

Bachelor Thesis
Master’s in computer science 300hp

Complaint system for Health Care

Center Hjärtat

Halmstad 2022-09-26

Collins Abika

Preface

I would like to thank my supervisor Sundas Munir for her high-quality guidance and advice

throughout this project. I would also like to thank the IT support of the Health Care Center

Hjärtat for providing me with a project where I can put my knowledge into practice. And

finally, I want to thank Högskolan Halmstad for providing me with the preknowledge, and

being able to take on this project.

Abstract

Today the IT support could be overwhelmed with loads of requests from
the clients within the Health care center Hjärtat (Also known as HCCH)
through email, which is an inefficient way to store and manage information
of each complaint. Tracking down the list of requests is also an issue. For
the goals to ensure the achievements of expanding to new clients, IT support
needs a better alternative way to manage, store, and retrieve information.
This thesis reports a prototype of a complaint management system imple-
mented for the Healthcare center Helsingborg Hjärtat. The software archi-
tect pattern in this project is Model view control and applied on the Visual
studio .Net core with the programming language of C-sharp and HTML. Test
results showcase the prototype of the complaint management system as an
administrator, and the result of the system handles the complaint cases well.
The IT support experience keeps track of the complaints more efficiently
sent from the client users.

1

Contents
1 Introduction 4

1.1 Problem statement . 4
1.2 Purpose . 5
1.3 The goal . 5
1.4 Requirements specifications . 5
1.5 The outline of the thesis . 6
1.6 Project limitation . 6

2 Background 7
2.1 Complaint management system 7
2.2 Client server model . 8
2.3 Database . 9

2.3.1 Relational databases . 9
2.3.2 CRUD . 9

2.4 Model View Control . 10
2.5 Scalable complaint management system 10
2.6 Literature review . 10
2.7 Related work . 11

2.7.1 Key takeaways from the related works 12

3 Methodology 13
3.1 Requirements . 13
3.2 Design . 14

3.2.1 Choice of method . 14
3.2.2 Model View Controller 17

3.3 Development environments . 17
3.3.1 Visual Studio . 18
3.3.2 NODE.JS . 18

3.4 Comparison between database development environments 19
3.4.1 Microsoft structured query language 19
3.4.2 MySQL . 19

3.5 Programming language . 20
3.6 Choices of development tools . 21
3.7 Testing strategy . 22

2

4 Implementation 24
4.1 Normalization of database . 24
4.2 Frontend design . 26

4.2.1 Client side frontend . 26
4.2.2 Admin side frontend . 27

4.3 Implementation of database . 28
4.4 Start page . 29
4.5 User logged in . 31

4.5.1 Sending complaint . 32
4.5.2 Update profile . 34

4.6 Admin . 35
4.6.1 Complaints . 35
4.6.2 User account monitor . 36

4.7 Complaint priority . 36
4.8 Priority queue and heap structure 39

5 Testing 41
5.1 Analysis of test result . 41
5.2 Reassurance of the goals and requirement specification 42
5.3 Testing user account . 42
5.4 Analysis of the admin page . 47
5.5 Priority Complaints . 53
5.6 User interface test . 54
5.7 Test summary . 54

6 Discussion 56
6.1 Test results . 56
6.2 The projects reconciliation . 56
6.3 The evaluation of Requirement Specification 57
6.4 Comparison to the related works 58
6.5 Result of economic and environmental perspective 58

6.5.1 Integrity and security . 58
6.5.2 Social . 59

6.6 Room for future improvement 59
6.7 Deployment and maintenance . 60

7 Conclusion 61

3

1 Introduction
Storing and retrieving information has made a lot of impact in today’s society.
Many different institutions today are storing and retrieving information in data
storage [1]. Health care centers have made a good example of storing and re-
trieving data. Workers in healthcare can, for instance store and retrieve informa-
tion about the patient’s different attributes [2]. Vårdcentralen-Hjärtat is a health
care center in Helsingborg or HCCH, Sweden. The workers in the Vårdcentralen
Hjärtat commonly use computer and software programs. The majority of the
workers in the health care center do not have enough technical skills to solve
certain hardware or software error. When an issue occurs, the health care center
sends a request for solving the issue. The IT support gets emails as their only
notification for any client (also known as the workers) request. The IT support in
Vårdcentralen Hjärtat is planning to expand their IT support to other major new
clients, for example, schools, new healthcare centers, or even support in private
sectors. To expand to new major clients, IT support needs to solve the obstacle
of handling loads of complaints beforehand due to potentially being overwhelmed
with loads of requests from the clients within Vårdcentralen Hjärtat through email
which is an inefficient way to store and manage requests information. This thesis
proposes implementing a software prototype for IT support in Vårdcentral Hjärtat.

1.1 Problem statement
When a computer issue occurs in the HCCH, a worker sends an email to IT support
to complain, for example, a software program not functioning well or a network
not working. When the IT support of the HCCH receives the email, the IT support
provides the requested service. The IT support is planning to expand to new major
clients. Getting requests and storing the complaint information from the workers
or the client in email is not optimal due to the lack of monitoring and tracking.
A better complaint management system is required for IT support when they ex-
pand their IT support service to the new major client by receiving, responding to,
monitoring, and retrieving client complaints.

4

1.2 Purpose
• The purpose of the project is to improve managing, storing, and retrieving

complaint information for IT support.

• Another purpose for the project is to analyze how to withstand and handle
loads of complaints and request data as the IT support in HCCH Helsing-
borg is planning to expand to new major clients.

1.3 The goal
The goal of this project is to replace the current way of sending complaints through
email with a prototype of a complaint management system. For this, a prototype
of a complaint management system is implemented that is able to receive and
send complaints. The prototype is a web application. The goal is also to prioritize
different complaints. Another goal is to showcase a scenario of scaling the system
for the IT support future extension. In order to achieve these goals, there are
certain requirements that need to be fulfilled.

1.4 Requirements specifications
The project consists of different requirements which were given by the project
providing the IT support of HCCH.

• Provider, the IT support in the HCCH is sole the Admin of the system.

• The Admin of the prototype web application must be able to retrieve the
information from the users and update the case status when it validates and
completes the complaint task.

• The frontend interface must be minimalist and non-complicated design due
to the clients being non-technical.

• Prioritize complaints based on the category. Scale of preference will be
available depending the acute status or the category

• Software performance must be attainable.

5

1.5 The outline of the thesis
• Section 1: Introduces the project, its purpose, and its goal.

• Section 2: Presents the Background of the project and gives a better under-
standing of the project.

• Section 3: This section presents the method adopted to implement the pro-
totype of this project.

• Section 4: This section presents an implementation of the complaint man-
agement system prototype.

• Section 5: This section presents the details of the test cases.

• Section 6: This section presents a discussion based on the outcomes and
limitations of the project.

• Section 7: This section presents the conclusion of this project.

1.6 Project limitation
The aim is not to fully deploy the prototype to the new major clients of the IT
support. The complaint management system prototype is to test only a process
of a complaint management system. An advanced frontend user interface is not
the priority of the project. The priority in the frontend is a functional design
where the client can send a complaint according to the project requirement. The
web application in this project is only a test phase for the IT support before fully
expanding to new major clients.

6

2 Background
This section presents the background details on the complaint management sys-
tem, client-server model, the data that is stored, and software architecture. This
section also presents similar works and literature reviews.

2.1 Complaint management system
A complaint management system is a management technique for evaluating, ana-
lyzing, and responding to complaints. Complaint management software resolves
and responds to complaints and inquiries and facilitates any other feedback [3].
The Complaint Management system consists of multiple processes for dealing
with grievances in the organization to solve the problem. Figure 1 describes the
procedure for handling complaints. Studies of email re-finding by Elsweiler D,
Baillie M, and Ruthven I [4] show that using emails as information storage and
retrieval within an organization is not efficient. Other studies [5] [6] also suggest
that an alternate way of storing and managing information such as client requests
would be more efficient.

Figure 1: Complaint Management System

7

2.2 Client server model

Figure 2: Client server Model

A complaint management system consists of a client-server model, a software
architecture of a client, and a server (see Figure 2). The client side of the model
sends requests to interact with a web application with a user interface or in other
words frontend. A complaint management system consisting of the client-server
model, needs a database, frontend, and back-end.

To start with the frontend, there are different categorized programming lan-
guages. The frontend can be implemented using different languages such as
HTML (HyperText Markup language), CSS, and javascript. HTML is a text-based
approach to describing the structured content of the complaint management sys-
tem interface. It showcases how text, images, and other elements are displayed.
CSS or Cascading Styles Sheets is the language that describes how the elements
can be displayed on the screen. Javascript is the programming language that en-
ables interaction with a user. With the three different programming languages of a
web application, the first element of the complaint management system frontend
enables user clients to interact.

Without the second element of the complaint management system, which is the
back-end. The back-end consists of two-element of the complaint management
system, the server, and the third element is a database. The server responds to the
request by performing the operations according to what is requested. The client-
server uses protocols such as HTTP (Hypertext Transfer Protocol) to transfer text,
images, and videos. In a complaint management system, the client is then able

8

to send the request to the server, and the operation will be performed. A popular
language that is used for a server is PHP(Hypertext Preprocessor) [7] [8].

2.3 Database
The database is the third element of the complaint management system that stores
all the data and information. In a complaint management system, when a client
sends a complaint, it is important to store information with different attributes
from the client on a large scale. The importance of handling large data is due
to the HCCH IT support plan for their expansion. A better structure of incoming
complaints can be exhibited. A traditional database model is a relational database.

2.3.1 Relational databases

In relational databases, the data in these databases are organized into predefined
categories using a series of tables. A table is made up of rows and columns, with
each column containing data for a given category and each row containing an
attribute of that data determined by the category. To scale up with a relational
database approach requires using a larger computer with loads of memory space.
This approach is called vertical scaling. Structured Query Language SQL is a
programming language that provides access control, manipulation, and defining
data information, [9]. Operations in SQL called CRUD.

2.3.2 CRUD

CRUD(Create, Read, Update, Delete) is a key feature that operates in relational
databases. It plays a significant role in a complaint management system. The
operation” creates”, creates new data that adds and stores it in the database when
a user client sends a complaint. Read operation is when the administrator retrieves
the information of the client with the complaint message. The operation ”update”
is the data that updates by the client and executes the task from the database.
”Delete” is when the operator removes the data from the database [10]. The
operations manipulate and fetch the data to the server as an object. The code
structure in the server uses a software architecture called Model View Control.

9

2.4 Model View Control
The model is divided into three layers which contain Model, View, and Controller.
The model processes all function logic written in code and fetches data from the
database. The View updates the view or the information displayed to the user. The
View contains mainly buttons and information that is suitable for user interface
logic. The Controller interfaces between the View and the model layer. When
the user of the prototype interacts with the system, the Controller requests the
functions or data from the model (see figure 3).

Figure 3: Model View Control

2.5 Scalable complaint management system
A company that is planning to expand its service to more clients must consider
scaling. Scaling is defined as a performance not being affected when it is moving
from a smaller operating system to a larger operating system. It also measures
how much a computer system can handle a high load of users. An organization
that can scale will be prepared for high user load and even expansion. For the IT
support in the HCCH’s case, expanding to new major clients and being able to
scale and knowing when to scale up is optimal [11]. A new major client would
indicate more traffic for a web application.

2.6 Literature review
This subsection presents statements from different literature that motivates the
relevance of the problem that is to be solved in this project.

According to previous reports, increasing the number of incoming emails of
complaint requests is inefficient if an organization needs to scale. [12] [13]. It

10

leads to potentially missing track of the problem request and what category the
issue is about. A case study from Mercu Buana University suggests software
management that uses ticketing is a better alternative [13]. A ticketing feature is a
list of client requests that are organized to keep track of the information and con-
sist of status [14]. A helpdesk software management with a ticketing feature was
implemented to facilitate dividing and sorting incoming complaint requests into
different categories as opposed to receiving them in a single email or from phone
calls. The report [13] concluded that the implementation of helpdesk software is
efficient in keeping track of incoming complaints from clients.

According to another report [12], using email to receive client requests is im-
practical. A better alternative way is that requests coming from the clients are
recorded and stored. A feature that automatically records and stores the data from
the clients is called ticketing. In the report, a form was used to analyze what fea-
tures can be used in the help desk complaint management system. The results
showcase that prioritizing different incoming data and updating status in a help
desk complaint management system is significant [12].

2.7 Related work
This subsection presents similar work and key takeaways that are useful for the
complaint management system in HCCH. The work does not specifically show-
case a complaint management system in a healthcare center but showcases exam-
ples of handling and managing client complaint requests.

A complaint management system similar to this project is implemented in a
Tertiary institution project as a solution for the students to file concerns and pre-
serve reliable records of such complaints [15]. The Waterfall Methodology was
used as the research methodology for this project. The Database Management
System (DBMS) is MySQL, while the Integrated Development Environment is
Visual Studio Code (IDE). The test results demonstrated that complaints stored in
a database make it easier to retrieve respective rather than the student writing a
formal complaints letter to the Head of Department. A Key takeaway from this is
the waterfall methodology. The waterfall methodology focuses on each key point
to be achieved before aiming to achieve the next one, such as planning, designing,
developing, and testing [15].

11

Another study presents a software solution with a similar concept of a com-
plaint management system for workplace PC troubleshooting [16]. The system
includes some functions, such as issue status, priority, and storage. The system
was built and developed following the organization’s standards. The result of the
project demonstrates that the system satisfies the needs of the information tech-
nology department by including capabilities such as recording solutions for future
reference, text chat, and sending text messages, among others. One of the key
takeaways from this project is how the Entity-Relationship (Also known as ER)
diagram was designed and how tables are relating to one another. The helpdesk
management system contains employees, technicians, and a user account table.
Many employees can send a complaint to the technician which results in a ”many
too many” relationship, An employee can only have one user account which turns
out to be one to one relationship. Knowing the type of relationship between the
tables helps in understanding and designing an ER diagram for a database of the
complaint management system in HCCH. Another takeaway is using priority as
a feature for a complaint management system. Such a feature has the advantage
to prioritize the most urgent issue firsthand before handling other issues with less
urgency. It results in saving time and efforts [16].

2.7.1 Key takeaways from the related works

The common nominator of a solution with the related works in sections 2.8.1-
2.8.3 for complaint management is a database and a user interface. A takeaway is
categorizing the incoming records for them to be more effective in tracking and
handle loads of information.

12

3 Methodology
The methodology in this project carries out with the waterfall methodology [17].
The method in this project of implementing a complaint system splits into differ-
ent phases. The waterfall model approach is a methodology known for software
development and engineering.

Figure 4: Waterfall model

3.1 Requirements
There are four requirements in this project.

• The first requirement is to ensure that only the IT support has access to the
admin portal.

• The second requirement is to ensure that the complaint management system
performs CRUD operation where the Admin is able to retrieve and update
the complaint status that is sent from the client.

• The third requirement is that the complaint list on the Admin side sorts in
order of priority. The priority depends on the category of the complaint sent
from the client.

13

• The fourth requirement is a good design of the user interface. This require-
ment is for the client whose knowledge to IT is low.

These main requirements can ensure the achievement of the goals of this
project.

3.2 Design
3.2.1 Choice of method

In this project, a full-stack web application is a choice for implementing a com-
plaint management system. There are several ways to implement a complaint
management system. One way to implement a complaint management system is a
stand-alone desktop application. The desktop app is more secure if it runs offline
which makes it more difficult for hackers to access the software program. More
powerful hardware components are required to run a desktop application which
makes the speed performance faster. A desktop is capable of running offline,
which makes privacy safe using the app. The disadvantage of the desktop appli-
cation is downloading process and manual upgrade for every computer. Desktop
apps consume more memory space than web applications. Webb application on
the other hand is more centralized due to one server that is running the web appli-
cation program on computers from all over the world can access and use through
the website. An advantage of the centralization system is that all the computers
do not need to go through downloading a program. A web application is more
remote efficient than a desktop application which is what the HCCH is aiming for.
Implementing a complaint management system on a web application also comes
with some downsides. The downsides of web applications are that higher security
risk due to web applications only running online, which makes it more likely for
hackers to access the web app than a desktop application.

Another way to implement a complaint management system is a mobile app.
Mobile app usability is higher than web application, according to research [18].
Mobile applications run both offline and online compared to web applications with
faster execution time. The downside of implementing a mobile app instead of a
website comes with a longer process to deploy, adapting the operating system’s
latest update [18] [19].

14

In conclusion, a web application is a choice for implementing a complaint man-
agement system due to a centralization system that can update the application
without the clients updating the web application remotely. It is also due to the IT
support’s future expansion plan where new clients can access the web app through
a web browser without downloading the program, which is time-consuming [20].
An analysis of the pros and cons of each choice is included in figures 5-7.

Figure 5: Advantage and disadvantages web application [20]

Figure 6: Advantage and disadvantage of desktop applications compared to web
application [20] [21]

Figure 7: Mobile application advantage and disadvantage compared to web appli-
cation [18] [19]

15

The prototype works in the form of a full-stack web application. It consists of
three different programs that work as a combination for the application to func-
tion [22]. A Full-stack web application is based on the client-server model (section
2.2).

Figure 8: The three key elements of the prototype

16

3.2.2 Model View Controller

In the visual studio, a .Net core project was created with a model, view, and con-
troller, each of them as a folder. In the model folder, three model classes were im-
plemented. The classes in the model folder are clientcomplaint.cs, Clientuser.cs
and UserAdmin.cs file. The object-orient classes receive the fetched information
data from the database. The object classes contain the same attributes in the tables
being fetched from the database. Each of the object-oriented classes is meant to
be fetched from the three different tables in the database. In the Controller, four
controller classes were implemented. AdminController, ClientController, Com-
plaintController and Homecontroller. Homecontroller is the controller class for
the client user. The classes consist of methods that redirect. View files are consist
of three different layouts (see figure 9).

Figure 9: Classes in the MVC in the crud operation

3.3 Development environments
A compatible and suitable development environment is important when develop-
ing the prototype [23]. This subsection showcase’s brief analysis of the differ-
ence between the development environments and database management systems
for this project.

17

3.3.1 Visual Studio

Visual Studios is a full-stack development environment with the possibilities of
programming web and databases. The development environment is a visual stu-
dio implemented by Microsoft that provides multiple options of programming
language for any developers to use. A development environment that supports
multiple programming languages makes it flexible. A feature such as debugging
is an advantage due to making it faster to find the error in the process of trou-
bleshooting. Another advantage of visual studio is the wide variety of supported
features that combine web and native programming languages. The downside of
visual studio is high CPU usage and loads of memory requirements from a hard
drive [24].

Figure 10: Advantages and disadvantages of Visual Studio [24]

3.3.2 NODE.JS

Figure 11: Advantages and disadvantages of Node JS [24]

NODE.JS is a development environment built on Chrome notoriously for a
mobile application that also suites for web applications [25]. The only optional
programming language when the developers are using NODE.JS is Java script. A
run time environment provided by NODE.JS is implemented in C++ called V8.
V8 run time environment consists of good code management and compilation to
its native code. The Node.JS library includes an HTTP server module that can be

18

extended with packages. The downside of Node.JS is that it is compatible with
none relational databases but is not compatible with relational databases. [26].

3.4 Comparison between database development environments
This section presents comparisons between database development environments
and optimal choice for the prototype.

3.4.1 Microsoft structured query language

MSSQL (Microsoft structured query language) is a relational database platform
developed by Microsoft. Its primary function as a database server is storing and
retrieving requests from other web or software products. An advantage of using
MSSQL as the database platform being compatible with visual studios. It leads
to more flexibility between the MSSQL and the visual studio during the develop-
ment of a web application. ACID is a property that ensures valid transactions for
the database which MSSQL acquires. Another upside is that the server can run
on localhost and a network. The downside is that removing a table is not flexible.
Removing a table means removing all relations between other tables. This down-
side of the MSSQL indicates good planning is required before implementation is
critical for time-consuming if an error were to occur.

Figure 12: Advantage and disadvantage of using Microsoft structured query lan-
guage

3.4.2 MySQL

MySQL is an Oracle-developed relational database management system based on
structured query language (SQL). MySQL’s primary objective is to be compatible
with a wide range of technologies and architecture. It makes MySQL open to dif-
ferent solutions. Being compatible makes it work with a wide range of operating
systems and languages, including PHP, PERL, C, C++, JAVA, and others. Since
it is open-source, there is a large community of developers that can help. MySQL

19

maintaining the integrity of data through atomicity, consistency, isolation, and
durability (also known as ACID) is also an advantage. A database platform with
ACID will ensure preserving the consistent state of data. The downside of the re-
lational database management system is its lack of debugging. This downside of
MySQL could potentially lead to more time consumption during troubleshooting
if an error were to occur. MySQL lacks out-of-box or so-called built-in functional-
ity, which means it does not come with native features after installation. It makes
the MySQL plugin dependent. A similar downside to MSSQL in section 3.3.5 is
good planning requirement before implementation is critical for time-consuming
if an error were to occur due to it being a relational database platform [27] [28].

Figure 13: Advantage and disadvantage of MySQL

3.5 Programming language
In this subsection, the two programming languages JavaScript and C-sharp, are
compared for the optimal choice for the prototype.

The advantage of JavaScript is that the language works on different platforms,
such as mobile applications and also console applications. This language does
not take much memory and has good speed and potential when less memory is
used. JavaScript utilizes a large amount of library which simplifies a program-
mer’s [29].

The disadvantage is that when the code is stored on an open server, the code
is not converted to binary form as C-sharp does. This leads to reduced security
and a greater chance that hacking can take place. When it comes to running code,
JavaScript is very tough, and a long delay can occur, especially if it is a large
piece of code. This is because the language does not utilize multiple processors.
JavaScript also does not allow the reading of files and does not write files either
for security reasons.

C-sharp is the language most used in Visual Studio. The language is easy
to learn and easy to read the coding. C-sharp has a large number of features,
more than JavaScript. A big advantage is that C-sharp integrates very well with

20

Figure 14: Advantage and disadvantage of JavaScript

Windows. It was created specifically for Windows. The language is also efficient,
and the process from development to production can take place very quickly. The
language is similar to JavaScript, and it is very easy for a programmer to learn
the language. Another advantage of C-sharp is that well when the code is stored
on an open server, it ends up there in binary form. The disadvantages are that
C-sharp is part of the .NET framework, so the server running must be Windows.
The language is not as good as JavaScript in developing applications for multiple
platforms. C-sharp language develops apps for the Windows platform, and a lot
of memory is also used in C-sharp.

Figure 15: Table of advantage and disadvantage with C-sharp

3.6 Choices of development tools
With a sample of advantages and disadvantages of programming language and
development environment, the choice of development environment for the back-
end server is Visual studio. Visual Studio enables the usage of .Net core. .Net
core is a modern, open-source, multi-platform, and multi-purpose development
framework for creating modern, quick, and scalable applications .NET Core is
open source and supported by a large community [24]. The choice of program-
ming language is C-sharp due to the simplicity and knowledge before the project.
C-sharp supports a large number of library functions. The choice of the database
management system is MySQL due to its being highly compatible, and it makes

21

MySQL open to different solutions. Being compatible makes it work with a wide
range of operating systems and languages such as C-sharp.

Figure 16: Choices of development tools

3.7 Testing strategy
The results of the testing strategy are based on the goals that are set in the in-
troduction section, which measures if the achievements are reached. The testing
strategy consists of four different tests.

• The first test is login in as admin. A user registers in the system under testing
by entering the user name and password in the admin portal. If the user is
not able to log in as the Admin, then the first requirement specification is
achieved.

• The second test is IT support as an Admin retrieving complaints from client
users of the complaint management system. The first step in the second test
is creating a user account and sending a complaint. To confirm the first step
is working, the database updates in the client table and the complaint table.
The second step in the second test is logging in as Admin and checking if
the same complaint in the database is also on the admin page. The third and
final step in the second test is updating the complaint status and checking
in the database and the user account if the complaint status is updating.
With the three steps of the second test working, the second requirement is
achieved.

• The third test consists of testing the priorities of the complaints. The first
step of the third test is to send three or four complaints from the user and
check if the complaints sort depending based on the category. The com-
plaint with the highest priority is at the top of the complaint list. If the
complaints with the highest priority based on the category are at the top of
the list, then the third requirement specification is achieved.

22

• The fourth test is to examine the user interface. The IT support workers are
two reviewers checking each page of the complaint management system.
The review is rated on a scale between 0-10. The rating formula is shown
below:

x =
1
n

n

∑
i=1

xi =
1
n
(x1 + · · ·+ xn)

“n” represents the number of pages, “x” is the rating score for each page,
and the variable x is the result. If the results correspond to 100 percent rating
success, the fourth requirement specification is achieved.

Achieving four requirement specifications in the tests ensures the goals of this
project.

23

4 Implementation

4.1 Normalization of database
Before implementing the database, designing the table by normalizing it is nec-
essary for a relational database. The table is designed from the information that
is necessary for the IT support to receive from the employees in HCCH, and the
table is also designed for the employees to receive information on the complaint
case status. The table contains a total of 16 different attributes, as shown in figure
17.

Figure 17: The complaint case table

24

Due to both employee clients and IT support in need to receive information
for the complaint case, the first normalization form (also known as 1NF) is not
enough. 1NF is a table with non-repetitive columns, and 2NF is 1NF with separate
tables with different attributes depending on the primary key. Therefore the 1NF
table was developed to 2NF, which contains three tables. The three tables are
client user, complaint, and Admin table (see Figure 18). A Client user will be able
to send multiple complaints. Therefore the table from client user to complaint
table is on to many relations. An Admin can receive and read a list of complaints
from different senders, which makes it on to many relations from the table Admin
to the complaint table. The IT support Admin will read the description of the
complaint case and update the status when the task is received and completed.
The table relates through the client ID and Admin ID due to the attributes being
the primary key in each of the tables.

Figure 18: Complaint case table in 1NF to 2NF

25

4.2 Frontend design
The frontend contains a total of 12 different pages with six pages each for both
the Admin and a client user. The client user can log in with the correct username
and password. If the client user does not have an account, the client can register
and then be able to log in to send complaints. When the Admin logs in, a register
option is available on the start page to prevent any user to register as an admin.
On the start page, there is a login option for the Admin(see Figure 19).

Figure 19: Admin and client login

4.2.1 Client side frontend

The client side frontend contains six pages. The first page starts with the login
page for the client user. If the user of the client side does not have an account,
then the registration route will be the option. As the client is logged in, the home
page contains a list of complaints that were sent from the same client user. The
first route is the next page which is where the client can fill in new complaints and
return to the homepage to see the status of the complaint. The second route is the
Update page, where the client user can update their profile information (see figure
20).

26

Figure 20: Client frontend route map view

4.2.2 Admin side frontend

The admin frontend contains six pages with two routes diverging from the second
page. The first page of the first routes contains a list of complaint IDs. The second
page of the first route contains a selected complaint ID with details. On the second
page of the first route, the admin updates the status of the complaint ID when the
complaints have been validated, processed, and completed. In the second route,
the first page contains a list of client user IDs with a username. When a client ID
is selected, the second page of the second route will contain the client user detail
and a list of complaints sent by the selected client ID. As an Admin, client users
are able to be deleted on the same page (see figure 21).

27

Figure 21: admin frontend route map view

4.3 Implementation of database
The database is developed in MySQL workbench. The first step is designing
an ER model. The tables designed in the ER model are the client user table,
complaint table, and admin table. Relation between client table and complaint
falls into the category of one to many. The relation category is due to one client
user in HCCH being able to send many complaints. The relation between the
Admin table and complaint also falls into the category of one many relations due
to one admin as able to receive multiple complaints accordingly (see figure 22).

28

Figure 22: ER model

4.4 Start page
As the web application runs and displays the login.cshtml. file as the first page,
the map controller route in the startup.cs file configures for the login.cshtml file to
be the first file (see figure 23).

Figure 23: implementing login file as start page

The ClientController is called and is specified to use the action login method,
which then returns the view for the login page (Figure 24).

29

Figure 24: Action Login method

Action Methods are responsible for executing requests and generate responses
to them. For a user to have a user account, a navigation link to the registration
page or the register.cshtml file is declared ”asp-controller” to ”Client” and asp-
action to ”Register” in the login.cshtml file. The asp-controller uses the client-
Controller.cs to find and execute the Iaction Register method. There is two reg-
ister action method in the client controller class where one has an input for the
clientuser object. In this case, the asp-action calls for the one without the client
user input due to the navigation link not providing any input. Register method
then returns view Register.cshtml file, which switches the page from the login to
the next page.

Figure 25: Navigation

30

Figure 26: Navigation link in Login view file

Figure 27: Register action method

The registration page ”Html.beginForm” is implemented with three different
inputs for each attribute of the object the client user is to receive from the text
inputs written by the user. When the ”Html.BeginForm” receives the inputs, The
Register action method with input for client user object from the controller client
is then called. In the Register action method, MySQL connection variable ”con”
opens a connection to the database. The connection is provided with a string
written in SQL language. When the insert occurs, the client user attributes are
converted to Strings and added as values in the SQL string code. When the data
is added to the database, and the user returns to the first login page being able to
log in.

Figure 28: Register action method

4.5 User logged in
On the log-in page, two text input was implemented for the user to type in the
user name and the user password. The inputs are then sent to the html client user
object, specifically to the password and user name attributes. From there, the html

31

begin-form navigates to the ClientController, which in turn to the action method
Login2. The Login2 method receives the client user object as input. The SQL code
in the Login2 method executes and searches for the same data in the database. If
the data matches, the http session uses the client user object name attribute that
matches with the database for the next page to be displayed. If the text input from
the user does not match the Login2 method will return an error warning as an
invalid account. Figure 29 showcases the scenario of the user login.

Figure 29: Flow chart of user login

4.5.1 Sending complaint

As the user is logged in for it to add a complaint, a navigation bar with a navigation
link to the complaint file is implemented in the Layout file(see figure 30).

32

Figure 30: Layout of the navigation bar user logged in for the client

The complaint consists of implemented text inputs for complaints that match
the clientcomplaint object attribute. The same method for creating a client user
object provides the in complaint.cshtml file. The text input sent is sent to the
”clientcomplaint” object attributes which are then navigated to the Homecon-
troller file.

Figure 31: Text input to the object

In the ”Homecontroller” file, the action method Complaint is called and exe-
cuted by an SQL code that stores the information in the database.

33

Figure 32: Client Complaint object executed in SQL

4.5.2 Update profile

In figure 33, the profile navigation link directs the user to the profile page the same
way as the previous method. For a profile page to present the profile of a user that
consists of account details, an SQL code was used in the action profile to select
specifically the user’s account detail from the database

Figure 33: Selecting user account detail from the database

Figure 34: Implementation of Updating profile from the user

34

4.6 Admin
On the login page at the bottom page, a navigation link is implemented, which
navigates to admin login.cshtml page. In the admin login, text inputs are imple-
mented for the admin object attribute. In that case, the client user object cannot
log in at the admin frontend view. When the Admin is logged in, the admin login
page uses the admin layout view compared.

4.6.1 Complaints

The navigation link on the navigation bar is implemented for the Admin user to
be able to view the incoming complaints. In the adminController, the method
complaints execute SQL code that selects and fetches the complaint into the client
complaint object list. The list is printed, and the Admin can view the complaints.
To update the status of a complaint as an administrator, the action method update,
checks if the administrator has inserted ”Completed” in the text input that applies
to the status attribute in the complaint object. Then the finished date will be added
to the complaint and execute the update function in the SQL code. And If the text
input is not completed then the status attribute will be updated but without adding
a ”Finished date.”

Figure 35: implementation of updating profile from the user

35

4.6.2 User account monitor

For the Admin to also know how many accounts are using the complaint man-
agement system, an action to read a list of client users from the database was
implemented.

Figure 36: Action method to monitor client users

4.7 Complaint priority
To possibly prioritize different complaints, a priority queue algorithm is necessary.
A parameter that is not in the database table is in the model complaint parameter
as an integer key value parameter in the model class (see figure 37).

36

Figure 37: Key value parameter and component

The key value is the integer value that determines the priority depending on
the parameter of the same model object complaint. There is only five amount of
category that the client can select on the drop-down when sending a complaint.
That means there are between 1 and 5. In other words, a higher key value means
higher priority. For a key value to be determined, a complaint passes through a
method called ”set key value”. ”Set key value method” checks the string value
of the complaint category parameter. The key value assigns a value based on the
category the client chooses when a complaint is written. The case determines the
key value before entering the priority queue.

37

Figure 38: Key value parameter

Figure 39: Implementation of set key value

38

4.8 Priority queue and heap structure
Suppose each key value ”1,2,3,4,6” in an array or list, the number with the highest
key value has the highest priority in the queue and, therefore, compliant with key
value 6 has the highest priority. In contrast, the complaint with the key value of
1 has the lowest priority. The queue will be in this order: 6,4,3,2,1 in the list. If,
for example, a new complaint with key value number 5 enters the list, then the
complaint is the second highest. (See figure 40).

Figure 40: Priority queue for higher value

39

In order to place the complaints in a list based on the key value, a heap structure
arranges the priority. A heap is a binary tree structure with several different nodes,
whereas the root is at the top of the structure. In the case of the priority queue,
the root is the data with the highest priority. A heap structure or a binary consists
of nodes, whereas each node has one or two child nodes making it a parent node.
The node without a parent node is the root(See Figure 41).

Figure 41: Heap structure of binary tree

In the heap structure, from the first to the last index of the list, it starts from
the root as the first index and then the child nodes from the left to the right to the
bottom of the structure. A data that enter into a priority queue with heap structure,
an array uses a formula 2n+ 1 for the left child of the node, 2n+ 2 for the right
child node, and the parental node with the (n−1)/2, for each complaint that enters
the list.

40

Figure 42: Parental and child nodes

5 Testing

5.1 Analysis of test result
When the client sends a request, the database checks if a new row in the ”IT
support” table is added, which will confirm if the create function is valid. When
the status is not validated, the frontend for the IT support is going to confirm
and check if the client request is readable in the frontend putting the readable
function to the test. The IT support then changes the status as ”validated” on the
employee table from the frontend, and to ensure that the status is updated, it will
be checked on the database. At the next stage (See figure 43), the IT support will
update the status in the ”Employee” table to ”Waiting for confirmation.” When the

41

”Waiting for confirmation” status is updated by the IT support to ”Completed” in
the Employee table, it will be checked in the database that the table is updated.
The CRUD function will be monitored by checking the database.

Figure 43: flow chart of the prototype

5.2 Reassurance of the goals and requirement specification
As mentioned in the introduction chapter, the goal of this project is to replace the
current way of sending complaints through email with a prototype. The proto-
type is a complaint management system that is able to receive, send complaints,
categorize and prioritize complaints. To identify and confirm the achievement of
goals, a usability test, a performance test. Figure 44 is the list of tests to confirm
if the goals are reached in this project.

5.3 Testing user account
When a user account does not exist, an error message returns as ”invalid account.”

The failure is due to no account existing in the database.

42

Figure 44: table of tests

Figure 45: Login fail

Figure 46: Empty data in the clientuser table

The example user registers the account by pressing the ”Register Account”
link.

The link navigates to the register page. The user fills in the new account in-
formation. After the information is sent, new data in the client table is added, as

43

Figure 47: Register page

shown in the database.

Figure 48: Register page

Figure 49: New client user added to the database

When the user account is registered and added to the database the user can
log in. The logged-in user can view the home page and the user name next to
the options links of the profile, add complaints and log out into the navigation bar
seen in figure 49.

44

Figure 50: Client User page

When the user decides to add a complaint, the ”add complaint” link on the
navigation bar navigates the user to another page. The user can write and describe
the issue and send it by clicking on the button.

Figure 51: Client User complaint

As the new complaint is sent from the user, a new row in the database is
added and is also displayed on the user’s home page to monitor the status of the
complaint case

Figure 52: Client User complaint

45

Figure 53: Client User complaint

When a user wants to change the user name or password, the user clicks on the
navigation link ”Profile”. The user then types the new password and user name.
As it is shown in the figure, the data record in the database has been updated.

Figure 54: Client user Profile

46

Figure 55: Edit profile

Figure 56: Updated profile Name

Figure 57: Client user name updated in the database

5.4 Analysis of the admin page
To log in as an administrator the IT support clicks on the ”Login as administrator”
link. The login input will only work for the Admin account. If a client user types
in the correct account, it will display an error. When the IT support logs in as
administrator, the process will succeed and navigate to the next page.

47

Figure 58: Admin login link

Figure 59: User login in at Admin login page

48

Figure 60: The administrator login in

Figure 61: The administrator database record

The admin page consists of a navigation bar with a link to a page of complaints
from the client user, and a link to a page with a list of users.

Figure 62: Admin Home Page

The list of the complaints is shown and sent from the different client users.
The same information can be shown in the database. The example complaint seen

49

in the list is validated by IT support. The validation is shown on the user example
page.

Figure 63: Client user from the admin’s side

When the task of fixing the issue sent by the client user is completed, The IT
administrator updates the complaint as the task is complete. It is also shown on
the example user page.

Figure 64: Admin complaints

When the task is complete, the complaint case will also update the finished
date.

50

Figure 65: Admin updating status

Figure 66: Complaint validated by the IT support admin

Figure 67: Complaint validated by the IT support admin from the user side

51

Figure 68: The complaint validated by the IT support admin

Figure 69: Complaint completed and updated by the IT support admin

Figure 70: Complaint completed by the IT support admin from the client user side

52

5.5 Priority Complaints
Figure 71 showcases the result of complaint priority in the list that is sorted based
on the category (subject) in ascending order.

Figure 71: Priority tests

53

5.6 User interface test
The test showcases each part of the complaint management prototype rating (See
figure 72).

Figure 72: Rates of each section

7.16=
1

12

12

∑
i=1

xi =
1

12
(101 +7.52 +8.53 +104 +4.55 +4.56 +107 +8.58 +109 +1010 +2.511 +4.512)

The overall result showcases the user satisfaction to score 7.16 out of 10, which
gives us a rating of 71.6 percent.

5.7 Test summary
Figure 73 presents the overall project results.

54

Figure 73: Project results

55

6 Discussion

6.1 Test results
Four different tests were made for the complaint management system prototype in
this project.

Based on the requirements, The first test was for two IT support workers to rate
12 different web pages of the complaint management system as user experience
on a scale of 0 to 10. The aim was to get the rating at 100 percent to imply that
the user interface is fulfilled. The overall user interface resulted in 71.16 percent.
This implied the IT support workers were not fully satisfied with the result.

The second test resulted in the complaints having different priorities. The cate-
gory or subject with higher priorities that are sent sorts in the order based on the
complaint with the category that has the highest priority.

Third test result works as expected. Only the Admin could log in as an admin-
istrator. Any user that registers itself cannot log in on the admin side.

Fourth test resulted in complaints that are being sent from the user, or the so-
called client side can be viewed on the admin side. The result also shows the
status of the complaint being updated. As the status is updated, the client can
view it from their login account.

6.2 The projects reconciliation
The first requirement is to make the complaint management system a good user
interface for IT support. The user interface test’s overall rating is 71.16 percent in
total, which means it does not fully fulfill the first requirement. Seven out of 12
pages have more room to improve.

The second requirement is to give the complaints different priorities depending
on the category that the user selects. The results of the test for complaint priority
fulfill the requirement.

56

The third requirement is the Admin receiving complaints being sent from the
clients. The testing result shows cases where the information can be successfully
updated and analyzed. As the user sends the complaint information, the testing
shows the information is stored in the database. On the Admin page, the IT sup-
port can retrieve the information from the admin login side.

The fourth requirement is Admin login. The testing shows that when the user
registers its information, the data is sent and retrieved in the database. As the user
tries to login into the admin side it will not work. Therefore the fourth requirement
is fulfilled

6.3 The evaluation of Requirement Specification
Regarding the user interface test, seven pages out of twelve felt incomplete for IT
support. For instance, when the user wants to select a category for a complaint,
The user needs to type the category. The issue is that if the user types only one
wrong character, it will not work because, looking at figure 39, the string character
needs to be exact with the letter the user types from the user interface. Another
example is when the Admin needs to update the status. The update status page felt
misplaced and was not necessary. An edit bottom next to each of the complaints
could be a better option.

Having a list that prioritizes different complaints, makes the IT support experi-
ence it to be more efficient.

The two IT support workers from the HCCH tested the prototype of the com-
plaint management system and experienced the testing of the prototype as ”sim-
ple”. The process of sending in a complaint does not require many steps. The IT
support feedback was positive. Experience in administrating the complaint man-
agement system made it easier to respond and confirm the issue. The IT support
experience it to more efficiently keep track of the different cases sent from the
client user, and manage all the incoming information is one of the goals for the
prototype in this project.

57

6.4 Comparison to the related works
For one of the related work in related work section 2.5.3 Help desk, the outcome of
the result was a similar result. The difference was that the complaint management
system includes a phone texting function. The phone message function could be
an improvement for the complaint management system project in the HCCH due
to sending instant text messages as a notification. Receiving notifications when
the client user is not using the complaint management system could be efficient
for the working environment. In this current project, there are no notifications that
can be sent when the status of the complaint has been updated.

6.5 Result of economic and environmental perspective
The expense of the complaint management depends on the computer power of the
server that is required. If the IT support were to expand the complaint manage-
ment system to other major clients such as schools and other healthcare centers,
The cost would increase due to higher numbers of users. For the server to keep
up with the higher numbers of users, it would need more CPU (central processing
unit), RAM (Random access memory), or SSID (Service Set Identifier). Expand-
ing the complaint management system also has its effect from the environmental
point of view. Since the complaint management system is powered by the server
when there is more computational power needed, more computer chips are or-
dered. It causes more production of computer chips which affects the environment
due to pollution.

6.5.1 Integrity and security

The complaint management system requires registration from any new user that
wants to send a complaint. The information that is registered from the user is not
personal or private, only the user name, password, and email. The information that
is relevant for IT support is an issue with the healthcare hjärtat computers from
whom it was sent, not any personal information. The prototype of the complaint
management system creates data integrity, where it only retrieves no information
other than the complaint. Storing none sensitive information makes the complaint
management system secure if there were to occur a database attack.

58

6.5.2 Social

From the social aspect, direct communication between the worker and the IT sup-
port will decrease. When the client sends a complaint through email, the commu-
nication is more direct. With the complaint management system prototype, the IT
support only responds by updating the status of the complaint case.

6.6 Room for future improvement
Due to a lack of experience in this project and time limitations, the user interface
was not fully complete with quality. A way to improve the user interface is to
implement a drop-down list for the user to select a category instead of risking
miss typing. The list of complaints on the admin side can be improved by adding
an edit button in each row to update the status instead of entering the next page to
type in the status of the complaint. To get an optimal test result, an increase in test
participants will make the test result even more accurate.

When the Admin updates a complaint status, the complaint remains in the same
list of the other complaints that are waiting for an update. A way to improve the
priority list is to separate complaints into different lists. That way is easier for the
Admin to keep track of all the complaints.

The complaint management system lacks user confirmation from the admin. A
none eligible user that has nothing to do with the complaint management system
can register and spam the system. To improve and ensure that such a case will not
occur, as a user registers itself, the Admin identifies the user’s employee number
before confirming.

Even if the complaint management system does not store personal information,
a way to make the system have more integrity to encrypt the user password. Then
the Admin does not know the user password. If there were to be a security breach
by hackers, all the passwords in the database would be encrypted.

Another feature that improves the complaint management prototype is sending
notifications to the users when the complaint case is being updated and completed
by IT support. In that way, the workers in the HCCH will know for sure the
computer is fixed and can be used again, which makes it more time efficient.

59

6.7 Deployment and maintenance
The remaining waterfall methodology after the test phase is deployment and main-
tenance. The goal of this project is to replace the current way of sending com-
plaints through email with a prototype of the complaint management system. De-
ployment and maintenance phases needed to happen for the project goal to be
fully achieved. This project did execute the deployment and maintenance phase
due to the result of the test not fully achieving the goals. The prototype only
tests the functionality, but with the deployment and maintenance phase, more test
results can be presented and analyzed by putting the prototype of the complaint
management system into more practice, like testing the system on new major fu-
ture clients. The maintenance would also check the system would handle the load
and the effect of response time. In that case, the result would showcase a result
of the scalability of the prototype. The goal of this project was to analyze the
scaling. Without the maintenance process, present the result of scalability is not
achievable.

60

7 Conclusion
IT support of HCCH today is using the emailing system to manage complaints
when an issue occurs on the computer. IT support is planning to expand its ser-
vices to other major clients such as schools and other healthcare centers. Using
email as a complaint would not be efficient due to managing and keeping track of
complaints. A prototype of a complaint management system is implemented in
this project. The methodology of this project was the waterfall method, starting
with planning, designing with MVC software architect pattern, and Developing
and testing. The result of the project partly fulfilled the goals and has more room
for improvements in the future.

61

References

[1] Agrawal R., Nyamful C. Challenges of big data storage and management. Global Journal of

Information Technology: Emerging Technologies. 2016;6(1):1-10.

 [2] Adebisi O., Oladosu D., Busari O., Oyewola Y. Design and implementation of hospital

management system. International Journal of Engineering and Innovative Technology (IJEIT).

2015;5(1).

[3] Nasr O., Alkhider E. Online complaint management system. International Journal of Innovative

Science, Engineering & Technology. 2015.

 [4] Elsweiler D., Baillie M., Ruthven I. What makes re-finding information difficult? A study of

email re-finding. In: European Conference on Information Retrieval. Springer; 2011. pp. 568-79.

[5] Balter O. Keystroke level analysis of email message organization. In: Pro- ¨ ceedings of the

SIGCHI conference on Human factors in computing systems; 2000. pp. 105-12.

[6] Ducheneaut N., Bellotti V. E-mail as habitat: an exploration of embedded personal information

management. interactions. 2001;8(5):30-8.

[7] Nguyen Nhat M. Building a component-based modern web application: fullstack solution. 2018.

[8] Held G. Server management. CRC Press; 2000.

[9] Sharma V., Dave M. Sql and nosql databases. International Journal of Advanced Research in

Computer Science and Software Engineering. 2012;2(8).

[10] Truica CO., Radulescu F., Boicea A., Bucur I. Performance evaluation for CRUD operations in

asynchronously replicated document oriented database. In: 2015 20th International Conference on

Control Systems and Computer Science. IEEE; 2015. pp. 191-6.

[11] Picken JC. From startup to scalable enterprise: Laying the foundation. Business Horizons.

2017;60(5):587-95.

 [12] Hardianto H., Shofi IM., Khairani D., Subchi I., Ginanto DE., Hidayati A. Integration of the

Helpdesk System with Messaging Service: A Case Study Approach. In: 2021 9th International

Conference on Cyber and IT Service Management (CITSM). IEEE; 2021. pp. 1-5.

[13] Rachmawati E., Kom M., Kom M. Web-Based Ticketing System Helpdesk Application Using

CodeIgniter Framework (Case Study: PT Commonwealth Life). International Journal of Computer

Science and Mobile Computing. 2018;7(12):29-41.

[14] Virata AJA., Sergio NA. Impact of IT Job-order e-Ticketing System on Enduser Satisfaction: An

Empirical Analysis. SDCA Asia-Pacific Multidisciplinary Research Journal Volume 2, December

2020:4.

[15] Alex AOI., Uzoamaka EO. Design and Implementation of a Tertiary Institution Web-Based

Student Complaint Management System.

[16] Al-Sharji S., Al-Mahruqi A., Kumar R. Help Desk Management System for PC Troubleshooting.

2014.

[17] Crespo-Santiago CA., Cosme SdlCD. Waterfall method: a necessary tool for implementing

library projects. HETS Online Journal. 2011;1(2):86-99.

 [18] Boiano S., Bowen JP., Gaia G. Usability, design and content issues of mobile apps for cultural

heritage promotion: The Malta culture guide experience. arXiv preprint arXiv:12073422. 2012.

[19] Sahu A. 9 advantages of mobile apps over responsive eCommerce websites; 2022. Available

from: https://www.westagilelabs.com/blog/9-advantagesof-mobile-apps-over-responsive-ecommerce-

websites/.

[20] Masresha T. Changing Desktop application to real time Web application. 2018.

[21] Pop P. Comparing web applications with desktop applications: An empirical study. Linköping

University, Linköping. 2002.

[22] Adhikari A. Full stack javascript: Web application development with mean. 2016.

[23] Yoon IC., Sussman A., Memon A., Porter A. Effective and scalable software compatibility

testing. In: Proceedings of the 2008 international symposium on Software testing and analysis; 2008.

pp. 63-74.

[24] Del Sole A. Visual Studio 2015 Succinctly. Morrisville: Syncfusion; 2014. [25] Doglio F. Pro

REST API Development with Node. js. Apress; 2015.

[26] Chitra LP., Satapathy R. Performance comparison and evaluation of Node. js and traditional web

server (IIS). In: 2017 International Conference on Algorithms, Methodology, Models and

Applications in Emerging Technologies (ICAMMAET). IEEE; 2017. pp. 1-4.

[27] Ravago JAF. Comparison of MySQL and MS SQL Server.

[28] Deari R., Zenuni X, Ajdari J., Ismaili F., Raufi B. Analysis and comparison of document-based

databases with sql relational databases: Mongodb vs mysql. In: Proceedings of the International

Conference on Information Technologies (InfoTech 2018); 2018. pp. 1-10.

[29] Chaqfeh M, Haseeb M, Hashmi W, Inshuti P, Ramesh M, Varvello M, et al. To Block or Not to

Block: Accelerating Mobile Web Pages On-The-Fly Through JavaScript Classification. arXiv preprint

arXiv:210613764. 2021.

https://www.westagilelabs.com/blog/9-advantagesof-mobile-apps-over-responsive-ecommerce-websites/
https://www.westagilelabs.com/blog/9-advantagesof-mobile-apps-over-responsive-ecommerce-websites/

