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Abstract

Using hierarchies of classes is one of the standard methods to solve multi-class

classification problems. In the literature, selecting the right hierarchy is considered to

play a key role in improving classification performance. Although different methods

have been proposed, there is still a lack of understanding of what makes a hierarchy

good and what makes a method to extract hierarchies perform better or worse.

To this effect, we analyze and compare some of the most popular approaches to

extracting hierarchies. We identify some common pitfalls that may lead practitioners

to make misleading conclusions about their methods. To address some of these

problems, we demonstrate that using random hierarchies is an appropriate benchmark

to assess how the hierarchy’s quality affects the classification performance.

In particular, we show how the hierarchy’s quality can become irrelevant de-

pending on the experimental setup: when using powerful enough classifiers, the

final performance is not affected by the quality of the hierarchy. We also show how

comparing the effect of the hierarchies against non-hierarchical approaches might

incorrectly indicate their superiority.

Our results confirm that datasets with a high number of classes generally present

complex structures in how these classes relate to each other. In these datasets, the

right hierarchy can dramatically improve classification performance.
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Figure 1: Example of a hierarchy of Classes

1. Introduction

Extracting hierarchies of classes to transform Multi-class Classification problems

into Hierarchical Multi-class Classification (HMC) ones is a popular approach in

the literature [1]. Compared to other approaches, it reduces training and especially

testing running times while being competitive in classification performance [2]. How-5

ever, quite surprisingly, a thorough discussion on the nature and importance of the

extracted hierarchies and how to extract and evaluate them is still missing.

Intuitively, HMC consists of breaking the multi-class problem into a collection

of binary classification problems defined by a particular hierarchy. The hierarchy

is a binary dendrogram, where all classes are placed at the leaves and are iteratively10

merged until they are all clustered together at the root (see Figure 1). A hierarchical

classifier is trained, building binary classifiers at each node to discriminate the classes

in the left sub-tree from those in the right sub-tree. To test a new instance, we

evaluate the classifier at the root node, selecting one of its two children. Recursively,

we evaluate the selected node until we reach one of the leaves. The total number15

of evaluations equals the number of nodes in the path connecting the root and the

selected leaf and is always smaller than the number of classes.

Hierarchical multi-class classification might suffer from error propagation. If an

instance is incorrectly classified at the early nodes, the error will propagate downwards.
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In this paper, we will focus on hard-class predictions, i.e., the output of every binary20

classifier is one of two classes. In this case, these errors will be unrecoverable.

There are many ways to define the goodness of a hierarchy: we can compare it

with some ground truth, analyze the quality of its clusters, interpret the relationships

between nodes and their meaning,... For hierarchical classification, the quality of

a hierarchy is defined by the classification performance of a classifier trained on it.25

The intuition is that in a good hierarchy, easy-to-separate classes are clustered

close to the root, while hard-to-separate ones are clustered together farther from

the root and closer to the leaves. This way, the classifiers trained at the higher

nodes of the hierarchy need to solve easy decision boundaries, which are less prone

to error, reducing the effects of the error propagation. On the other hand, the hard30

decision boundaries are solved at the bottom of the dendrogram by a classifier trained

explicitly for them, improving the overall classification performance.

Clearly, this idea defines the first requirement for the existence of a good hierar-

chy: classes are not independent of each other, and there is some structure between

them. The next requirement is that a hierarchical classifier trained on hierarchies35

that capture these relationships will significantly increase classification performance

compared to a hierarchy that does not capture them.

The total number of possible hierarchies is (2n−3)!! where n is the number of

classes [3]. Finding the best hierarchy through an optimization scheme is costly,

especially with many classes. However, suppose we assume that the hierarchy that40

best captures these underlying relationships between classes is the one that can be used

to train a hierarchical classifier with the best performance. Then, we can focus on the

process of extracting the hierarchy directly from the data in an unsupervised manner.

Extracting hierarchies from the data for HMC has been heavily studied in the

machine learning literature [4, 5, 6, 7]. Typically, the main approach was presented45

together with a methodology to extract the hierarchy. The overall performance was

then compared with other approaches that do not involve hierarchies, such as single

multi-class classifiers or One-vs-All ensembles.

This type of analysis fails to answer the following questions: is there a structure

in how classes relate to each other? Is this method discovering this structure? Is the50
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extracted hierarchy useful for the learning algorithm used? In other words, these works

validate the goodness of the hierarchical classification approach, but not necessarily the

quality of the method to extract the hierarchy and the quality of the hierarchy itself.

In this paper, we answer these questions by analyzing different methods of

extracting hierarchies. Conceptually, extracting hierarchies from data points is a55

well-established field of research called hierarchical clustering. Any method in this

area consists of two main components: measuring the dissimilarity between points

and evaluating the quality of the hierarchy. In the specific context of HMC, extracting

hierarchies presents two specific challenges. First, instead of measuring dissimilarities

between points, one must measure dissimilarities between classes – which can be60

thought of as sets of data points, but that is not necessarily the best approach since

it ignores important properties such as the shape or complexity of class boundaries.

Second, the quality of the hierarchy is characterized externally, namely by the

performance of the classifier trained on it, instead of the data’s inherent structure.

We are going to critically evaluate different state-of-the-art approaches for obtain-65

ing hierarchies of classes, focusing on how to measure dissimilarity between classes and

how to cluster them. In particular, we are going to compare two families of dissimi-

larities: Representative Based Dissimilarity (RBD) and Classifier Based Dissimilarity

(CBD). RBD computes a representative for each class and measures dissimilarity

between class representatives. On the other hand, CBD first trains a classifier on the70

whole dataset and infers dissimilarity from the resulting confusion matrix. In addition,

we are going to compare two examples of clustering algorithms: Hierarchical Agglomer-

ative Clustering (HAC) and Hierarchical K-means (HKM). The first one represents the

family of bottom-up algorithms, whereas the latter represents the family of top-down.

We demonstrate that the quality of the extracted hierarchy is not the only factor affect-75

ing the final classification performance and identify several considerations that must be

taken into account when presenting evaluations. In particular, we analyze the effects of

the HMC approach itself and how the effect of the quality of the hierarchy changes de-

pending on how powerful the learning algorithms used for the hierarchical classifier are.

This paper contributes to the state-of-the-art with the following: 1) we identify80

several pitfalls in the process of extracting and evaluating methods to extract hier-
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archies for HMC; 2) we propose using a random hierarchy as a necessary benchmark

to evaluate the relevance of a hierarchy; in this way, one can establish whether a

given extracted hierarchy is capturing an existing structure between classes or not;

3) we demonstrate how the effect on the classification performance of the hierarchy85

quality depends on the complexity of the classification problem and the complexity

of the classifiers used; 4) we analyze different approaches for extracting hierarchies

to showcase the previous contributions.

2. Literature Review

Traditionally, learning algorithms are designed to deal with binary classification90

problems. In this sense, multi-class classification approaches can be grouped into

two categories: extended algorithms and binary adaptation.

Extended algorithms refer to those algorithms that are adapted for the multi-

class case by solving it as a global optimization problem, overlooking relationships

between classes. We will refer to them as single multi-class classifier or simply single95

classifier. Some learning algorithms are easily extended, like KNN, decision trees,

or neural networks. Others, like SVMs ([8]; [9]) or logistic regressions [10], cannot

be adapted so straightforwardly. In any case, the number of possible classes affects

the computational complexity of training and testing at least linearly.

Binary adaptation decomposes the multi-class problem into several binary prob-100

lems. Based on how the decomposition is done, we can distinguish between approaches

that consider the relationships between classes and those that do not.

All-vs-all (AVA) and One-vs-all (OVA) are the most popular approaches among

the latter. AVA [11] consists of training one classifier for each pair of classes. N(N−1)
2

classifiers must be trained. The final prediction is obtained after combining all105

classifiers through some form of ensemble aggregation method [12]. OVA [13] consists

of training one classifier for each class, separating between the given class and the

rest. The final prediction is again obtained via voting [12].

In [13], the authors conclude that there are no significant differences in perfor-

mance between OVA and AVA when the binary learners are well-tuned regularized110
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classifiers. Moreover, they reflect on the limitations of OVA in the cases where classes

are not independent. They hypothesize that an approach that exploits these relation-

ships can achieve better performance. This hypothesis was separately corroborated

from a theoretical point of view in [14] and [15].

The main approaches focusing on exploiting the relationship between classes to115

improve performance are Chains of Classifiers (CC) and Hierarchical Multi-class

Classification (HMC). CC [14] consists of training a sequence of binary classifiers. The

first one distinguishes one class from the rest; the next one separates another class from

the remaining rest. The process is repeated until all classes are classified. Dissimilarity

between classes is used to establish the order of the classes so that easy-to-discern120

classes are classified first, and hard-to-discern ones are classified at the end of the chain.

2.1. Hierarchical Multi-class Classification

Hierarchical Multi-class Classification is based on using a hierarchy of classes

encoded in a dendrogram structure. Each class corresponds to one leaf of the tree.

At each node, a classifier is trained to distinguish among its children. Predictions125

start from the classifier at the root node and are propagated until a leaf is reached.

Already when using probabilistic predictions in the binary models trained at each

node (i.e., when all nodes need to be evaluated), testing time is reduced compared

to AVA or OVA [4]. This benefit significantly increases when hard predictions are

propagated. In this setup, only the nodes connecting the final predicted class and130

the root need to be evaluated [2]. Reduction of testing time comes at the expense

of reducing performance. In [16], the authors explore this trade-off by allowing the

evaluation of the most probable paths instead of just one.

The term ”hierarchical classification” has been used both for tasks where there is

a pre-existing hierarchy of classes that can be exploited [17] or for tasks where such135

hierarchy needs to be extracted [18]. Even with a predefined hierarchy, improvements

can be achieved by modifying it. In [19], hierarchies are modified by eliminating some

of the intermediate nodes of the hierarchy. In [20], predefined hierarchies are modified

by rewiring parent-child relations or deleting and creating intermediate nodes. In

[21], the authors present a method to fusion hierarchies directly extracted from the140
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data and expert-made hierarchies. We will focus on the extraction of hierarchies for

multi-class classification problems where there is no predefined one.

Extraction of hierarchies has also been used in the field of neural networks and

language modeling. In cases with multiple outputs, hierarchical softmax provides

significant speed-up for both training and testing [22]. Extraction of hierarchies of145

words was explored in [23], yielding significant improvements in performance.

Hierarchical Multi-Class classification with binary splitting is often referred to

as nested dichotomies. In [24], they achieve improvements in predictive power by

ensembling hierarchical classifiers trained on several randomly generated hierarchies.

In [25], the authors study the effects of random hierarchies and relate them with150

the learning algorithm used for classification. They present a method to obtain

hierarchies, selecting the best hierarchy from a pool of randomly generated ones.

Extracted hierarchies are sometimes allowed to have more than two children

nodes per parent. In [26], the authors create a hierarchy of classes until a node

contains less than a given number of classes (typically 100), then one-vs-all classifiers155

are trained. In [27], the authors propose to create shallow hierarchies to reduce error

propagation by increasing the number of children allowed at each node.

In this paper, we will focus on extracted hierarchies with just binary splittings

where only hard class propagation is considered. We choose to keep the term ”Hi-

erarchical Classification” because we believe that our contributions can be easily160

generalized to less constrained setups.

Focusing on the process of extracting the hierarchy, we distinguish two steps:

selecting the dissimilarity measure to be used and a hierarchical clustering algorithm.

Dissimilarity measures between classes can be divided into two groups: Rep-

resentative Based Dissimilarity (RBD) and Classifier Based Dissimilarity (CBD).165

RBD consists of obtaining a representative for each class and measuring distances

between those representatives. In ([28]; [6]) authors select a centroid for each class

and measure the cosine dissimilarity. A similar approach is used in [4], except for

the usage of the euclidean distance between centroids. In [29], the authors use the

Hausdorff distance to measure the dissimilarity between classes. The main advantage170

of using these types of dissimilarity is computational efficiency.
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While RBD is simple and fast, it also presents some drawbacks. Namely, how

representative is the class representative and how the distances between them describe

the relations between classes. To answer these drawbacks, CBD builds on the concept

of separability. If two classes are frequently misclassified into each other, they will175

be similar, whereas if the classes are not mixed, they must be dissimilar.

CBD involves training an auxiliary classifier and evaluating the confusion matrix

between classes. In the earliest approach [7], the author calculates the confusion ma-

trix using a single classifier, then uses the rows of the matrix as class representatives

for the corresponding classes. In [2], the confusion matrix is calculated using the180

OVA approach; then, the confusion matrix is symmetrized. In [5], a single classifier is

trained, then the dissimilarity between two classes is calculated based on the number

of instances of each class wrongly classified as the other.

Once dissimilarities have been computed, a hierarchical clustering algorithm

must be chosen. These algorithms can be divided into agglomerative and divisive.185

Hierarchical Agglomerative Clustering (HAC) consists of progressively merging the

most similar objects [5, 7]. Divisive clustering algorithm consists of iteratively using

flat cluster algorithms until each class is separated from the rest. K-means is used in

[28] and [4], whereas [2], and [30] use spectral clustering algorithms. Other divisive

methods aim to create balanced hierarchies in order to improve training and testing190

complexities (cf. [31]; [4]).

3. Methods

Formally, a hierarchy is defined as a binary dendrogram. Starting from the root,

all classes are iteratively separated into two sub-trees until each class is placed in

its own tree leaf (see Figure 1). Methods for extracting hierarchies from the data195

consist of two critical components: measuring the dissimilarity between classes and

the hierarchical clustering algorithm.

3.1. Dissimilarity

A class is defined by a set of points annotated with the same label. Evaluating

the dissimilarity between two classes c1,c2 means evaluating a function of the form200
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d(c1,c2)=f(Dc1,Dc2), where Dc={xi
c} is the distribution of points defined by the

feature vectors xi annotated with label c.

Representative Based Distance (RBD). One way to measure the dissimilar-

ity between classes consists of obtaining class representatives and evaluating their

distance. This approach is frequently used, choosing the centroid as the class rep-205

resentative. Any distance metric can be used to calculate the dissimilarity between

the class representatives. It is a straightforward approach and quite favorable in

terms of computational complexity. Formally, the dissimilarity between two classes

becomes d(c1,c2)=d′(xc1,xc2), where d′ is a distance metric (popular choices include

euclidean or cosine distance).210

Classifier Based Dissimilarity (CBD). Intuitively, if a classifier can not distin-

guish clearly between two classes, they must be similar. Conversely, if it can clearly dif-

ferentiate between two classes, they must be dissimilar. The standard way of evaluat-

ing how well a classifier distinguishes between two classes is by evaluating its accuracy.

For a multi-class classification problem, evaluating all pairwise class dissimilarities215

is similar to using AVA. This task can become extremely time-consuming if the

number of classes is high. Practitioners avoid this problem by obtaining a confusion

matrix using faster approaches like OVA or single classifier. One option is to use the

confusion matrix’s rows as the corresponding class representatives [7, 2]. Another

approach [5] is to calculate the dissimilarity between two classes as the accuracy220

measured in the corresponding subset of the confusion matrix M .

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

=>d(c1,c3)=
m11+m33

m13+m31+m11+m33
(1)

Unlike AVA, these approaches not only evaluate how two classes relate to each

other but also take into account the relation to the rest of the classes. The relationship

between two classes can be overshadowed by the overlap with a third one.

9



All-vs-all testing. To avoid this problem and still use a faster approach, we propose225

to use the output of a probabilistic classifier as a proxy to evaluate the accuracy of

distinguishing between two classes in the AVA fashion.

Let’s consider a test set D=[(x1,y1)...(xm,ym)] where xi is the feature vector,

yi∈{c1,...cn} is the associated class. Let h(x)=[P(c1|x),...,P(cn|x)] be the output of

our probabilistic multi-class classifier. For each pair of classes cj and ck, we evaluate230

the classifier only on those instances with real labels cj and ck and only compare

the probability predictions corresponding to these classes. We define the proxy of

the binary classifier for classes cj and ck as:

h′(x)=argmax
cj,ck

(P(cj|x),P(ck|x)) (2)

Finally, the distance between classes cj and ck is:

d(cj,ck)=

∑
i:yi∈{cj,ck}

(h′(xi)=yi)∑
i(yi=cj)+

∑
i(yi=ck)

(3)

3.2. Building the hierarchy

Hierarchical Agglomerative Clustering (HAC). works in a bottom-up fashion.235

Initially, each class is its own cluster. HAC iteratively merges the two most similar

clusters until all of the data is combined in the root node. There are different

approaches to calculating the distance between two clusters with several classes. The

most popular is “Average Link”, where the distance between two clusters is the

average distance between all pairs of classes.240

Hierarchical K-means. is an example of a divisive hierarchical clustering algo-

rithm. It works in a top-down manner by iteratively separating the points into two

groups. Starting from the root, we use k-means with k=2 to create two sub-clusters

of classes. We recursively repeat this step on each sub-cluster until every class is

separated from the rest and placed on one leaf.245
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Dataset name Instances Attributes Classes Min Max

1 Collins 1000 19 30 6 80
2 Pen digits 10992 16 10 1055 1144
3 Abalone 4168 9 21 6 689
4 Arrythmia 438 262 9 9 245
5 Image Segmentation 2310 18 7 330 330
6 Cartdiotocography 2126 35 10 53 579
7 Semeion 1593 256 10 155 162
8 Texture 5500 40 11 500 500
9 Statlog(Sat) 6430 36 6 625 1531
10 Walking 149332 4 22 911 21991
11 Usps 9298 256 10 708 1553
12 Bach 5571 90 65 6 503
13 Letters 20000 16 26 734 813
14 Helena 65196 27 100 111 4005
15 Plants(margin) 1600 64 100 16 16
16 Plants(shape) 1600 64 100 16 16
17 Plants(texture) 1599 64 100 15 16
18 Mnist 70000 719 10 6313 7877
19 Covertype 581012 54 7 2747 283301

Table 1: Information about dataset used: number of instances, number of features, number of
classes, and number of instances for the most and lest frequent class.

4. Experiments and Results

All experimental results reported are the average accuracy measured over 20-fold

Monte Carlo validation using 90% of the data for training and 10% for testing each

fold. Variances in the accuracies are computed with the method presented in [32].

We will compare the classification performance of the hierarchical classifiers trained250

on hierarchies extracted with different methods on the same dataset. We will use

the corrected resampled t-test presented in [32] for hypothesis testing. To compare

methods to extract hierarchies over many datasets, we will use the Friedman test [33].

Each experiment consists of measuring the dissimilarities, extracting the hierarchy,

training binary classifiers on each node, and evaluating the results. RBD is calculated255

directly since it is a deterministic measure, while CBD is estimated as an average

over 10-fold Monte Carlo validation. For clarity, we will refer to the classifiers trained

to measure CBD dissimilarities as CBD classifiers; we will refer to the classifiers

trained on the hierarchy as base classifiers. The base classifiers trained at each

node of the hierarchy use traditional cross-validation to tune the parameters.260
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To sample hierarchies uniformly, we follow the method proposed in [25]. The

datasets used are publicly available in the UCI and Open ML repositories1 and an

overview is presented in Table 1.

4.1. Benchmarks vs random hierarchy

To evaluate the quality of an extracted hierarchy, one needs an appropriate bench-265

mark to compare against. If we compare Hierarchical Multi-class Classification (HMC)

against other approaches like One-vs-All (OVA) or a single classifier, we are evaluating

the quality of HMC as an approach and the quality of the hierarchy simultaneously.

We claim that comparing against a random hierarchy is a more suitable solution since

it decouples the effects of using HMC and isolates the effects of the hierarchy’s quality.270

In this experiment, we compare the results of a classifier trained on a random

hierarchy (it is worth highlighting that a new hierarchy is randomly drawn at each

fold) with the two popular benchmarks used in the literature: single classifier and

OVA. Our goal is to understand how the characteristics of HMC affect performance.

As the learning algorithm within the nodes of the hierarchy, we use CART (as275

implemented in the rpart R package). We select the best complexity parameter

from a grid going from 100 to 10−6.

In Table 2, the performance of the single classifier is significantly worse than

HMC on 17 out of 19 datasets. In the remaining two, there is no significant difference

between the two approaches. Clearly, this demonstrates that a single classifier cannot280

be used as a benchmark for evaluating the quality of the hierarchy; even HMC

trained on a random hierarchy generally outperforms it.

On the other hand, OVA produces significantly better results than HMC trained

on a random hierarchy in 5 out of 19 datasets. However, in 2 cases, HMC trained

on a random hierarchy presents significantly better results, and for the remaining285

datasets, there are no significant differences. OVA is not expected to outperform

HMC, even when trained on a random hierarchy, which makes OVA an inappropriate

benchmark to evaluate the quality of the extracted hierarchies.

1https://archive.ics.uci.edu/ml/datasets.html, https://www.opneml.org
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Single Classifier Random OVA

1 0.07805±0.0068↓↓↓ 0.1409±0.0096 0.166±0.01

2 0.902±0.013↓↓ 0.9485±0.0023 0.9487±0.0019
3 0.254±0.0064 0.2417±0.0076 0.2462±0.0094

4 0.6±0↓↓↓ 0.731±0.016 0.718±0.022

5 0.926±0.0054↓↓ 0.9537±0.0031 0.9576±0.0043
6 0.99928±0.00055 0.99904±0.00062 1±0

7 0.523±0.014↓↓↓ 0.731±0.016 0.762±0.011

8 0.8433±0.0072↓↓↓ 0.9242±0.0037↑ 0.9093±0.0033

9 0.8383±0.0061↓ 0.8627±0.0033↑ 0.8546±0.0039

10 0.5099±0.0013↓↓↓ 0.599±0.0017 0.6209±0.0017↑↑

11 0.8059±0.0031↓↓↓ 0.8551±0.006 0.8758±0.0056↑

12 0.6643±0.0051↓↓↓ 0.7242±0.0044 0.7269±0.0052

13 0.7208±0.0034↓↓↓ 0.8541±0.0021 0.8547±0.0022

14 0.20832±0.00091↓↓↓ 0.2361±0.0038 0.2859±0.0022↑↑↑

15 0.021±0.0014↓↓↓ 0.348±0.012 0.3555±0.0093

16 0.02±0↓↓↓ 0.323±0.01 0.322±0.013

17 0.01±0↓↓↓ 0.401±0.015 0.441±0.011

18 0.88098±0.00047↓↓↓ 0.93554±0.00091 0.9394±0.00041↑↑

19 0.8184±0.0031↓↓↓ 0.8595±0.0045 0.8811±0.0014↑↑

Table 2: Comparison of single classifier, HMC using a random hierarchy, OVA. Highlighted are
the significantly best results, and underlined the significantly worst. One arrow indicates a p-value
smaller than 0.05; two, 0.01; three, 0.001.

With this experiment, we have proven that Hierarchical Multi-class Classification

has benefits independent of the quality of the hierarchy chosen. Using randomly gen-290

erated hierarchies can result in performances significantly better than non-hierarchical

approaches. If we want to evaluate methods of extracting hierarchies, comparing

against methods that do not involve hierarchies gives an incomplete evaluation.

Nevertheless, this type of analysis is still used in, for example, [4], [6], [7], [22], [30].

In [25], the authors propose a method to evaluate the quality of the hierarchy295

based on random hierarchies. The exceedance probability ranks the performance of a

model trained on a given hierarchy against 10.000 random hierarchies. Training and

testing 10000 hierarchies is costly. Also, there is the question of how many random

hierarchies are needed to give a fair representation of all possible hierarchies. For

example, with 100 classes, there are approximately 10184 possible hierarchies.300

In the rest of the paper, we will compare different approaches to extracting hi-

erarchies. Random hierarchies must be part of the process of evaluating their quality.
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Instead of the exceedance probability, we will compare against the performance of a

hierarchical classifier trained on randomly sampled hierarchies. This comparison does

not allow us to determine how good a hierarchy is. However, it allows us to decouple305

the effects of the hierarchy’s quality from the effects on the performance inherent in

HMC approaches. If a given hierarchy obtains significantly better classification perfor-

mance than a random hierarchy, we can conclude that this increase is due to the quality

of the hierarchy and that this is capturing some relationship between the classes.

4.2. Quality of the hierarchy310

Defining and quantifying the quality of a hierarchy of classes is not straightfor-

ward. Depending on the application, different metrics can be used. In the case of

supervised classification, it is assumed that a hierarchical classifier trained on a good

hierarchy should provide a better classification performance than on a bad one.

The majority of current HMC literature assumes that the performance of a315

hierarchical classifier is an (indirect) measure of the quality of the hierarchy. However,

this performance is not only determined by the underlying quality of the hierarchy;

but also by the relationship between the complexities of the classification problem and

the learning algorithm used. In this section, we attempt to evaluate how these two

factors interact. More specifically, to what degree can such a measure be used as an320

intrinsic property of a hierarchy, and to what degree is it specific to the experimental

setup and the base learners used.

In this experiment, we illustrate the relationship between different learning

algorithms and the quality of the hierarchy. For simplicity, we present the results for

two datasets that showcase key findings. We draw 100 hierarchies uniformly at random325

Correlations σh/σ(h)

SVM-GLM SVM-CART GLM-CART SVM CART GLM

5 -0.08 -0.18 0.06 1.02 0.85 0.20

7 -0.03 0.02 0.52↑↑↑ 0.86 0.61 0.42

Table 3: On the left, pairwise correlations between different learning algorithms trained on the same
hierarchies. Three arrows indicate correlations bigger than 0, with a p-value smaller than 0.001.
No arrows indicates the lack of a significant difference. On the right, the ratio between the mean
variance for each individual hierarchy and the variance of the performances across all hierarchies.
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Figure 2: Pairwise comparison of the performance of CART and GLM trained on the same 100 ran-
domly sampled hierarchies. Highlighted the variance of the hierarchy with the median performance.

and evaluate three different learning algorithms: CART, linear regression (GLM, as

implemented in the R package stats), and SVM with gaussian kernel (as implemented

in the package liquidsvm). For each random hierarchy, we calculate the performance

over 20 montecarlo folds. In the case of SVM, we tune the width of the kernel and

the regularization constant using an adaptive grid similar to the one used in [13].330

In Table 3, we present the results of measuring the pairwise correlation between

the results of the three different learning algorithms on the two selected datasets.

We observe only one significant correlation, namely between GLM and CART on

dataset 7 (semeion). This indicates an underlying quality of each hierarchy, where

”good” hierarchies help both learning algorithms achieve better performance.335

However, the same correlation does not happen on dataset 5 (image segmentation),

nor between the other two pairs of classifiers. To understand these differences, we also

measure the ratio between the variance of the results for a single hierarchy across the

20 montecarlo folds and the variance of the average accuracies of the 100 randomly

sampled hierarchies (on the right-hand side of Table 3). This measure indicates how340

significant the differences are between the performances of hierarchical classifiers for

each hierarchy. In dataset 5, there is no correlation between the performances of

different hierarchies using GLM and CART because there are no significant differences

in using one hierarchy or another for CART. This phenomenon is better understood

by analyzing the corresponding plots in Figure 2, in particular the error bars.345

In the left-hand subfigure, corresponding to dataset 5, all the evaluated hierarchies

yield essentially the same performance for CART. On the other hand, there are
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significant differences between hierarchies for GLM. This indicates that an underlying

quality of the different hierarchies is not necessarily going to be visible in classification

performance. For this dataset, CART is powerful enough not to be affected by it.350

It is worth contrasting with the right-hand subfigure, where the correlation between

two algorithms is strong – both GLM and CART “agree” on some hierarchies being

better than others.

When we compare the performances of GLM and CART with the performance

of SVM on the same hierarchy (two leftmost columns in Table 3), every hint of cor-355

relation disappears. The reason is, again, the absolute insensitivity of a hierarchical

classifier using SVM as a base learner for these two datasets.

These results hint at the existence of an underlying, objective quality of any

given hierarchy. However, this quality of the hierarchy and the performance of a

hierarchical classifier trained on it are not necessarily correlated. A powerful enough360

classifier will not be affected by the quality of the hierarchy: the quality of the

hierarchy becomes irrelevant.

4.3. Random hierarchies vs informed hierarchies

Random hierarchies do not incorporate any information about the relationships

between classes. The main hypothesis of HMC is that an informed hierarchy that365

exploits such information should yield better results in terms of predictive accuracy.

In this experiment, we evaluate one of the most popular methods to extract

hierarchies, Representative Based Dissimilarity. RBD takes a representative for each

class, computes their dissimilarity, and clusters them in a hierarchy. As a repre-

sentative, we use the centroid; as dissimilarity, the euclidean distance; as clustering370

algorithm, Hierarchical Agglomerative Clustering.

The overall experimental setup is the same as the previous experiments. The com-

parison uses two base learners: CART and GLM. Both learning algorithms are trained

on the same training set and on the same extracted hierarchy. In addition, we also ana-

lyze the differences between using hard-class predictions and probabilistic predictions.375

Results are presented in Tables 4 and 5. For both CART and GLM, hierarchies

obtained with RBD always yield similar or significantly better results than the
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CART
Hard-class Probabilistic

Random RBD Random RBD

1 0.1409±0.0096 0.171±0.011 0.1476±0.0087 0.18±0.011

2 0.9485±0.0023 0.9551±0.002↑ 0.9485±0.0023 0.9551±0.002↑

3 0.2417±0.0076 0.2246±0.0084 0.2405±0.006 0.2417±0.0074

4 0.731±0.016 0.766±0.017↑ 0.731±0.016 0.766±0.017↑

5 0.9537±0.0031 0.9617±0.0046 0.9537±0.0031 0.9617±0.0046
6 0.99904±0.00062 0.99952±0.00046 0.99904±0.00062 0.99952±0.00046

7 0.731±0.016 0.787±0.011↑↑ 0.731±0.016 0.787±0.011↑↑

8 0.9242±0.0037 0.9333±0.0026 0.9242±0.0037 0.9333±0.0026
9 0.8627±0.0033 0.8644±0.0047 0.8627±0.0033 0.8644±0.0047

10 0.599±0.0017 0.6028±0.0011 0.6003±0.0017 0.6045±0.0011↑

11 0.8551±0.006 0.8929±0.0032↑↑↑ 0.8551±0.006 0.8929±0.0032↑↑↑

12 0.7242±0.0044 0.7473±0.0067↑↑ 0.7244±0.0044 0.7473±0.0067↑↑

13 0.8541±0.0021 0.8633±0.0028↑ 0.8541±0.0021 0.8633±0.0028↑

14 0.2361±0.0038 0.2685±0.0023↑↑↑ 0.2571±0.0028 0.2856±0.0018↑↑↑

15 0.348±0.012 0.498±0.019↑↑↑ 0.348±0.012 0.498±0.019↑↑↑

16 0.323±0.01 0.4015±0.0097↑↑↑ 0.323±0.01 0.4025±0.0099↑↑↑

17 0.401±0.015 0.513±0.012↑↑↑ 0.401±0.015 0.513±0.012↑↑↑

18 0.93554±0.00091 0.93853±0.00029↑↑ 0.93554±0.00091 0.93853±0.00029↑↑

19 0.8595±0.0045 0.8784±0.0014↑↑ 0.8595±0.0045 0.8784±0.0014↑↑

Table 4: Comparison of HMC trained on a random hierarchy and on a hierarchy using RBD, and
CART as base learner. Both deterministic and probability predictions are shown. Highlighted are
the significantly best results. One arrow indicates a p-value smaller than 0.05; two, 0.01; three, 0.001.

random hierarchy. This indicates that the informed hierarchies have indeed captured

some existing relationships between classes that are then exploited by the classifier.

For CART, when compared with the random hierarchy, we observe significant380

improvements in 12 out of 19 datasets using the RBD hierarchy in the hard-class

case, and 13 in the probabilistic case. In the rest of the cases, we can not observe

significant differences between any of the approaches. For GLM, we observe signif-

icant improvements in 14 out of 19 datasets for the RBD hierarchy with hard-class

and probabilistic prediction. In 4 datasets, we can not observe significant differences385

between the approaches.

The first conclusion is that informed hierarchies are always better or as good

as random hierarchies. When the difference in performance is significant, we can

confirm that there is a structure between classes and that this method to extract

hierarchies is capturing (at least partially) this structure. In the absence of significant390
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GLM
Hard-class Probabilistic

Random RBD Random RBD

1 0.1945±0.0098 0.248±0.013↑↑ 0.231±0.017 0.264±0.014

2 0.86±0.013 0.9184±0.0021↑↑ 0.865±0.012 0.919±0.0021↑↑

3 0.2248±0.0088 0.2448±0.0056 0.2558±0.0076 0.2694±0.0063
4 0.509±0.022 0.507±0.027 0.51±0.023 0.507±0.027

5 0.888±0.016 0.9429±0.0045↑↑ 0.891±0.015 0.9426±0.0045↑↑

6 1±0 1±0 1±0 1±0

7 0.719±0.018 0.776±0.0088↑ 0.72±0.018 0.776±0.0088↑

8 0.9824±0.0042 0.99582±0.00078↑ 0.9825±0.0041 0.99582±0.00078↑

9 0.8249±0.0074 0.8488±0.004↑↑ 0.8263±0.007 0.8503±0.0039↑↑

10 0.2058±0.0096 0.2114±0.0011 0.2433±0.0069 0.2732±0.001↑↑

11 0.85±0.013 0.9084±0.0031↑↑↑ 0.853±0.012 0.9083±0.0031↑↑

12 0.6679±0.0061 0.6949±0.006↑↑ 0.674±0.005 0.6991±0.0064↑↑

13 0.483±0.017 0.7359±0.0027↑↑↑ 0.525±0.015 0.7536±0.003↑↑↑

14 0.2003±0.0051 0.2661±0.0023↑↑↑ 0.2754±0.0034 0.3185±0.0016↑↑↑

15 0.262±0.015 0.371±0.012↑↑↑ 0.272±0.016 0.371±0.012↑↑↑

16 0.122±0.0093 0.268±0.014↑↑↑ 0.128±0.012 0.268±0.014↑↑↑

17 0.336±0.016 0.362±0.011 0.339±0.017 0.362±0.011

18 0.6977±0.0057 0.7194±0.0017↑↑ 0.6995±0.0055 0.7201±0.0018↑↑

19 0.79±0.01 0.8549±0.0012↑↑↑ 0.8059±0.008 0.8612±0.0013↑↑↑

Table 5: Comparison of HMC trained on a random hierarchy and on a hierarchy using RBD and
GLM as base learner. Both deterministic and probability predictions are shown. Highlighted are the
significantly best results. One arrow indicates a p-value smaller than 0.05; two, 0.01; three, 0.001.

differences, we can neither confirm nor refute that there exists a structure in how

classes relate to each other. This can mean two different things: either there does not

exist a hierarchy that produces significant improvements, or we have not found it yet.

It is worth noting that if we had compared with the single classifiers from the

previous subsection, we would have concluded that the RBD hierarchies for datasets395

1, 5, 9, and 10 were useful using CART. This conclusion would be wrong: the results

of HMC trained on them are significantly better than the single classifier; however,

they are not significantly better than HMC trained on a random hierarchy.

In all the datasets where there were significant differences using CART, we found

significant differences using GLM. However, there are multiple examples where we400

found significant differences using GLM, but not when using CART. This reinforces

our conclusion from the previous section: powerful enough classifiers will not be

affected by the quality of the hierarchy. The absence of a significant difference using
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XGBoost SVM
Random RBD Random RBD

1 0.257±0.016 0.267±0.018 0.304±0.061 0.305±0.049
2 0.9895±0.0014 0.9908±0.0011 0.9940 ± 0.0020 0.9940 ± 0.0020
3 0.262±0.011 0.253±0.011 0.270 ± 0.018 0.274±0.021
4 0.762±0.018 0.767±0.017 0.726±0.053 0.737±0.048
5 0.9784±0.0031 0.9823±0.0038 0.974±0.0074 0.978±0.0087
6 0.99952±0.00058 0.99976±0.00042 1±0 1±0
7 0.9224±0.0067 0.9328±0.0071 0.953±0.12 0.953±0.015
8 0.9814±0.0017 0.9835±0.0017 0.998±0.002 0.999±0.0015
9 0.9186±0.0029 0.9192±0.0032 0.9220 ±0.0066 0.9170±0.0094
11 0.9603±0.0024 0.9653±0.003 0.970±0.0076 0.976±0.0053
12 0.7844±0.0064 0.7907±0.0062 0.811±0.014 0.816±0.014
13 0.9562±0.0016 0.9568±0.0018 0.962±0.0048 0.968±0.0029
14 0.3582±0.0017 0.3673±0.0017 0.34±0.0051 0.356±0.0044
15 0.64±0.025 0.716±0.012 0.814±0.035 0.836±0.037
16 0.509±0.019 0.544±0.016 0.713±0.040 0.716±0.038
17 0.668±0.018 0.715±0.015 0.844±0.030 0.850±0.028

Table 6: Comparison of HMC trained on a random hierarchy and on a hierarchy using RBD using
Extreme Gradient Boosting and SVM using gaussian kernel. Highlighted are the significantly best
results. One arrow indicates a p-value smaller than 0.05; two, 0.01; three, 0.001.

CART does not necessarily mean that the extracted hierarchy is not capturing inter-

esting relationships between classes. Rather, CART can discover these relationships405

by itself.

As a natural extension, we hypothesize that for an arbitrarily complex problem,

there is an arbitrarily complex learning algorithm for which the different possible

decompositions will be irrelevant.

In Table 6, we can see the results of running a boosting algorithm based on trees410

and a support vector machine using gaussian kernels implemented as in Section

4.2. For the boosting algorithm, we have used the xgboost package and simply

tuned the trees’ depth. Although we still find significant differences in some datasets

(only one in the case of SVM), those differences are comparatively smaller and less

significant when using CART or logistic regression. It is of special interest the result415

of SVM on dataset 14: a hierarchy extracted using the distance between centroids

of classes provides a significant improvement, even when the classifier trained on it

uses a kernelized SVM that does not use the original feature space.

If the practitioner is interested in finding the best possible classification perfor-

19



mance without regard for the time it may take to train and evaluate the models, the420

effort should be directed into finding the most powerful classifier and tuning its hyper-

parameters. In these cases, there is probably no great added value from choosing one

decomposition over another. It is interesting to find good hierarchies when there are

restrictions on how much resources we can afford for the training and evaluation phase.

At each fold of our validation scheme, we extract a hierarchy and train our models.425

In this scenario, our results’ variation source is not just the sampling of training

and testing sets, like in traditional classification tasks. The method to extract the

hierarchy also contributes to the variance. This depends not only on the validation

scheme but also on the intrinsic complexity of the relationship between classes and

how we extract the hierarchy. This is evident by comparing the variances using a430

random hierarchy or an RBD hierarchy using GLM as a base classifier in Table 5.

Therefore, to establish a fair comparison between two methods to extract hier-

archies over several datasets, we need first to make sure that there is an underlying

structure that provides statistically significant improvements for each dataset. First,

we need to analyze if the proposed method provides significant improvements over435

a random hierarchy, then we need to provide a sound statistical analysis of each

dataset. This type of analysis is missing, for example, in [5] and [25].

4.4. Representative Based Dissimilarity vs Best of 50 heuristic

RBD using centroids and euclidean distance as metric is a standard procedure to

measure dissimilarities. There are some concerns, though: how representative is the440

centroid for the complete class distribution (which can be arbitrarily complex) and

how useful is the distance between centers to measure dissimilarity between classes.

Best-of-50 (Bo50) method was introduced in [25], it samples 50 hierarchies at

random and selects the one with the best performance using 3-fold cross-validation.

In Table 7, using CART, we observe 8 datasets without significant improvement445

over the random hierarchy (Table 4). In 5 out of the other 11 datasets, we do

not observe significant differences between Bo50 and RBD approaches. We can see

significant differences in favor of RBD in 5 datasets and in favor of Bo50 in 1 dataset.

The most significant differences happen in datasets 14, 15, 16, and 17, those that have
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CART Logistic
RBD Bo50 RBD Bo50

1 0.171±0.011 0.185±0.013 0.248±0.013 0.276±0.015

2 0.9551±0.002 0.9599±0.0021 0.9184±0.0021 0.9347±0.0044↑↑↑

3 0.2246±0.0084 0.269±0.0057↑↑↑ 0.2448±0.0056 0.2726±0.0057↑↑

4 0.766±0.017 0.769±0.018 0.507±0.027 0.576±0.031↑

5 0.9617±0.0046 0.9693±0.0044 0.9429±0.0045 0.9587±0.0053↑↑↑

6 0.99952±0.00046 1±0 1±0 1±0
7 0.787±0.011 0.784±0.013 0.776±0.0088 0.796±0.014
8 0.9333±0.0026 0.9361±0.0029 0.99582±0.00078 0.99691±0.00084

9 0.8644±0.0047 0.8662±0.0056 0.8488±0.004 0.8584±0.004↑↑

10 0.6028±0.0011 0.6031±0.0022 0.2114±0.0011 0.2873±0.0056↑↑↑

11 0.8929±0.0032↑ 0.8855±0.0041 0.9084±0.0031↑ 0.8995±0.0053

12 0.7473±0.0067 0.7454±0.0064 0.6949±0.006 0.711±0.0063↑

13 0.8633±0.0028 0.8614±0.003 0.7359±0.0027↑↑↑ 0.573±0.006

14 0.2685±0.0023↑↑↑ 0.2587±0.0022 0.2661±0.0023↑↑↑ 0.2317±0.0028

15 0.498±0.019↑↑↑ 0.372±0.019 0.371±0.012↑↑ 0.312±0.015

16 0.4015±0.0097↑↑ 0.34±0.018 0.268±0.014↑↑↑ 0.1495±0.0096

17 0.513±0.012↑↑↑ 0.422±0.012 0.362±0.011 0.394±0.015
18 0.93853±0.00029 0.93778±0.00073 0.7194±0.0017 0.7174±0.004
19 0.8784±0.0014 0.8807±0.0021 0.8549±0.0012 0.8514±0.0033

Table 7: Comparison of HMC trained on a hierarchy obtained with the Best of 50 heuristic and
on a hierarchy using RBD. CART and GLM are used as learning algorithm. Highlighted are the
significantly best results. One arrow indicates a p-value smaller than 0.05; two, 0.01; three, 0.001.

100 classes. Bo50 provides competitive results, especially if the number of classes is not450

very high. However, with many classes, it significantly under-performs compared to

RBD, and in some cases (15, 16, and 17), it does not provide results significantly better

than a random hierarchy. As the number of classes increases, so does the number

of possible hierarchies – and Bo50 becomes less likely to sample a good hierarchy.

In Table 7 using GLM, we observe just one dataset where there is no significant455

improvement over the random hierarchy (Table 5). We observe significant differences

in favor of Bo50 in 9 datasets and in 5 datasets in favor of RBD. These 5 datasets

are the same 5 datasets where we observed the same phenomenon using CART. In

8 of the 9 datasets where Bo50 significantly outperforms RBD using GLM, we did

not observe any difference using CART. Hierarchies that are useful for GLM are460

irrelevant for CART, arguably a more powerful classifier [34].
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RBD CBD1 CBD2

1 0.248±0.013 0.252±0.014 0.252±0.014
2 0.9184±0.0021 0.912±0.0026 0.912±0.0026
3 0.2448±0.0056 0.243±0.0062 0.243±0.0062
4 0.507±0.027 0.537±0.016 0.537±0.016
5 0.9429±0.0045 0.9584±0.0041 0.9584±0.0041
6 1±0 1±0 1±0
7 0.776±0.0088 0.7523±0.0092 0.7523±0.0092
8 0.99582±0.00078 0.9893±0.0013 0.9893±0.0013
9 0.8488±0.004 0.8337±0.0036 0.8337±0.0036
10 0.2114±0.0011 0.20537±0.00072 0.20537±0.00072
11 0.9084±0.0031 0.8697±0.0037 0.8697±0.0037
12 0.6949±0.006 0.6505±0.0049 0.6505±0.0049
13 0.7359±0.0027 0.4004±0.0043 0.4004±0.0043
14 0.2661±0.0023 0.19±0.0013 0.19±0.0013
15 0.371±0.012 0.189±0.011 0.189±0.011
16 0.268±0.014 0.09±0.0087 0.09±0.0087
17 0.362±0.011 0.258±0.014 0.258±0.014
18 0.7194±0.0017 0.694±0.02 0.694±0.02
19 0.8549±0.0012 0.8162±0.0011 0.8162±0.0011

CBD3 OVA CART OVA GLM

1 0.252±0.014 0.253±0.015 0.243±0.01
2 0.912±0.0026 0.9407±0.0016 0.9446±0.0024
3 0.243±0.0062 0.2681±0.0058 0.2649±0.0061
4 0.537±0.016 0.544±0.019 0.556±0.021
5 0.9584±0.0041 0.955±0.0041 0.9574±0.0041
6 1±0 1±0 1±0
7 0.7523±0.0092 0.7731±0.0088 0.775±0.0096
8 0.9893±0.0013 0.99664±0.00046 0.99745±0.00075
9 0.8337±0.0036 0.8566±0.0032 0.8577±0.0029
10 0.20537±0.00072 0.2129±0.001 0.2326±0.001
11 0.8697±0.0037 0.899±0.0081 0.9013±0.0035
12 0.6505±0.0049 0.6993±0.0057 0.7189±0.0058
13 0.4004±0.0043 0.6764±0.0062 0.6986±0.004
14 0.19±0.0013 0.2476±0.0057 0.2615±0.0045
15 0.189±0.011 0.326±0.014 0.436±0.015
16 0.09±0.0087 0.199±0.011 0.263±0.012
17 0.258±0.014 0.365±0.015 0.536±0.011
18 0.694±0.02 0.694±0.02 0.7178±0.0014
19 0.8162±0.0011 0.8597±0.0014 0.8605±0.0013

Table 8: Comparison of HMC trained on different hierarchies: random hierarchy, RBD hierarchy, Flat
Classifier CBD (increasing complexity),OVA CBD (using CART and GLM) as learning algorithms).
Highlighted are the highest accuracy for each dataset, which does not necessarily significantly better.
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Figure 3: Evolution of the performance of HMC trained on different hierarchies as the complexity
of the CBD classifier increases, compared against RBD.

4.5. Representative Based Dissimilarity vs Classifier Based Dissimilarity

Another popular approach to measure dissimilarities between classes is using an

initial classifier to evaluate how similar classes are to each other. Classifier Based

Dissimilarity builds on the concept of separability and measures how well a classifier465

can separate between the different classes. In these experiments, we are going to

compare CBD and RBD. While RBD is a deterministic metric, CBD will depend on

how we train the classifier. We will measure how the quality of the CBD classifier

affects the quality of the hierarchy and, therefore, the classification performance.

To obtain the CBD, we are going to run single classifiers and OVA (using CART470

and GLM). For the single classifiers we use CART with three different sets of com-

plexity parameters: (0.5,0.1), (0.5,0.1,0.05,0.01), (0.5,0.1,0.05,0.01,0.005,0.001). For

OVA using CART we select the complexity parameter from the values (0.5,0.1,0.05,

0.01,0.005,0.001) using 10 fold cross-validation for each binary classifier. Once we

have the CBD classifiers, we compute the dissimilarity as explained in 3.1.475

Table 8 shows the results of using different methods to extract hierarchies using

GLM as base classifier. In 9 out of 19 datasets, at least one CBD variant presents

significantly better results than RBD. The counterexample only happens once.

In some cases, the hierarchies using the simplest CBD classifier outperforms their

RBD counterpart; in others, hierarchies with simple CBD classifiers perform worse480

than RBD, but this difference disappears as the CBD classifier becomes more complex.

OVA using GLM as CBD classifier produces significantly better results than OVA

using CART as CBD classifier in 6 datasets, while the opposite happens only once.

This is apparent in those datasets with more classes. The learning algorithm used on
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the hierarchy is also GLM; this opens up interesting questions about the relationship485

between the CBD classifier and the base classifier trained on the hierarchy.

In general, we observe an improvement as the complexity of the CBD classifier

increases. In Figure 3, we can see a finer detail on this effect. Similar to the CBD

columns in Table 8, we have chosen different configurations of the CART algorithm’s

complexity parameter. As a proxy for the complexity, we have calculated the running490

time it takes to train the CBD classifier. Clearly, the range of classifiers complexities

explored in this experiment is limited. Intuitively, however, it is obvious that CBD

cannot be thought of as a single measure and, as such, compared directly against

RBD. For any given dataset, it is possible to find a classifier that will create a

worse, equal, or better hierarchy than RBD (if RBD has not found the best possible495

hierarchy). CBD is a family of dissimilarities and needs to be treated as such.

In [5], a direct comparison is performed between a version of CBD and RBD

without acknowledging all the different possibilities to obtain CBD dissimilarities.

In [7], [30], single versions of CBD are used to extract hierarchies. The results

are compared with non-hierarchical approaches. In [2] and [23], single versions of500

CBD are introduced to extract hierarchies. The results are compared with random

hierarchies. To the best of our knowledge, there has not been a deep study of the

influence on how CBD is obtained and the final classification performance of the

hierarchical classification problem.

(a) CART (b) GLM

Figure 4: Critical difference diagrams among different methods to extract hierarchies using CART
and GLM as base classifiers.

In Figure 4, we have the diagrams of critical differences after running the Friedman505
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test using CART and GLM as base classifiers. There is no single method that signif-

icantly outperforms the rest. With GLM as base learner, hierarchies extracted using

RBD, and CBD with OVA GLM and OVA CART are equivalent as the top method.

With CART as base learner, all methods except the random hierarchy are equivalent.

We are trying to evaluate methods to extract hierarchies using the performance510

of a hierarchical classifier trained on it. This is an indirect measure of the quality of

the hierarchies that depends critically, as we have already discussed, on the learning

algorithm used as base classifier. In our example, all methods of extracting hierarchies

(except the random) are equally good using CART as base classifier. However, if we

use GLM as base learner, it is apparent that some methods are better than others.515

4.6. Relationship between the base classifier and the CBD classifier

In the previous experiment, we established that CBD using OVA and GLM

performs better than CBD using CART when we also use GLM as base classifier. The

intention behind CBD is to measure how easy two classes are to separate. More specifi-

cally, we want to know how easy it will be for the learning algorithm trained on the hier-520

archy to separate between these two classes. However, the results of training the CBD

classifier give us only an approximation of how well the base classifier will perform.

With this motivation in mind, in this experiment, we want to explore the

relationship between the power of the CBD classifier used to measure dissimilarities

between classes and the power of the base classifier trained on the hierarchy. The same525

experimental setup from the previous experiments applies. As CBD classifier, we use

a single CART as in the previous section. As the base classifier, we also choose CART.

Figure 5 shows how the classification accuracy across four different datasets

changes choosing different configurations of the complexity parameters for both the

CBD and the base classifier. The most interesting results can be seen in Figure 5a:530

for the simpler base classifier, the accuracy drops as the CBD classifier gets more

complex. The same behavior can be seen in 5d, but not in 5b and 5c. This shows

that the relationships between classes found by a powerful CBD classifier will not

necessarily be useful when we have a weak base classifier.

Finally, in Figure 5c, one can see very small differences in overall classification535
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(a) (b)

(c) (d)

Figure 5: Comparison of the complexity of the CBD classifier and the base classifier

performance as the quality of the hierarchy increases for any configuration. This

suggests that for this dataset, there is no inherent structure between classes relevant

for any of the classifiers.

4.7. Hierarchical Agglomerative Clustering vs. Hierarchical K-Means

So far, we have only discussed differences in the hierarchies depending on how540

we measure dissimilarity. In this experiment, we explore the differences created by

different clustering algorithms. In particular, Hierarchical Agglomerative Clustering

(HAC) and Hierarchical K-Means (HKM).

The experimental setup is similar to the previous sections. In Tables 9 and 10, we

can see the results of using CART and GLM as learning algorithms. In both cases, we545

will compare the clustering algorithms using RBD and CBD using OVA as dissimilar-

ity metrics. When we use CART as a base learner, we will also use CART as a classifier

for OVA; similarly, we will use GLM for OVA when using GLM as a base classifier.

Using CART as a base classifier, we cannot observe many significant differences

between HAC and HKM. The main improvement in the hierarchies comes from the550
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CART
RBD-HAC RBD-HKM OVA-HAC OVA-HKM

1 0.171±0.016 0.173±0.014 0.151±0.018 0.16±0.017
2 0.9558±0.0024 0.9506±0.0019 0.9585±0.0026 0.9588±0.0032
3 0.229±0.011 0.236±0.011 0.2467±0.0092 0.257±0.01
4 0.767±0.019 0.749±0.015 0.72±0.025 0.684±0.029
5 0.9606±0.0058 0.9621±0.0043 0.9673±0.0045 0.9658±0.0042
6 0.99952±0.00058 0.9971±0.0017 1±0 1±0
7 0.792±0.015 0.786±0.018 0.781±0.013 0.769±0.015
8 0.9346±0.0037 0.9365±0.0035 0.935±0.0026 0.9309±0.0028
9 0.8659±0.0053 0.8631±0.0056 0.8613±0.0048 0.8662±0.0054
10 0.6±0.0018 0.6047±0.0019 0.605±0.0013 0.6023±0.0015
11 0.8944±0.0037 0.8838±0.0041 0.8834±0.0074 0.8876±0.0048
12 0.747±0.0085 0.7435±0.0061 0.73±0.0071 0.7397±0.0069
13 0.8628±0.0036 0.8666±0.003 0.8673±0.0037 0.8651±0.0029

14 0.2688±0.0029 0.2704±0.0019 0.2558±0.0042 0.2754±0.0023↑↑↑

15 0.496±0.017 0.466±0.018 0.42±0.017 0.381±0.02
16 0.392±0.015 0.411±0.018 0.367±0.023 0.365±0.017

17 0.517±0.017 0.484±0.016 0.474±0.015↑↑ 0.418±0.017
18 0.93855±0.00035 0.93854±0.00035 0.93851±0.00037 0.93852±3e-04

19 0.8784±0.0018 0.8856±0.0017↑↑↑ 0.8857±0.0017↑↑ 0.8808±0.002

d 9.2 6.6 13.5 6.5

Table 9: Comparison HAC and HKM using CART as learning algorithm. In the last row, average
depth of the extracted hierarchies

information shown in the dissimilarities and not from the clustering algorithm.

On the other hand, if we use GLM as a base classifier, we find several significant

differences in the pairwise comparisons in favor of HMC. This can be explained by

the shape of the final hierarchy and the choice of GLM as a learner. As suggested by

the average depths of the hierarchies created, HAC tends to create hierarchies in a555

chain shape, while HKM tends to generate more balanced hierarchies (see Figure 6).

Depending on the learning algorithm chosen, the final results might vary not only

based on the information about how similar the classes are but also on the particular

shape of the hierarchy.

5. Conclusions and Discussions560

The most popular approaches to solving multi-class problems (AVA, OVA, ex-

tended algorithms) become prohibitively time-consuming as the number of classes in-
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Logistic Regression
RBD-HAC RBD-HKM OVA-HAC OVA-HKM

1 0.248±0.016 0.25±0.016 0.243±0.013 0.265±0.016

2 0.9184±0.0027↑↑↑ 0.887±0.0042 0.9446±0.003↑↑↑ 0.9167±0.0034
3 0.2448±0.007 0.243±0.01 0.2649±0.0076 0.2712±0.0079
4 0.507±0.034 0.458±0.03 0.556±0.026 0.536±0.037

5 0.9429±0.0056 0.9429±0.0061 0.9574±0.0052↑↑↑ 0.8645±0.0074
6 1±0 1±0 1±0 1±0
7 0.776±0.011 0.786±0.013 0.775±0.012 0.791±0.011

8 0.99582±0.00098 0.99555±0.00078 0.99745±0.00093↑↑↑ 0.9884±0.0021
9 0.8488±0.0051 0.8488±0.0051 0.8577±0.0036 0.8593±0.0036

10 0.2114±0.0013 0.2194±0.0013↑↑↑ 0.2326±0.0013 0.2444±0.002↑↑↑

11 0.9084±0.0039↑↑↑ 0.8887±0.0041 0.9013±0.0044↑↑↑ 0.8693±0.0035
12 0.6949±0.0076 0.7108±0.0095 0.7189±0.0072 0.7111±0.0066

13 0.7359±0.0034↑↑↑ 0.6916±0.0045 0.6986±0.005↑↑↑ 0.6638±0.0058

14 0.2661±0.0029 0.2767±0.0024↑↑↑ 0.2615±0.0057 0.2628±0.0023

15 0.371±0.015↑↑ 0.327±0.014 0.436±0.018↑↑↑ 0.236±0.019

16 0.269±0.018↑↑ 0.228±0.017 0.262±0.015↑↑↑ 0.14±0.012

17 0.361±0.014↑↑ 0.298±0.016 0.536±0.014↑↑↑ 0.267±0.011
18 0.7186±0.0022 0.697±0.021 0.7154±0.0024 0.698±0.02

19 0.8549±0.0015 0.8661±0.0019↑↑↑ 0.8605±0.0016↑↑↑ 0.8457±0.0033

d 9.2 6.6 18.1 6.7

Table 10: Comparison HAC and HKM using logistic regression as learning algorithm. In the last
row, average depth of the extracted hierarchies

Figure 6: On the left, hierarchy obtained with HAC with average link. On the right, hierarchy
obtained with Hierarchical K-means.

creases. Hierarchical Multi-class Classification (HMC) significantly reduces prediction

time while maintaining reasonable training time and classification performance [2].

Shortening the prediction time is achieved by reducing the number of classifiers565

that need to be evaluated. There are several solutions proposed in the literature, but

this paper is the first comprehensive discussion on what is a good hierarchy and how

to measure how its quality can affect the classification performance of a hierarchical
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classifier trained on it. We demonstrate that the relevance of the hierarchy’s quality

depends on the trade-off between the complexity of the classification problem and570

the complexity of the learning algorithm used.

We have observed that good hierarchies provide measurable increments in classifi-

cation performance only when the classifier is sensitive to the quality of the hierarchy.

We have not found a single case of a “strictly inconsistent” hierarchy performance:

where one hierarchy would be significantly better for one learning algorithm and575

significantly worse for another. The differences across different algorithms are either

unmeasurable or consistent. This supports the argument that hierarchy quality can

be evaluated objectively.

We have compared the state-of-the-art practices to extract hierarchies and eval-

uated them. In the process, we have identified some of the common pitfalls of580

extracting hierarchies and how to avoid them for HMC.

The quality of the hierarchy does not always affect the performance of the classi-

fier. A hierarchy will only be useful if it can exploit the existing relationships between

classes. This requires that there is an actual structure in how classes relate to each

other and that the extraction method can find it – and neither of those assumptions585

necessarily holds for all datasets. In addition, it requires that the extracted hierarchy

is useful for the learning algorithm. We have shown that the weaker the base classifier

is, the more relevant the hierarchy’s quality becomes. We have observed that for

some datasets, a hierarchy can be useful using a simple classifier as the base classifier

but irrelevant for a more powerful one. For any given dataset, a powerful enough590

classifier will not be affected by the hierarchy’s quality.

All of this means that in many common settings, the hierarchy’s quality becomes

irrelevant to the overall predictive performance. At the same time, the divide-and-

conquer aspect inherent in the HMC approach may provide benefits over alternatives,

like either single classifiers or OVA. Ignoring this might lead practitioners to make595

claims about the quality of a hierarchy when, in fact, they are validating other aspects.

To avoid these cases, we suggest using HMC on a random hierarchy as an appropriate

benchmark to understand the extracted hierarchy’s quality. By comparing with a

random hierarchy, we can isolate the added value of the hierarchy’s quality. If there
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Figure 7: On the left, relative difference of accuracies as the number of classes increases, measured
with respect to the random hierarchy. On the right, significance of the difference between the
random hierarchy and the best informed hierarchy.

is no existing relationship between classes relevant to the chosen learning algorithm,600

extracted hierarchies will not provide results significantly better than those from

random hierarchies.

Throughout our experiments, we have observed that the hierarchy’s quality

becomes more and more relevant as the number of classes increases (See Figure

7. With more classes, we expect more complex structures and good hierarchies to605

become crucial. The comparison with respect to random hierarchies shows that

the structures found by our informed hierarchies do exist and that the chances of

obtaining them randomly can be quite low.

We have noticed that some base classifiers are more sensitive to the shape of the

hierarchy. Hierarchical clustering with average link tends to provide deeper dendro-610

grams than hierarchical K-means. In our case, using logistic regression as the base

classifier, we have found significant differences in favor of the chain-shape structures.

However, using CART, we have not found apparent differences. Comparing different

clustering algorithms just based on the classification performance gives only a partial

view of the problem. Without considering how the learning algorithm used is affected615

by the shape of the dendrogram might lead practitioners to misleading conclusions.

We have found that the hierarchy’s quality depends decisively on how we mea-

sure the dissimilarity between classes. We have reviewed two existing approaches:

representative-based dissimilarities (RBD) and classifier-based dissimilarity (CBD).

Using RBD is fast and simple and often produces significant improvements when620

compared to random hierarchies. However, we have found that hierarchies obtained
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with CBD dissimilarities are generally as good or better.

We have also evaluated the hierarchies obtained using the Best of 50 heuristic

presented in [25]. This method samples 50 random hierarchies and picks the best

one using a cross-validation scheme. When the number of classes is not too high, this625

method presents very competitive results, outperforming RBD and CBD hierarchies in

some cases. There are some relationships between the classes that these dissimilarities

or the clustering algorithm are failing to measure and encode in a hierarchy. However,

for datasets with many classes, Best of 50 underperforms compared to CBD or RBD

hierarchies. The possible number of hierarchies increases very fast with the number of630

classes. The assumption that the sampled hierarchies are representative of the general

distribution of all possible hierarchies can break as the number of classes increases.

CBD is a family of dissimilarities that depend on the classifier used. It is usually

accepted in the literature that a simple classifier used to measure CBD is good

enough to obtain a good hierarchy. We have proven that this is not necessarily the635

case. While we can get better hierarchies with the appropriate CBD dissimilarity,

RBD can outperform too simple CBD hierarchies.

We have analyzed the trade-off between the complexity of the CBD classifier

and the base classifiers trained on the hierarchy’s nodes. Our results show that the

hierarchy’s quality is more relevant for the weaker base classifiers than for the more640

powerful ones. An interesting result is how hierarchies using simpler CBD classifiers

outperform the ones using complex CBD classifiers when the base classifier is weak.

This opens up interesting research lines into understanding the synergies between the

quality of the extracted hierarchies and the power of the base classifiers used for HMC.

Throughout this paper, we have evaluated the quality of the hierarchies based645

on the results of a classifier trained on them. This evaluation depends on the

particular characteristics of the datasets, such as the number of classes and the

intrinsic complexity of the data. But it also depends critically on the learning

algorithm used for the base classifiers. This means that special care needs to be taken

when evaluating methods to extract hierarchies across datasets. Statistical tests like650

Friedman’s could change their result if, for example, we use datasets with few classes

and a powerful base learner or if we use datasets with many classes and weak learners.
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