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Abstract

The field of predictive maintenance for complex machinery with multiple

possible faults is an important but largely unexplored area. In general, one

assumes, often implicitly, the existence of monitoring data specific enough to

capture every possible fault independently from all the others.

In this paper, we focus on the problem of predicting time-to-failure, or re-

maining useful life, in situations where the above assumption does not hold.

Specifically, what happens when the data is not good enough to uniquely pre-

dict every fault, and, more importantly, what happens when different faults

share the same symptoms on the recorded data.

We demonstrate that prognostics approaches learning independent models

for each fault are inadequate. In particular, in the presence of faults that pro-

duce similar failure patterns, they produce false alarms disproportionately often

or miss the majority of failures.

We propose the HMP framework (Hierarchical Multi-fault Prognosis) to

solve this problem by extracting a hierarchy of faults based on the similarity

of the data they produce. At each node of the hierarchy, we train a regression

model to predict the time-to-failure for any of the faults contained in this node.

The intuition is that while it might be impossible to predict individual time-

to-failure in the presence of similar faults, a model trained on aggregated data

can still provide useful information. We demonstrate through experiments the

validity of our approach.
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1. Introduction

In this paper, we are moving towards the ultimate goal of data-driven pre-

dictive maintenance of complex systems in real-life applications: given available

data, which we know is inadequate, predict all possible failures and isolate the

type of fault responsible for them. In particular, we identify, and propose a5

solution for, the problems arising when different types of faults induce the same

symptoms in the data.

This work has been inspired by our collaboration with Getinge AB and Volvo

Trucks. Getinge produces and performs maintenance services on sterilizers used

in hospitals to sterilize medical equipment, and are critical for their operation.10

Volvo Trucks produces and carries out service on heavy-duty vehicles used for

various purposes. In both cases, we deal with complex machines composed of

various components performing heterogeneous tasks. The different components

of the machine interact with each other directly through physical influence (con-

tact, friction, heat...). But, they also interact indirectly through the logic of the15

control systems governing the operation of the machine. For example, in a steril-

izer, a leak in a pipe may change the power of the vacuum pump beyond normal

limits since the control system requires certain pressure in order to continue the

sterilization process.

Based on the most recent surveys dealing with predictive maintenance appli-20

cations, cf. [1, 2, 3, 4], one can conclude that multi-fault prediction in complex

systems is a yet unexplored field. Research focuses on single type of fault prob-

lems or multi-fault problems related to a single component. It is not without

reason that research has focused on these topics. Under the assumption that

we have data good enough to monitor the health of a single component inde-25

pendently of the state of the rest of the system, we can focus on the specific

component and direct our efforts to obtain the best possible predictions. In

this perfect scenario, a successful monitoring system for the whole system could
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be developed simply by combining the models trained for each individual as

independent building blocks.30

However, this assumption rarely holds in practice when dealing with com-

plex systems. Often, the quality of the data is not good enough to monitor

the health of every single component. Also, different components do not act

independently; instead, they affect each other, often in unexpected ways. Con-

sequently, different types of faults are related through the interaction of the35

components they affect. But, more importantly, and this is the focus of our

paper, different types of faults are related through the effect they have on the

recorded data; the data that we will use to learn to predict future failures and

will ultimately define the quality of our final solution.

The most valuable output of a predictive maintenance system is detecting40

a fault that will develop into a failure, identifying the fault, and predicting

the precise when the failure will occur. With this information at hand, precise

maintenance operations can be scheduled, reducing downtime, increasing the

productivity of the machines, and reducing the cost of maintenance.

In complex systems like a truck or a sterilizer, some faults show distinctive45

patterns in the data: distinct from the data produced by a healthy system and

distinct from data associated with other types of faults. This is the ideal case,

implicitly considered “the norm” and treated extensively in the literature; if

it was the only case, one could simply focus on each type of fault individually.

There are also other faults that do not affect the recorded data, and no approach50

is capable of predicting them. Finally, however, there are often sets of distinct

faults that produce similar patterns in the recorded data. It is this last case

that has not been sufficiently addressed in the literature, motivating this paper.

The challenges it presents have not been identified, and adequate solutions have

not been proposed.55

We specifically show, through experiments, the limitations of the approaches

that focus on predicting time-to-failure for individual types of faults. We demon-

strate that without considering the similarities and dissimilarities between faults,

they cannot accurately predict the time-to-failure.
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Similarity is not a binary concept. There can be many different levels of60

similarity between faults in a complex machine with many different components

and many different possible faults. We propose a new framework, HMP (Hierar-

chical Multi-fault Prognosis). HMP consists of first modeling these similarities

by extracting a hierarchy of faults. Then, given such a hierarchy, for each inter-

nal node, we will train models to predict time-to-failures related to the faults in65

that node. The output of the node models is the estimated time-to-failure for

any of the faults contained in the subtree expanded by the node.

Both trucks and sterilizers exhibit a huge number of possible faults; however,

public datasets on predictive maintenance rarely deal with more than a few types

of faults. In this paper, we will use the simulated data from the Tennessee70

Eastman Process that contains a maximum of 28 different faults [5]. Since

industrial historical maintenance records are highly sensitive and cannot be

shared, we decided to demonstrate the effectiveness of the proposed method

using a publicly available dataset; it allows for reproducible results and sets a

benchmark for future work.75

The contributions of this paper can be summarized as follows:

• We highlight the challenges inherently associated with predicting time-

to-failure in multi-fault complex systems, identifying that standard ap-

proaches to predict time-to-failure are ineffective, especially in the pres-

ence of similar faults.80

• We propose the HMP framework, where a hierarchical structure is ex-

tracted based on the similarities between faults and subsequently used to

predict the time-to-failure for groups of faults.

• We demonstrate through experiments the superiority of our approach com-

pared to the state-of-the-art and identify what the characteristics of the85

faults that make standard approaches fail are.

The rest of the paper is structured as follows: In Section 2, we formalize

the setting and describe the characteristics of real-life problems that motivate
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our research; in Section 3, we explain our proposed methodology; in Section 4,

we present the experiments and results which demonstrate the validity of our90

framework and showcase the limitations of the state-of-the-art; in Section 5, we

place our contributions in the context of state of the art in the field; and finally,

in Section 6, we discuss our findings and present conclusions.

2. Motivation and Problem Formulation

The goal for every company producing machines and carrying out their main-95

tenance is to provide products that are always available when they are needed.

One way of achieving this is to have an extensive preventive maintenance sys-

tem where components are frequently replaced before any risk of breakdown.

This is, of course, an expensive solution since it implies replacing components

before they are faulty. Another way of achieving this is by having a predictive100

maintenance system that could tell us when a failure will happen before it actu-

ally does. In this way, maintenance operations can be scheduled with minimal

disturbance to the operation of the machine, and the cost of replacement of

components can be minimized.

For the latter solution, though, we need to record data that can help us105

monitor the machine’s state and its components. Since that also comes with

a cost, it is natural that in many practical situations, the data available is of

questionable completeness and quality. Therefore, artificial intelligence and ma-

chine learning solutions are needed to analyze the data and extract from it the

patterns corresponding to different states of the equipment. In the scenarios110

motivating our research, the data being collected is not recorded to monitor

the state of all the individual components, but to control the different processes

or validate the processes’ quality. For example, sensors are placed in different

places of the machine to record pressure and temperature; in addition, control

systems provide information about the time it takes for the machine to per-115

form specific tasks. This means that perfect monitoring of the health of every

component and the appearance of every fault is not possible.
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When all the components of the machine are working as expected, we say

that the machine is in a healthy state; throughout this paper, we name the

corresponding recorded data as healthy pattern. When a fault happens, the120

machine transitions from a healthy to a faulty state. Eventually, the fault will

lead to a discontinuation of the operation, i.e., a failure of the machine. We

refer to the data recorded between the fault and the failure as the failure

pattern.

We categorize the different faults into three main categories in terms of their125

failure patterns.

• We can find types of faults that have no effect on the data collected, i.e.,

there is no difference between the failure patterns and the healthy data.

For example, a fault in the tray that introduces the medical equipment

into the sterilizer chamber has no effect on the temperature measured130

inside the chamber.

• We can find types of faults whose failure patterns have an individual and

distinctive effect on the data, i.e., different from the healthy data and

different from failure patterns associated with other types of faults. For

example, an electronics problem produces a sudden decrease in the “power135

versus fuel consumption” curve of a truck’s engine.

• We can find groups of faults that have very similar effects on the data

while being very different from the healthy data. For example, a problem

in the vacuum pump in a sterilizer and a leakage in the pipes connecting

the pump to the main chamber will have a similar effect on the pressure140

recorded inside the chamber.

In this paper, we focus on predictive maintenance, more specifically the pre-

diction of time-to-failure, also called remaining useful life, for complex machines.

In a real-life application, this includes collecting data in a machine undergoing a

fault until the failure happens. Then, we can retroactively label every instance145

of this data with the time left before the failure. This labeled data is used to
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train a regressor which will be used to predict time-to-failure. The output of our

predictive system is a list of predicted time-to-failures for each of the possible

faults that the machine can undergo.

2.1. Evaluation150

In order to evaluate the predictive maintenance solution, we need to under-

stand, and mimic, how this system will be used in practice. For each type of

fault, the output of the predictive system is an estimated time-to-failure (some-

times called RUL, Remaining Useful Life). If we depend solely on these outputs

to define our maintenance operation, we need to set a reasonable time threshold155

that gives enough time to schedule a maintenance operation before the failure

happens; this is inherently based on the business and application requirements.

Once the predicted time-to-failure goes below this threshold, an alarm is issued,

meaning that a maintenance operation should be carried out.

The goal of the maintenance operation is to check the prediction and assess160

the state of the components related to the predicted fault. In practice, several

alarms can happen simultaneously if the estimated times-to-failure for different

faults all go below the set threshold. Therefore, a technician responsible for the

maintenance should check the different alarms until the fault is found.

If the alarm points to a fault that is actually developing in the machine, the165

maintenance operation should avert the failure. If the alarms do not point at

any fault developing at the machine, they will be false alarms. This simplified

framework, based on the cost framework presented in [6], gives us a straightfor-

ward method to evaluate the quality of our predictive models: we will quantify

the percentage of Correctly Predicted Failures (CPF-rate), the percentage of170

False Alarms when the machine is Healthy (FAH-rate); the percentage of False

alarms when a fault is happening, but the corresponding fault is Incorrectly

Identified (FII-rate); and the number of tests that the technician needs to per-

form to isolate the responsible fault (NTest).

In order to ease the evaluation of the models, we will make some idealiza-175

tions about the performance of the technician and the diagnostics tests that
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are carried out. The on-site tests are always correct: when a failure is pre-

dicted for a given fault, the diagnostics tests used to evaluate the health of the

corresponding components are always correct.

Prediction models are never perfect. Sometimes, a model will continuously180

keep issuing alarms for the same fault for a long time. For the purpose of

the evaluation, if a false alarm is issued and the technician deems it to be not

happening, we assume that the fault is not happening and it will not lead to a

failure in the near future, so the consequent false alarms will be dismissed.

Our motivating industrial scenarios share common characteristics regarding185

the costs of unexpected failures and false alarms. An unexpected breakdown

is very costly; it means the interruption of service. The machine will not work

again until a technician analyzes the machine, diagnoses, and corrects the prob-

lem, with all the possible extra delays including lack of necessary material for

the repairs, testing the well-functioning of the machine, and so on.190

A false alarm is costly since a technician needs to be dispatched to the

machine (or the machine needs to be sent to the workshop) and must test the

machine to check for the suggested fault. However, the operation of the machine

is not affected if the maintenance is scheduled during a natural downtime of the

machine. Therefore, the cost of a false alarm is significantly smaller than the195

cost of an unexpected failure.

In either of the situations mentioned above, more than one alarm can happen

simultaneously. In those cases, the technician checks the possible faults itera-

tively, based on their estimated time-to-failure, until the fault is found. These

extra tests on the machine result in an increased cost based on the time and200

resources needed. We assume that the costs related to checking for each of the

simultaneous alarms are small compared to the overall cost of a maintenance

intervention.

The specific scenario of the predictive maintenance of sterilizers and trucks

is defined by: very complex machines, data that is not good enough to monitor205

every possible fault accurately, very high cost of unexpected breakdowns com-

pared to false alarms. This scenario is common to many industrial situations.
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3. Methods

¨

In this section, we describe our framework ”Hierarchical Multi-fault Prog-210

nosis”, HMP. We show how to extract hierarchies of faults, how to train the

models at each node and how to use the hierarchy to obtain predictions. But

first, we describe the general task of predicting time-to-failure and how to train

individual models.

3.1. Time-to-failure estimation for multivariate data215

For each failure event, we obtain a dataset D = (xxxt, T, f) containing, respec-

tively: xxxt, the vector of values recorded in the machine describing its operation

at time t; the corresponding measured time-to-failure, T ; and an indicator of

the fault happening in the machine, f ∈ {F1, . . . , Fn}, where Fi denotes each

possible type of fault and n is the number of possible faults.220

The general task that we work with in this paper is to train regressors to

predict time-to-failure. In our case, the machines undergo only one fault at a

time; however, we are interested in predicting, at any given moment, the time-

to-failure for many different faults. Therefore, the output of our system is a

vector of times-to-failure for the n possible faults:225

R(x) = [ô1, ô2, ...ôn], (1)

where R is our regressor system, and ôi is the estimated time to failure for

component i.

3.2. Single-fault regressors to predict time-to-failure

The simplest approach to predict time-to-failure for n types of faults is to

train n single-fault regressors. In Figure 1, we can see the workflow to train230

and use, or exploit, these models. A dataset is collected for each type of fault

Fi, and individual regressors Ri are trained for each fault. Then, those models

are used to predict time to failure for each type of fault ôi, the final output

presented to the technician.

9



Figure 1: Flowchart for training individual models. For each type of fault Fi a regressor Ri is
trained, that outputs an estimated time-to-failure ôi. The list of the estimated times-to-failure
is fed to the technician that will ultimately perform the maintenance if needed.

Figure 2: Flowchart for training hierarchical models. A hierarchy of faults is extracted from
the data, then for each node Ni, a regressor is trained to predict time-to-failure for any of
the faults contained in the node. The output of every regressor will be an estimated time-to-
failure for all the faults contained in the node. The list of the estimated times-to-failure is fed
to the technician that will ultimately perform the maintenance if needed.
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Individual model. The individual model is the most direct adaptation of a single-235

component model. In this approach, we train an individual model using the

failure patterns and healthy patterns associated with the occurrence of faults of

the same type. As training set, we only use the failure patterns for the selected

fault. DFi = D(xxxt, T, f = Fi). This models can be successful if we assume that

there exists a one-to-one relationship between the faults and their effects on the240

data, i.e., there exists an unambiguous correspondence between each fault and

the failure patterns associated with them.

Individual models, crucially, are only train based on the failure and healthy

patterns associated with each individual type of fault. If the assumption of

one-to-one relationship between the faults and their failure patterns fail, this245

will lead to many false alarms. For example, if we focus on predicting a fault

in a truck related to the tire pressure, we could find a clear pattern in the fuel

consumption (the lower the pressure of the tire, the higher the fuel consump-

tion). An individual model could use the fuel consumption signal to estimate

the time-to-failure; however, changes in the fuel consumption could be related250

to many other faults, for example the engine, the hydraulics system or many

others. In such cases, the individual model trained to predict a tire-related fault

would issue alarms when the fault happening is in fact, caused by another part

of the truck.

Contrast model. We can improve individual models by adding information about255

the rest of the types of faults. In the contrast model approach, we train an indi-

vidual model for each type of fault, but we also make use of the failure patterns

associated with all the other faults, the contrast faults. The goal is to train a

regressor that identifies the degree of evolution of the fault, discerning the faulty

data from the healthy data, and at the same time can discern between different260

types of faults.

To achieve this, for the contrast faults’ datasets, instead of using the true

time-to-failure, we relabel them with a maximum time to failure Tmax, effec-

tively treating them as if it was data produced by a healthy machine. The
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training set we use for this models is therefore, DFi = D(xxxt, T, f = Fi) ∪265

D(xxxt, Tmax, f ̸= Fi)

Contrast models, however, also have their drawbacks. For example, assume

that two faults are very similar, i.e., they produce the same failure patterns, xxxt.

In this situation, a contrast model would be training a regressor with confusing

information: very similar xxxt feature vectors with completely opposite time-to-270

failure labels: first, the correctly decreasing T for the selected fault, and second,

constant Tmax for the contrast fault.

3.3. HMP, Hierarchical Multi-fault Prognosis

In this subsection, we introduce our proposed framework HMP (Hierarchical

Multi-fault Prognosis).275

HMP solves the problems related to single-fault regressors by grouping the

faults based on their similarity. If two faults are similar, as explained in the

previous subsection, the contrast model will fail – but, intuitively, a regressor

trained to predict either of the two faults would be much more successful. Since

there can be many different degrees of similarities, we propose to extract a280

hierarchy of faults.

In Figure 2, we can see the workflow of the hierarchical approach. Using

the data related to each of the faults, we extract a hierarchy of faults based on

their similarities; then, at each node of the m modes, one regressor is trained to

predict the time-to-failure for any of the faults contained in it. The output of285

each of the models is the estimated time-to-failure for any of the faults contained

in this particular node. It is worth noting that, for a given type of fault i, many

different nodes will be independently estimating its time-to-failure, based on

different groupings.

3.3.1. Extracting hierarchies of faults290

The single-fault contrast models present some advantages over the individual

models. However, its performance is harmed in the presence of similar faults.

Our goal when extracting hierarchies is to group the most similar faults, while
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keeping the rest of the faults as contrast. When extracting the hierarchy, this

translates to first grouping faults with a high degree of similarity close to the295

bottom of the hierarchy, then those that are less similar, and finally those faults

that are dissimilar close to the root of the tree.

There is not a single definition of similarity; in our case, we regard as similar

those faults that produce similar failure patterns, xxxt. Using this definition, we

characterize each fault by its failures patterns, i.e., the data recorded by the300

machine from the occurrence of the fault until its failure.

Extracting hierarchies of faults using their failure patterns consist on two

basic steps: measuring the dissimilarity between the failure patterns associated

with each fault, and clustering them. In this paper, we are going to use the

two most popular types of dissimilarity: euclidean based distance and classifier305

based distance.

Euclidean based distance consists of taking the centroid of each fault’s fail-

ure patterns and measuring the distances between those centroids in the feature

space. Euclidean distance is a very intuitive measure of dissimilarity and very

fast to compute; however, it presents certain drawbacks. For example, the cen-310

troids of the failure patterns associated with one fault may not be representative

or the features that discriminate between fault might be hidden in the presence

of multi-dimensional noise.

The idea behind classifier based distance is that if the performance of a

classifier trained to separate between two sets failure patterns is good, those sets315

must be dissimilar, while if the performance is bad, those sets must be similar.

To measure the classifier based distance, we are going to train an independent

classifier to separate between the failure patterns associated with the different

faults.

Once we have evaluated the similarities between faults, we use two methods320

to cluster them into a hierarchy: agglomerative clustering 1 and divisive clus-

tering 2. To decide the split in the divisive clustering, we will use two methods:

k-means, and balanced k-means.

The output of this process is a hierarchy of faults. For our purposes, we
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Algorithm 1 Agglomerative clustering

1. Begin with n clusters, each of them corresponding to one fault

2. Compute distance between every pair of clusters.

3. Find the most similar pair of clusters and merge them.

4. Calculate the distance of the newly created cluster to the rest.

5. Repeat steps 3 and 4 until there is just one cluster.

Algorithm 2 Divisive clustering

1. Begin with all faults in one cluster

2. Divide the objects of each cluster into two groups

3. Repeat until all faults are placed in a cluster of its own.

regard the hierarchy as a collection of nodes, each of them containing a set of325

faults. For example, in Figure 3, there are two inner nodes: S1, containing

faults F1 and F2; and S2, containing F1, F2 and F3.

3.3.2. Measuring classifier based distance

To measure dissimilarity, ideally, we should train a dedicated classifier for

every pair of faults. This process is very lengthy, specially as the number of330

faults increases. Instead, we are going to train a single flat multi-class classifier.

During the training phase, we will use a cross-validation scheme to compute the

classifier based distance between faults.

For a test set D = [(xxx1, f1), . . . , (xxxN , fN )] where N is the number of in-

stances in the set, xt is the feature vector, ft ∈ {F1, . . . , Fn} is the associ-335

ated fault; the probabilistic output of the flat classifier is a vector hhh(xxx) =

[P (F1|xxx), . . . , P (Fn|xxx)]. Using these values, we can create a proxy classifier

h′h′h′
j,k(xxx) for any two faults Fj and Fk:

h′h′h′
j,k(xxx) =

[P (Fj |xxx), P (Fk|xxx)]

P (Fj |xxx) + P (Fk|xxx)
(2)

or, in fact, any two sets of faults S1 and S2:
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Figure 3: An example of a hierarchy of three faults: F1, F2 and F3; two super-types of faults:
S1 and S2; and examples of predicted times to failure.

h′h′h′
S1,S2(xxx) =

[
∑

i∈S1
P (Fi|xxx),

∑
j∈S2

P (Fj |xxx)]∑
i∈S1∪S2

P (Fi|xxx)
(3)

Finally, using this proxy classifier, we will evaluate the area under the ROC340

curve to measure the dissimilarity between two faults, or two sets of faults.

3.3.3. How to train a hierarchical regressor

An example of a hierarchy is shown in Figure 3. The hierarchy consists of

a set of nodes: the leaf nodes, each of them corresponding to one of the faults;

and the internal nodes, each of them containing a set of faults.345

We will use an approach similar to the flat contrast models. At each node,

we will train a regressor using the failure patterns of the faults contained in the

node labeled with their corresponding time to failure, and the rest of the faults’

failure patterns as contrast. If Sn is the set of faults contained in the node and

the Sc is the set of contrast faults (i.e., those not contained in the node), the350

training set will be Dnode = D(xxxt, T, f ∈ Sn) ∪D(xxxt, Tmax, f ∈ Sc).
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3.3.4. Using HMP to estimate time-to-failure

Single-fault models were implicitly doing fault diagnosis, i.e., they were esti-

mating time-to-failure for a specific fault. The output of a node is an estimated

time-to-failure, but the fault responsible is one of the faults contained in the355

node.

If the estimated time-to-failure falls below a given threshold, an alarm is

issued and a maintenance operation needs to be carried out to diagnose the

fault and correct it if necessary. An alarm issued by a node regressor is in fact

multiple alarms, one for each of the faults contained in the node. In order to360

reank the faults, and establish an order of preference for the technician, we will

make use of the sub-tree expanded by the node.

The output of the prognostic system is a ranked list of estimated time-

to-failures for the different faults. We rank the faults by going through the

hierarchy starting from the selected node. To select among its children, we will365

pick the one that predicts the lowest time to failure until we reach one of the

leafs.

Once we have found the most likely fault to be responsible for the predicted

failure, we repeat the process omitting the selected fault. We repeat this proce-

dure until all faults contained in the node are ranked. In the example in Figure370

3, the lowest time-to-failure prediction corresponds to the S2 node, meaning

that one of the faults contained in that node is predicted to be responsible for a

failure in 5 units of time. The order of priority to check the different faults will

be F1, F2, F3. Note that F1 and F2 are checked first because the predicted

time to failure of S2 is smaller than the one of F3.375

4. Experiments and Results

4.1. The TEP Dataset

The Tennesse Eastman Process (TEP) is a chemical process first introduced

by [7]. The TEP consists of a reactor, a product cooler/condenser, a sepa-

rator and a stripping column with the objective of reacting feed streams and380
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separating the products. In simple terms, the TEP takes four input streams

and converts the contents in the reactor into products. The resulting stream

is cooled down and condensed using the product cooler. The resulting liquid

stream is then introduced to a stripping column, where dissolved gaseous as well

as middle-boiling compounds are removed.385

There are different type of signals recorded, such as safety signals: values

recorded to monitor some critical values which, if exceeded, would lead to haz-

ardous situations in the plant; process signals, measuring the quantity and the

quality of the products of the chemical plant; control variables, the operator or

the control system manipulates these variables to control the operation of the390

plant; and monitor variables, not directly linked to the control or security.

There exist 28 different types of faults. In order to generate datasets, we

will use the generator presented in [8].

4.2. Experimental setup

To obtain our dataset, we sample 50 sequences of failure patterns for each395

type of fault. First, we let the machine run for 1 hour without interference.

Then, we introduce the fault, and we assume that the plant goes into failure

and stops production after 2 hours of running with a fault. We record data

for the 53 features every 3 minutes, i.e., we have sequences of 60 points, and

the fault is injected after 20 measurements. We also extract sequences of data400

without the injection of fault to measure the FAH-rate, i.e., evaluating how

often our models predict failure for completely healthy operation. All sequences

of data are extracted independently, so we can safely use a 5-cross validation

scheme.

Our objective is to learn models that predict the time to failure and identify405

the fault responsible for it. Without loss of generalization, we set a threshold

of 45 minutes as the necessary time to execute maintenance before the failure.

If our predicted time to failure goes below this number, an alarm is issued and

an intervention by the technician is carried out.

We perform the model selection and final evaluation based on a cost analysis.410
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CPF FAH FII # of Tests Final cost

Empty (baseline) 0 0 0 0 1

Individual 0.78±0.05 1.91 ±0.17 4.6±0.5 1.01 ±0.01 51 ±5

Contrast 0.50±0.03 0±0 0±0 1 0.50 ±0.03

Individual Filtered 0.25±0.06 0 ±0 0.30±0.10 1.01 ±0.01 0.78 ±0.01

Contrast Filtered 0.50±0.03 0±0 0±0 1 0.50 ±0.03

Table 1: Comparison of the individual and the contrast approach on the 28 faults, both before
and after filtering the best models.

We assume that the machines are running healthy most of the time, so the

frequency of healthy state is 100 times higher than the faulty state. We assume

that the cost of an undetected fault is 10 times higher than the cost of a visit of a

technician. In addition, we assume that, once the machine is under maintenance,

the cost of each test adds 0.1 times more cost to the maintenance operation.415

4.3. Predicting all faults

In this subsection, we are going to study the problem of predicting the

28 possible faults using flat approaches (individual and contrast approach), a

random hierarchy, and informed hierarchies extracted in different ways.

4.3.1. Flat approaches420

In Table 1, we can see the detailed results of applying both flat approaches

on the 28 classes. Using all the models, we observe an extremely high cost

in the individual approach, due to a large number of false alarms. For every

sequence of data being tested, we are getting many alarms from the different

models considered. It is worth mentioning that an empty model that would not425

issue any alarms whatsoever would have a CPF of 0, false alarms rates of 0 and

a final cost of 1.

In the case of the contrast approach, we do not observe any false alarms,

some models are able to predict the failures they are trained to predict, other

models are not successful; but even then, they do not issue any type of false430

alarm. In total, around 50% of the faults are correctly predicted.
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Filtering the per-fault models. Both for the individual and contrast approaches,

we are training different models for each fault. Some of those models can be

more beneficial, i.e., result in a reduction of costs; but some of them will not be

as accurate, or even result in an increased cost due to the large amount of false435

alarms they produce.

Those per-fault models can be evaluated using the same cost analysis we use

for the whole system. There is no need to keep bad models in the final solution,

if their contribution to the final cost is negative.

In order to select the per-fault models that result in the best possible cost,440

we evaluate each model and rank them from most beneficial to the least. Then,

we combine them choosing from the most beneficial to the least.

On the left side of Figure 4, we can see the evaluation of the different combi-

nations of models for the individual case for one of the folds. We start from the

left side of the x-axis only selecting the best per-fault model, then, iteratively,445

we add the rest of the per-fault models and evaluate the whole system. The first

3 models added provide obvious benefits, the CPF keeps increasing without any

false alarms, neither related with healthy data (FAH) or incorrectly identified

faults (IIF). However, with the fourth model, we observe an increased IIF. After

the ninth model, the number of false alarms on healthy data (FAH) keeps on450

increasing. After the seventeenth model, the percent of FAH and IIF exceeds 1,

meaning that for each sequence of data, we are obtaining more than one false

alarm.

In Table 1, we can observe the evaluation of the combination of models that

achieve the best evaluation for the individual approach, only using the best 6455

per-fault models. Only 25% of the failures could be averted.

On the right side of Figure 4, we can see the evaluations for the different

combinations of models for the contrast approach. 18 of the 28 models are able

to predict some failures, the models trained on the other 10 faults are not able

to predict any failure. None of the per-fault models produce any false alarm.460

This the reason why the best combination of per-fault models achieve the same

performance as the unfiltered approach, as can be seen in Table 1.
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Figure 4: On the left side, evaluation of the different combination of per-fault models for the
individual case. On the right side, evaluation of the different combination of per-fault models
for the contrast case. For each model, the percent of Correctly Predicted Faults (CPF), False
Alarms for Healthy patterns (FAH), and Incorrectly Identified Faults (IIF). In blue, the cost
for each combination of models. The best combination of models is highlighted with a blue
arrow under the x-axis.

4.3.2. HMP

In this subsection, we are going to evaluate the models created using our

framework HMP. We are going to compare different approaches to extract the465

hierarchies and benchmark it against the single-fault approaches. Our first step

is to evaluate our approach on a randomly generated hierarchy. Comparing

against a random hierarchy gives us an adequate benchmark to validate the

method to extract hierarchy [9]. At each fold, we will draw a new hierarchy,

train, evaluate the models for each node, and select the combination of models470

that provide useful results, similar to how we did in the previous subsection.

The results are detailed in the second row of Table 2.

There exists a slight difference in the number of correctly predicted faults

between the random hierarchy and the best of the single-fault models, and as

a consequence, a difference in the final cost. However, this difference does not475

prove to be statistically significant after applying the Student’s t-test.

In Table 2, we can also observe the detailed performance of the models

trained on hierarchies using six different methods. We evaluate hierarchies us-

ing the classifier based distance (CBD), using area under the ROC curve as

performance, and using the euclidean distance in the feature space between the480
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CPF FAH FII # of tests Final cost

Contrast 0.50±0.03 0±0 0±0 1 0.50 ±0.03

Random 0.52±0.06 0±0 0.003 ±0.003 1.17 ±0.18 0.48 ±0.06

CBD K-means 0.59±0.01 0±0 0.004±0.003 1.24 ±0.01 0.41 ±0.01

CBD Bal K-means 0.58±0.02 0±0 0.003±0.002 1.19 ±0.08 0.42 ±0.02

CBD Agglo 0.55±0.06 0±0 0.002±0.002 1.3 ±0.01 0.45 ±0.05

Centroid k-means 0.55±0.003 0 ±0 0.003±0.004 1.22 ±0.28 0.46 ±0.03

Centroid Bal k-means 0.54±0.006 0±0 0.005±0.002 1.17 ±0.08 0.46 ±0.06

Centroid Agglo 0.53±0.004 0±0 0.003±0.005 1.18 ±0.23 0.47 ±0.04

Table 2: Comparison of HMP with different methods to extract the hierarchies.

centroids of the different types of faults’ failure patterns. We also use three

different clustering algorithms: agglomerative clustering, divisive k-means, and

divisive balanced k-means.

The best performance is achieved by the combination of CBD and K-means.

Up to 60% of the failures are correctly predicted, keeping the number of false485

alarms close to 0. There exists a statistically significant difference between this

approach and the flat models with contrast, that in turn were significantly better

than the individual models. The improvement over the single-fault model with

contrast originates from the models created at the internal nodes of the hierar-

chy. At least some of them contain faults whose failure patterns are sufficiently490

similar.

There exists also a statistically significant improvement over HMP using the

random hierarchy. This means that in the data, there exist complex and distinc-

tive relationships of similarity between the different failure patterns, complex

and precise enough that they can not be found randomly.495

On the other hand, hierarchical approaches need a (slightly) higher number

of tests to find the responsible fault. This is to be expected. It is our assumption

that in the presence of the similar faults, the contrast approach will fail to

correctly predict the time-to-failure. A hierarchical approach, able to identify

these similar faults and cluster them together, should create a model able to500
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correctly estimate the time-to-failure to one of the similar faults; but it would

be less accurate in selecting exactly which of the faults is the responsible one. In

our scheme of costs, where the effort associated with the extra tests needed to

isolate the fault is low compared to the cost of false alarms and much lower than

the cost of an unpredicted failure, it is clearly acceptable to have this increase505

in the number of tests in exchange of correctly predicting more faults.

CBD based hierarchies in general outperform hierarchies that used euclidean

distance between centroids. Centroid based hierarchies seem to improve the flat

model with contrast and the random hierarchy, but the difference is not signifi-

cant. Euclidean distance can suffer from the curse of dimensionality, specifically,510

in our case, difference between failure patterns can appear in few specific fea-

tures, while the rest of the features, which contain a degree of noise in them,

remain unaffected by the fault, rendering the calculation of the distance between

centroids irrelevant.

Analyzing the results of the different clustering algorithms, we can observe515

that divisive k-means seems to outperform, marginally, the divisive balanced

k-means, and this in turn outperform marginally the agglomerative clustering.

None of these differences are significant. We can conclude that, for this specific

task and dataset, the biggest source of improvement comes from the method to

measure the similarities between types of faults. Once the similarities have been520

computed, the different clustering algorithms to extract the hierarchies seem to

provide marginal gains.

4.3.3. Analysis per class

In Figure 5, we can see depicted the difference in percentage of faults pre-

dicted (CFP) by the three different approaches for each type of faults. There525

are three sets of faults, based on the results of the different approaches. There

are faults whose failures seem impossible to predict, those are faults 3, 5, 9,

15, 16, 21, 22 and 28. There are failures whose faults are ”easy” to predict, all

approaches achieve maximal performance: 1, 2, 4, 6 and 7. Finally, we have

the ”interesting” faults, those types of faults for which some failures can be530
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Figure 5: CFP per class evaluated for three different approaches: contrast model, random
hierarchy, and the hierarchy obtained combining the CBD dissimilarity and the k-means di-
visive clustering algorithm.

predicted and some failures can not be predicted depending on the approach

taken. Those are faults 8, 10, 11, 12, 15, 17, 18, 19, 20, 23, 24, 25 and 26. If we

compare the performances of the flat models with contrast and the model using

a random hierarchy, we can see that the random hierarchy tends to outperform

the flat models for the “interesting” faults, although there are counterexamples.535

The hierarchy using the area under the ROC curve and using a divisive clus-

tering algorithm using k-means always (except one case in fault 13) outperforms

the other two approaches. The improvements are not very high for most faults,

except for classes 14, 19 and especially 27.

In a complex system, with many types of faults, there are going to be many540

faults that can be easily predicted, many faults that can not be predicted at all,

and some faults where improvements can be achieved by making the right deci-

sions. In our case, evaluating the performance of the whole system, predicting

the 28 faults, one can conclude that the hierarchical approach provides a statis-

tically significant but humble improvement over the contrast models. However,545

if we analyze the results on a per-fault basis, we can see dramatic improvements,

for example, for fault 27 we move from less than a 20% CFP to 100%.
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Figure 6: Example of two features corresponding to easy to predict faults. In Stream9F, there
is a clear distinction between the 3 types of faults. In Stream9b, however, faults 2 and 6 are
harder to distinguish.

4.4. Inherent limitations of the single-fault approaches

In this paper, we are dealing with multi-fault prognosis of complex systems.

In the previous subsection, we have demonstrated that hierarchical approaches550

aiming to capture similarity between faults outperforms single-fault models.

Our hypothesis is that this difference in performance is due to the com-

plexity of the data and the similarity between faults. Different faults can have

multiple and varied effects on the data, some of them may be shared by several

faults. Models trained only using the failure patterns related to a single fault555

(Individual models in this paper) risk having a high number of false alarms.

On the other hand, if two or more faults produce very similar effects on the

data, models trained to estimate time-to-failure and also distinguish between

faults (the contrast approach presented in this paper), will fail to predict the

time-to-failure since they are presented with confusing information.560

4.4.1. Evaluation on easy to predict failures

Looking at the results from the previous subsection, we are selecting the

easiest to predict faults. We focus on faults 1, 2 and 6; these faults show a clear

trend growing from the injection of the fault until the failure, and these trends

are very distinctive for each faults.565

In Fig. 6, we can visualize the data corresponding to these three faults.

In Table 6, we can see the results of using the flat models with contrast or

without contrast, and the best hierarchical approach from last subsection. All
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CPF FAH FII n tests Final cost

Independent 1 ±0 0 ±0 0.40±0.01 1 0.04 ±0.01

Contrast 1 ±0 0±0 0±0 1 0

CBD K-means 1 ±0 0±0 0±0 1 0

Table 3: Comparison of “individual” and “contrast” for easy to predict faults.

approaches reach a perfect score in the rate of corrected predicted faults (CPF);

however we observe false-fault alarms (FII) using the independent models. If570

we look back at Fig. 6, we could create a model for fault 6, using the Stream9f

feature, obtaining a model that would tell us when the fault is going to happen

with a reasonable accuracy (notice how the data flattens towards the end), and

clearly distinguish it from the other faults. However, without using the data

from other faults as contrast, it seems better to use the feature Stream9b; this575

feature has a monotonic growth towards the occurrence of the failure. This

model will create many false alarms predicting fault 6 for cases where it was

actually fault 2 happening.

These results show the importance of not treating different types of faults in a

complex system individually. If the same signal can be affected by different types580

of faults, training individual models can lead to many cross-alarms, predicting

the wrong type of fault. Even if the faults are easy to predict, we can have many

false alarms, since different types of faults can share similar general symptoms

in the recorded data. This situation is alleviated by training individual models

for each type of fault, but keeping information from other types of faults as585

contrast.

4.4.2. Evaluation on hard to predict failures

Based on the results of the previous subsection, we are selecting the hardest

to predict faults, the failure patterns related to these faults do not show any

particular difference between the data before and after the injection of the fault.590

These are faults 3, 5, 9, 15, 16, 21, 22 and 28.

In Fig. 7, we have an example of two features related to two of these faults.
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Figure 7: Example of two features corresponding to two hard to predict faults.

CPF FAH FII n tests Final cost

Individual 0.61±0.13 2.86±0.34 0.66±0.20 1.63±0.12 30.9±3.6

Contrast 0±0 0±0 0±0 0±0 1±0

CBD K-means 0±0 0±0 0±0 0±0 1±0

Table 4: Comparison of individual flat models, individual models with contrast, and the
results of the hierarchical approach with the best extraction method.

It is obvious that it is hard, if not impossible, to predict any failure related to

these faults; there is no clear distinction between healthy and faulty data. A side

effect of training the individual models on this type of data is the appearance595

of false alarms when the machine is healthy provoked by random fluctuations

in the data. This effect is alleviated in part by training models with contrast,

because the models are trained on an unbalanced dataset, since all the contrast

faults are labeled with Tmax, i.e., as if they were healthy.

In Table 4, we can see the results of using the single-fault models trained600

individually and with contrast, in addition to the hierarchical approach using

the CBD dissimilarity and the divisive k-means clustering algorithms. The

individual models simply fail, they predict some faults at the expense of creating

alarm indiscriminately. As a reference, ignoring the models will ”only” have

a cost of 1. These types of faults are unpredictable, they do not show any605

difference between their failure patterns and the healthy data. Both the flat

models with contrast and the hierarchical approach fail to predict anything,

but they do not incur in false alarms.
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CPF FAH FII Number of tests Final cost

No contrast 1±0 0 ±0 0.06±0.01 1.5 ±0.1 0.07 ±0.01

Contrast 0±0 0±0 0±0 0 1 ±0.00

CBD K-means 1±0 0±0 0±0 1.5±0.2 0.05±0.02

Table 5: Comparison of individual flat models, individual models with contrast, and the
results of the hierarchical approach with the best extraction method with similar faults.

4.4.3. Introducing similar faults

For this experiment, we want to study the effect of similar faults in the610

models with and without contrast. We will only use faults 1 and 2. To simulate

other similar faults, we simply add the same two faults with different label.

In Table 5, we can see the results of using the independent model approach

and the models with contrast, and the hierarchy extracted using the CBD dis-

tance and the hierarchical divisive clustering algorithm using k-means. The615

contrast models fails to identify any fault. To train the contrast model, we have

provided a dataset with the same failure patterns, but different labels. Both

the individual and the hierarchical approaches are able to predict all the faults,

at the expense of increasing the number of tests.

There are clear advantages of using the contrast models. It reduces consid-620

erably the number of false-fault alarms compared to the individual models, by

training the models for each fault using the other faults as contrast. In addition,

adding this contrast also reduces the number of healthy false alarms for those

types of faults where there is not a clear difference between the healthy and the

faulty data. However, they fail to predict failures at all if there are similar ones625

among the contrast faults.

The hierarchical approaches that are capable of correctly identifying the

similarity relationships between faults are able to take the benefits of both

approaches: they are able to predict failures in the presence of similar faults,

and are able to use the contrast faults to reduce the number of false alarms.630

They achieve this improvement at the cost of a moderate increase in the number

of tests needed to isolate the responsible fault.
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5. Literature Review

Estimating time-to-failure for complex systems with multiple possible faults

has been pointed out as a challenge as early as a decade ago, in [10]. However,635

this challenge has not been picked up by the research community. More recently,

in [2], this issue is specifically discussed: “with the increase of application level,

that is from a component to a system, the complexity prognostics increases... it

is suggested to perform prognostics at component or sub-system level. Moreover,

in the case of complete system, critical components or sub-system should be640

monitored or maintained individually rather than prognostics of system”.

There are examples in the literature of predicting different types of faults in

the same component or subsystem. In [11], the authors introduce seven different

types of faults on a rolling bearing-rotor system. Their experiments are carried

on in lab conditions, using a test rig by directly introducing faults. In [12], the645

authors treat a similar problem using an induction motor, instead.

The lack of research on multi-fault systems has been pointed out in other

surveys [13], and other research works. In [14], the goal is to predict failures

for a multi-fault system in a hydro-electric plant using a Petri net propagation

model. The main difference between that research and ours is the data used:650

while we use signals recorded describing the operation of the machines, they use

discrete states obtained using diagnostics tools.

In the field of Condition Based Monitoring, multi-fault prognosis has been

extensively studied. In [6], authors propose a method to optimize the mainte-

nance operations on a complex system using as input the multivariate degrada-655

tion patterns corresponding to different faults. Their work focuses on connecting

the failure prognosis and the maintenance optimization. The main difference

with our work is that we focus on extracting models that describe the degra-

dation linked to a fault using the data produced by machines, while they take

these already found degradation patterns as input.660

There has been research focusing on the interaction of faults, more pre-

cisely on how some faults can induce other faults in the same system. In [15],
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the authors define the different types of interaction between faults. Economic

relations describe the effect on the total cost of performing maintenance oper-

ations on different components simultaneously or not; stochastic relationships665

deal with the cases where the operation of one component can affect other com-

ponents; and structural, where different components form part of the same part

or subsystem. In our case, we would add one more category for the relationship

between components, components can be related if they affect the recorded data

in a similar manner. In [16], the authors do multi-fault prediction focusing on670

the co-occurrence of faults. The assumptions of their approach is that there is

appropriate data to represent all of the failures modes of the system, and that

two fault modes must be discernible with the given data. Both assumptions are

broken in our scenario; the problems arising from the breaking of these assump-

tions is the main motivation for our work, and the framework on how to solve675

them is our key contribution.

6. Conclusions and Future Work

In this paper, we have dealt with the problem of time-to-failure prediction

of multiple faults in complex systems given imperfect data, a problem rarely

treated in the literature.680

We have focused on the challenges that arise when there are similar faults,

i.e., faults that provoke the same symptoms on the recorded data. This situation

is not ideal for the purpose of predictive maintenance, however, we argue that

this scenario happens often in real life industrial applications.

Predicting time-to-failure in the presence of similar faults presents unique685

challenges. Training individual models for each type of fault risk the presence of

a high number of false alarms: the models will pick the most obvious symptoms,

that distinguish the faulty data from the healthy data, but will miss the more

subtle ones that can discern between different types of faults.

This problem can be partly solved by training individual models for each690

fault, using the data of the rest of the faults as contrast. Such a model should

29



be able to distinguish between healthy and faulty data, and between different

types of faults. However, this contrast approach can be affected by the presence

of faults with similar symptoms. If two faults have the same effect on the data

and one of them is labeled as faulty and the other one is used as contrast, the695

regression model will fail to predict any faults.

We propose a new framework, HMP, that consists on building hierarchies of

faults, based on their similarities. We have used such hierarchies to build models

that predict the time to failure for groups of faults. The intuition is that, in

the presence of two similar faults, models trained individually to predict each700

one will fail, but a model trained on a combination will succeed. The models

trained at the nodes of the hierarchy will output the same estimated time-to-

failure for all the faults contained in the node. We further use the structure of

the hierarchy to refine this prediction, and rank the faults from the most likely

to the less likely to be the responsible one.705

We evaluate our approaches in an simplified but realistic scenario using Ten-

nessee Eastman Process data, assuming that maintenance operations will be

carried out following the recommendations of HMP predictive models. Our

experiments show the superiority of using extracted hierarchies for multi-fault

time-to-failure prediction over non-hierarchical ones. Specifically, we show how710

some types of faults were hardly predictable using single-fault approaches but

become predictable with a high degree of certainty by the hierarchical ones.

We have tried different methods to extract hierarchies. We have shown that

the key of the improvement in performance resides in how the similarities are

computed. In our case of study, classifier based distances seem to outperform715

hierarchies built using euclidean distance. The clustering method used to ex-

tract the hierarchy only gives marginal improvement, and no statistically solid

conclusion can be drawn about which method is better.

In real-life applications, the whole predictive system will necessarily be more

complex. For example, of different faults will have different costs associated720

with their maintenance and correction. Similarly, the temporal margin needed

to plan, schedule and execute a maintenance operation might be different. An-
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other important aspect of many real-life applications is that we do not have

information about when the fault starts occurring in a machine, typically we

only have information about when a failure happened. It is left for future work725

to explore how the HMP framework can be used in these circumstances and

how to evaluate its corresponding performance.
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