accomplish such computations, like the authors did 

in [8]. However, the small cache size in GPUs poses the limit for the simultaneous 

reduction of multiple vectors and furthermore atomics does not run at full memory 

bandwidth [40]. A more efficient way is to use warp shuffle commands. Threads 

active in a warp can exchange values between registers directly without the use of 

shared memory. For the special case where the number of users is 32, then the 

number of elements in each of the vectors is 32 and perfectly matches the size of a 

warp. That is reduction on a vector of size of 32 elements can be done with only a 

warp shuffle command. Shared memory usage is then eliminated, only a single 

instruction is required, and the level of explicit synchronization is reduced. In figure 

5 a representation of the warp shuffle operation. 

 

 

Figure 6. Warp shuffle operations. 
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Chapter 4 

4 Results  

4.1 Calculations  

Shown in [8] [10] [11], Krylov Subspace Methods and the CR algorithm are of lower 

computational complexity than direct methods like Cholesky decomposition 𝒪(𝑛3). 

Compared to the Conjugate Gradient it requires one less matrix-vector multiplication 

but one more vector update [36]. Shown in table 4, the number of read-write to 

memory instructions for each operation that is required during the execution of the 

CR algorithm are calculated when a kernel is executing only a single operation and 

when a fused kernel is executing multiple operations for matrices of size n×n and 

vectors of size n. 

 

 Operation Read Write 

Single 

Matvec 2n2 N 

Dot n 1 

Norm n 1 

Axpy 2n N 

Fused 

axpy + norm 2n n + 1 

matvec + dot 2n2 n + 1 

matvec + dot + norm 2n2  n + 2 

Table 4. Read-write operations for single and fused kernel implementations. 

For the CR algorithm three iterations  are sufficient to reach a good approximation of 

the exact solution in the case of m-MIMO according to [8] [10] [11]. Shown in table 5 

the number of read-write instructions that would be required for the CR algorithm 

after three iterations if it is implemented as a sequence of separate kernels each 

executing a single operation and if it is implemented as a single fully fused with 

early exit kernel when the input matrix is of size n×n and the vectors of size n.  

 

Separate 8n2 + 54n + 12 

fully fused + early exit 6n2 + 21n 

Table 5. Total number of read-write operations for the CR algorithm after 3 iterations. 

The total number of complex multiplications and additions for the CR algorithm 

after k iterations when the input matrix is of size n×n and the vectors of size n is 

given in table 6. 
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Operation  

Addition n2 + k (n2 + 7n) 

Multiplication n2 + k (n2 + 7n) 

Table 6. Complex operations for the CR algorithm. 

*k = number of iterations, n = number of elements 

In an uplink m-MIMO system with 128 BS antennas and 32 users, A would be 32x32: 

𝑯32×128
𝐻 ∙ 𝑯128×32 = 𝑮32×32 =  𝑨32×32 

vector r would be 32x1: 

𝐻32×128
𝐻 ∙ 𝒚128×1 = 𝒚𝑀𝐹

32×1 =  𝒓32×1 

To calculate matrix A in a per-subcarrier basis and since there are no data 

dependencies between subcarriers then in a massive MIMO OFDM system where the 

number of subcarriers, 𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑟𝑖𝑒𝑟𝑠 , can reach 128 and the number of symbols, 

𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠, can reach 64 then the number of matrices A to be inverted in parallel can 

reach up to: 

𝑁𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑟𝑖𝑒𝑟𝑠 × 𝑁𝑠𝑦𝑚𝑏𝑜𝑙𝑠 = 128 × 64 = 8192 

For a GPU with 65536 bytes of available shared memory and 2048 active threads per 

SM, then the number of instances of matrix A or vector r that can be fitted into 

shared memory and the ratio of used threads over the available is given in table 7.  

 

 
Size 

(bytes) 
Instances Threads 

Thread 

Ratio 

A 8192 8 256 12.5% 

r 256 64 2048 100% 

Table 7. Calculation of used shared memory and thread ratio. 

4.2 Simulation Results  

Shown in table 8, the execution time in 10-3 seconds for an ascending number 

(𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚 ) of input matrices 𝐀32×32  that must be processed in parallel, when 

starting from an implementation of the CR algorithm as a sequence of separate built-

in library kernels and gradually replacing the separate kernels with custom fused 

until reaching a single fully fused kernel, under the thread strategy of one warp per 

matrix/vector. 
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𝐀32×32 

𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚 

Execution Time 

Separate Axpy 
Axpy 

+norm 

matvec  

+ dot 

matvec+dot 

+norm 

early 

exit 

single 

kernel 

128 0.55 0.53 0.52 0.52 0.51 0.39 0.20 

256 1.17 1.16 1.16 1.16 1.16 0.88 0.47 

512 2.31 2.29 2.31 2.31 2.31 1.76 0.93 

1024 4.81 4.87 4.86 4.78 4.76 3.60 1.82 

2048 10.23 10.26 10.12 9.92 9.87 7.41 3.63 

4096 21.28 20.82 20.68 20.19 19.97 15.18 7.24 

8192 42.54 41.68 41.25 40.34 39.85 30.35 14.16 

Table 8. Execution times in 10-3 seconds for different fusion levels.  

 

Figure 7. Execution time in 10-3s for different fusion levels. 

Shown in table 9, the execution time in 10-3 seconds for an ascending number 

(𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚) of input matrices 𝐀32×32 that must be processed in parallel, when the 

shared memory is not used, when matrix A is loaded in shared memory, and when 

vector r is loaded in shared memory, for a fully fused kernel under the thread 

strategy of one thread per matrix/vector. 

 

 

 

 

 

 

 

 

 

42.54 41.68 41.25 40.34 39.85

30.35

14.16

Execution time (10-3s) vs Fusion level

separate axpy axpy+norm matvec+dot matvec+dot+norm early exit single kernel
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𝐀32×32 

𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚 

Time 

Shared Memory 

- A r 

128 0.97 1.68 0.70 

256 2.06 3.37 1.30 

512 4.36 6.71 2.64 

1024 8.79 13.41 5.56 

2048 17.96 26.69 10.89 

4096 36.17 53.38 21.50 

8192 72.69 106.52 42.13 

Table 9. Execution times in 10-3 seconds for one thread per matrix/vector, with and without 

using shared memory. 

Shown in table 10, the execution time in 10-3 seconds for an ascending number 

(𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚) of input matrices 𝐀32×32 that must be processed in parallel, when the 

shared memory is not used, when matrix A is loaded in shared memory, and when 

vector r is loaded in shared memory, for a fully fused kernel under the thread 

strategy of one warp per matrix/vector. 

 

𝐀32×32 

𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑦𝑚 

Time 

Shared Memory 

- A r 

128 0.20 0.27 0.19 

256 0.47 0.53 0.46 

512 0.93 1.16 0.87 

1024 1.82 2.12 1.69 

2048 3.63 3.87 3.32 

4096 7.24 7.29 6.51 

8192 14.16 14.36 12.84 

Table 10. Executions times in 10-3 seconds for one warp per matrix/vector, with and without 

using shared memory. 

On table 11 and on figure 8 the results are presented from the NVIDIA Visual 

Profiler for the implementation without the use of shared memory. 
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Variable Achieved Theoretical Device Limit 

Occupancy Per SM 

Active Blocks  3 32 

Active Warps 44.73 48 64 

Active Threads  1536 2048 

Occupancy 69.9% 75% 100% 

Registers 

Registers/Thread  35 65536 

Shared Memory 

Shared Memory/Block  0 65536 

Block Limit  0 32 

Table 11. GPU Utilization for the implementation without the use of shared memory. 

 

Figure 8. Stall reasons for the implementation one warp per matrix/vector without the use of 

shared memory. 

On table 12 and on figure 9 the results are presented from the NVIDIA Visual 

Profiler for the implementation with matrix A loaded in shared memory. 

 

Variable Achieved Theoretical Device Limit 

Occupancy Per SM 

Active Blocks  2 32 

Active Warps 7.98 8 64 

Active Threads  256 2048 

Occupancy 12.5% 12.5% 100% 

Registers 

Registers/Thread  34 65536 

Shared Memory 

Shared Memory/Block  8192 65536 

Block Limit  8 32 
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Table 12. GPU Utilization for the implementation with matrix A loaded in shared memory. 

 

Figure 9. Stall reasons for the implementation one warp per matrix/vector with matrix A in 

shared memory. 

On table 13 and on figure 10 the results are presented from the NVIDIA Visual 

Profiler for the implementation with vector r loaded in shared memory. 

 

Variable Achieved Theoretical Device Limit 

Occupancy Per SM 

Active Blocks  6 32 

Active Warps 40.83 48 64 

Active Threads  1536 2048 

Occupancy 63.8% 75% 100% 

Registers 

Registers/Thread  35 65536 

Shared Memory 

Shared Memory/Block  2048 65536 

Block Limit  32 32 

Table 13. GPU Utilization for the implementation with vector r loaded in shared memory. 
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Figure 10. Stall reasons for the implementation one warp per matrix/vector with vector r in 

shared memory. 

On figure 11 the plot of the results is shown for number of matrices versus time of 

execution for all implementations of a fully fused kernel under the thread strategy of 

one thread assigned per matrix/vector. 

 

 
 

Figure 11. Plot number of matrices versus time of execution in milliseconds for the 

implementations where a single thread is assigned to a matrix/vector. 

On figure 12 the plot of the results is shown for number of matrices versus time of 

execution for all implementations of a fully fused kernel under the thread strategy of 

assigning one warp per matrix/vector. 
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Figure 12. Plot number of matrices versus time of execution in 10-3 seconds for the 

implementations where a warp is assigned to a matrix/vector. 

 

Results are considered only for the runtime of the CR kernel and do not include the 

pre-processing stage (calculation of Gram matrix and matched filter vector).  
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Chapter 5 
 

5 Conclusions  

By merging kernels, the total number of read/write operations, as seen from the 

calculations in tables 4 and 5, can be dramatically reduced. The results of fusion can 

be seen in table 8 and figure 7 where the execution time starting from 42.54 

milliseconds for a separate kernel implementation gradually drops to 14.16 

milliseconds for a fully fused. The findings align with previous related work in [14] 

[37] [41]. 

Complete unrolling of the algorithm cuts down the overhead of the loop iteration 

(eliminating instructions that control the loop), allows the compiler in the 

background to optimize the code further, and any if-else statements or temporary 

variables that would be used between iterations are skipped. 

Fusing multiple axpy operations increases the workload assigned to each thread. The 

gain is higher when the vector norm is to be computed after the vector update. The 

number of loads is reduced by n (n the length of the vector), while the compute 

intensity added from the calculation of the norm helps hiding the memory latency of 

the GPU.  

For the matrix/vector+dot fusion, the computational intensity assigned to every 

thread is increased and the number of loads is reduced by 2n. The gain is higher in 

the case where the vector r is loaded into shared memory and can be fetched at 

higher speed. At the beginning of the first iteration the vector norm can also be 

added (matvec+dot+norm), the number of loads is then reduced by 3n.  

For every fusion between two or more kernels, the added overhead from separate 

kernel launches is avoided, the number of global synchronizations, and the number 

of data movements from GPU to CPU is reduced. 

A thread strategy of assigning one thread per matrix/vector is the simplest way of 

merging the algorithm in a single kernel. Results in table 9 show that this strategy is 

not optimal and even with the use of shared memory does not meet the massive 

MIMO requirements for under 10 milliseconds coherence time. 

Assigning one warp per matrix/vector and making extensive use of warp shuffle 

commands enables total fusion and ease of control of the groups of matrix/vector 

that are computed. The calculation of the dot products and vector norms are done 

using less compiler instructions and without the need of shared memory.  

The implementation without the use of shared memory uses 35 registers per thread, 

reaches 1536 active threads, and results in 14.16 milliseconds execution time. Shown 

in tables 10 and 12, the implementation with matrix A loaded in shared memory fits 

exactly eight (8) instances of matrix A, uses 34 registers per thread, reaches 256 active 

threads, and executes in 14.36 milliseconds. Execution time between these two 

implementations is quite close which is a hint that if shared memory could fit more 
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matrices, then the kernel would reach more active threads and possibly lower 

execution time.  

Best performance is achieved for the implementation with vector r loaded in shared 

memory. Shown in tables 10 and 13, forty-eight (48) instances of vector r are loaded 

in shared memory, 35 registers per thread are used, 1536 active threads are reached, 

and the execution time is 12.84 milliseconds.  

From the above implementations, none achieves max thread level parallelism. 

Limiting factors are either the size of available shared memory, case where matrix A 

is loaded in shared memory, or the number of registers per thread. For a machine 

with 65536 available registers and 2048 threads, the maximum number of registers 

per thread is 32. Register allocation explains the difference seen in calculations on 

table 7 and actual results in table 13. Developers do not have full control over the 

number of registers per thread therefore different compiler settings or versions 

should be tested. On the other hand, as explained in [42] max thread level 

parallelism does not always yield optimal performance.  

Compared to work done in [8] the algorithm is fully fused into a single kernel, 

shared memory is used for preloading matrix A or vector r, not for sharing 

intermediate results of dot products or vector norms. Results cannot be compared 

directly since the GPUs used differ greatly, here a small laptop GPU, and further 

investigation using different GPUs and compiler settings is required. 

The cuBLAS implementation of matrix-vector product is highly optimized, beyond 

the reach of the implementation in this work, but unfortunately the source code is 

private. It would of great interest if such an implementation could be incorporated to 

this work. 

As proposed in [41], the algorithm is fully unrolled into a single kernel and a barrier 

for synchronization and data exchange while a block is active, is implemented. This 

was achieved using warp shuffle commands and matches the case where the number 

of users in massive MIMO detection is 32. Loading vector r into shared memory 

yields the best performance. Results show that kernel fusion is also beneficial for the 

case of massive MIMO (many relatively small matrices that must be calculated in 

parallel) and an approach for the Conjugate Residual algorithm is presented.  

The programming model of CUDA has a programmer friendly interface, with lots of 

tools for visualising and debugging code, but still programming GPUs is error prone. 

Unrolling the algorithm and hardcoding often leads to unreadable code. Tuning 

kernels for memory efficiency is a complex task that degrades the productivity with 

most of the working hours eventually being consumed in debugging. All these could 

also possibly explain why the authors in previous works decided to combine generic 

kernels from libraries with custom kernel implementations. 

Future work could be the fusion of the preconditioned CR algorithm. Performance 

gains by using techniques presented in [43] for the multiplication of a matrix by its 

transpose and the affect it would have on the numerical stability of the algorithm 

could be explored. The kernel fusion could then begin at the pre-processing stage of 

the equalizer. Great attention has been drawn on implementations using mixed 

precision and half precision data types for iterative solvers [44]. A half precision 
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implementation could be tested for further performance gains and how much it 

affects the numerical stability of the algorithm.  
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Disclaimer  

This thesis work is available to all readers and researchers for study without regard 

to race, color, religion, sex, sexual orientation, marital status, pregnancy, parental 

status, national origin, ethnic background, age, disability, political opinion, social 

status, veteran status, union membership or genetics. 

The contents of these pages are provided as an information guide only. They are 

intended to enrich information regarding the subject matter covered. The advice and 

strategies contained herein may not be suitable for your situation. You should 

consult with a professional where appropriate. The author shall not be liable for any 

loss of profit or any other commercial damages, including but not limited to special, 

incidental, consequential, or other damages. 

Reasonable efforts have been made to publish reliable data and information, but the 

author cannot assume responsibility for the validity of all materials or the 

consequences of their use. No responsibility is accepted by or on behalf of the author 

for any errors, omissions or misleading statements on these pages or any site to 

which these pages connect. 

If any copyright material has not been acknowledged, please contact so it may be 

rectified in the future. 
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Notation  

Upper-case boldface letters are used to denote matrices (e.g., X, Y), while column or 

row vectors are denoted with lower-case boldface letters (e.g., x, y). Scalars are 

denoted by lower/upper-case italic letters (e.g., x, y, X, Y) and sets by calligraphic 

letters (e.g., X, Y). 

The following mathematical notations are used: 

 

 

ℝ, ℝ𝒏, ℝ𝒎×𝒏 Set of real numbers, n-vectors, m × n matrices 

ℂ, ℂ𝒏, ℂ𝒎×𝒏 Set of complex numbers, n-vectors, m × n 

matrices 

𝒙 ∈ 𝑺 x is a member of the set S 

𝐱𝐢 The ith element of a vector x 

𝐀𝐢𝐣 The (i, j)th element of a matrix A 

𝐀∗ The complex conjugate of A 

𝐀𝐓 The transpose of A 

𝐀𝐇 The conjugate transpose of A 

𝐀−𝟏 The inverse of a square matrix A 

ℜ(x) Real part of x 

ℑ(x) Imaginary part of x 

‖𝒙‖𝟐 The L2-norm 

𝐱𝐲 Dot product of vectors x and y 

𝐈𝑴𝑴 The M × M identity matrix 
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