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ABSTRACT In classification problems, as the number of classes increases, correctly classifying a new
instance into one of them is assumed to be more challenging than making the same decision in the presence
of fewer classes. The essence of the problem is that using the learning algorithm on each decision boundary
individually is better than using the same learning algorithm on several of them simultaneously. However,
why and when it happens is still not well-understood today. This work’s main contribution is to introduce
the concept of heterogeneity of decision boundaries as an explanation of this phenomenon. Based on the
definition of heterogeneity of decision boundaries, we analyze and explain the differences in the performance
of state of the art approaches to solve multi-class classification. We demonstrate that as the heterogeneity
increases, the performances of all approaches, except one-vs-one, decrease. We show that by correctly
encoding the knowledge of the heterogeneity of decision boundaries in a decomposition of the multi-class
problem, we can obtain better results than state of the art decompositions. The benefits can be an increase
in classification performance or a decrease in the time it takes to train and evaluate the models. We first
provide intuitions and illustrate the effects of the heterogeneity of decision boundaries using synthetic
datasets and a simplistic classifier. Then, we demonstrate how a real dataset exhibits these same principles,
also under realistic learning algorithms. In this setting, we devise a method to quantify the heterogeneity of
different decision boundaries, and use it to decompose the multi-class problem. The results show significant
improvements over state-of-the-art decompositions that do not take the heterogeneity of decision boundaries
into account.

INDEX TERMS Classification complexity, heterogeneity of decision boundaries, multi-class classification.

I. INTRODUCTION
Multi-class classification is the task of classifying a new
instance into one among at least three classes. Multi-class
problems are ubiquitous in many domains such as image clas-
sification [1], text classification [2], microarray classifica-
tion [3], etc. It is widely accepted that these problems become
more challenging as the number of classes increases; how-
ever, why they are more difficult is an unanswered question.
We claim that this extra layer of complexity in multi-class
classification problems can be explained, at least partially,
by the heterogeneity of decision boundaries. This paper for-
malizes that notion and provides justification for that claim.
A decision boundary is the manifold that separates the
region of the feature space labeled with one class from the
region of the space labeled with another one. We regard

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.
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the multi-class problem as the problem of solving each of its
classes’ one-to-one decision boundaries. As the number of
classes increases, so does the number of decision boundaries
a learning algorithm has to solve. Intuition and experimental
results tell us that as the number of decision boundaries
increases, so does the problem’s difficulty. However, experi-
ments also show that if we divide the multi-class problem into
smaller ones, the performance of our models can increase.

A fundamental question is “why?”’. Why is multi-class
classification hard? What are the characteristics of the deci-
sion boundaries that make the classification problem harder
or easier? Where does the intrinsic difficulty of multi-class
classification problems lay?

The difficulty of classification problems has been exten-
sively studied for the binary case. In [4], the authors charac-
terize the complexity of a binary classification problem based
on geometrical features of the decision boundary between
the two classes. No similar work exists on multi-class
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classification. In this paper, we argue that the total diffi-
culty of the multi-class classification problem is not just the
combination of the geometrical complexities of the one-to-
one decision boundaries; there exists an additional source of
difficulty coming from the interaction of different decision
boundaries. We identify the heterogeneity of decision bound-
aries as a source of this interaction and an ultimate cause of
the difficulty of multi-class classification problems.

There exist different approaches to solve multi-class
classification problems. Some learning algorithms (CART,
Neural Networks, K-NN) can naturally handle outputs
with more than two classes. In general, when these algo-
rithms are used, little attention is paid to the structure
between classes. Some other algorithms can only handle
binary outputs natively (SVM, perceptron, logistic regres-
sion, AdaBoost,. . .). In these cases, binary classifiers need to
be adapted to a setting that can address multi-class classifica-
tion problems. The adaptation runs in three steps: the original
problem is divided into binary problems, independent models
are trained for each one, and the results are aggregated.

There are multiple ways to decompose a multi-class clas-
sification problem to use binary classifiers [S]-[7]. A very
interesting common conclusion is how, using the same learn-
ing algorithm, results can vary significantly depending on the
decomposition chosen [8]. In this scenario, finding the best
multi-class classifier means finding the best binary classifiers
as well as finding the best decomposition.

This fact points back to our claim: there exists an extra
layer of difficulty in multi-class classification problems.
A layer of difficulty that the learning algorithm often cannot
unravel itself, a layer of complexity that can only be dealt with
by a smart decomposition. However, [9] shows that some
learning algorithms are not affected by how we decompose
some particular problems. These results lead us to more
questions: What are the characteristics of the learning algo-
rithm that make it sensitive to the different decompositions?
How do the characteristics of the learning algorithm and the
decision boundaries relate to each other?

There are many works dedicated to finding the best
possible decompositions of multi-class classification prob-
lems. However, there has not been a similar effort into
understanding why some decompositions are better than
others. In [10], the authors compare flat and hierarchical
approaches. They conclude that grouping decision bound-
aries is better for balanced problems, whereas for unbal-
anced problems, separating decision boundaries yields better
results.

Our work aims to show how the heterogeneity of deci-
sion boundaries can affect the classification performance of
different multi-class classification approaches. We will first
present a set of illustrative experiments performed on syn-
thetic datasets specifically designed to isolate the effects of
the heterogeneity of decision boundaries. We will analyze
how different approaches towards solving multi-class classi-
fication are affected by the varying degrees of heterogeneity
in decision boundaries.
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After the examples that build up the intuition, we will
present a method to measure the heterogeneity of decision
boundaries on a real dataset. We will show how the het-
erogeneity of decision boundaries affects the classification
performance using a state of the art classification algorithm
(nonlinear SVM). Finally, we will use the knowledge of the
heterogeneity of decision boundaries to decompose the multi-
class problem.

Our contributions can be summarized as:

o We define formally the concept of heterogeneity of deci-
sion boundaries.

« We quantify the overall negative effect of the hetero-
geneity of decision boundaries on the performance of
classification tasks.

o We show how the heterogeneity of decision boundaries
can explain the differences in classification performance
of several approaches to solving multi-class problems.

« We propose new decomposition approaches that take the
heterogeneity of decision boundaries into account and
analyze the improvements with respect to approaches
that do not.

« We showcase the above phenomena with both intuitive
and educational examples, as well as a real dataset using
a state of the art classifier.

Il. DEFINITIONS AND BACKGROUND
In this section, we will establish the basic concepts to define
heterogeneity of decision boundaries.

Definition: A learning algorithm receives as input a train-
ing set S, sampled from an unknown distribution D and
labeled by some target function f : X — ), and should
output a classifier 7 : X — ). The goal of the algorithm
is to find the classifier /4 that minimizes a given loss function
with respect to the unknowns D and f.

Ideally, we would like to find 4 from the set of all possible
functions H mapping the feature space X into the label
space ). In practice, we restrict the size of H, by either select-
ing a smaller set of functions (e.g., support vector machines
can only find linear functions); or by choosing a heuristic
to reduce the search automatically (e.g., CART algorithm to
build decision trees; here we assume that a tree of arbitrary
depth can represent any function in a discrete space). Reduc-
ing the space of hypothesis H by either selecting a family of
functions or following a heuristic is called inductive bias.

The typical definition of a learning algorithm denotes,
in fact, a family of learning algorithms differing in some
hyperparameter configuration. With CART, for example,
we need to fix hyperparameters related to the depth of the
tree, the pruning complexity parameter, the minimal number
of instances in each leaf of the tree, and so on; with SVM’s
we can select the type of kernel, its characteristics, the regu-
larization parameter, and more; with neural networks, we can
choose the structure, number of neurons, activation functions,
etc.
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FIGURE 1. On the left, the two underlying decision boundaries are illustrated, and, on the right, the corresponding

training set used for this experiment.

When facing a classification task, the standard practice
is to choose one (or several) of these families of learning
algorithms. Then, through validation schemes like cross-
validation, we estimate the performance of each individual
learning algorithm with its hyperparameter configuration.
Fixing these hyperparameters can be regarded as a second
layer of learning, where instead of choosing the classifier
that obtains the best performance, we choose from a pool of
learning algorithms, the one that produces the classifier that
results in the lowest classification error.

Definition: we define a ground truth decision boundary
as the manifold that delimits regions of the feature space
labeled with one class from those labeled with another,
as defined by the unknowns distribution D and labeling func-
tion f.

The final output of a classifier can be interpreted as a
decision boundary approximating the unknown ground truth
one. Given a binary classification problem, the role of learn-
ing can be regarded as finding the decision boundary that
best matches the unknown ground truth one. How well the
classifier matches the decision boundary is computed through
the estimated classification performance.

In practice, different learning algorithms can lead to clas-
sifiers with the same classification performance. This can
be due to those algorithms’ output being the same decision
boundary or different classifiers finding different decision
boundaries that result in the same classification performance.

The inherent characteristics of a ground truth decision
boundary will affect the classification performance of the
classifiers trained to solve it. Given a family of learning
algorithms, we can look at the space of its possible hyper-
parameter configurations and measure the classification per-
formance of the corresponding classifiers. We can regard
every learning algorithm defined by its hyperparameters as
a measurement instrument and the classification performance
as the final measure: the different classification performances
are a reflection of the inherent characteristics of the ground
truth decision boundary.

Given a learning algorithm, with its corresponding hyper-
parameters to tune, in a case with more than one decision
boundary, the regions of maximum classification perfor-
mance in the hyperparameter space of each decision boundary
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may not overlap. In such a case, there is no single config-
uration that allows the learning algorithm to learn all deci-
sion boundaries as well as if it was solving each decision
boundary independently. If, on the other hand, those regions
overlap, it means that there exists a parameter configuration
that allows the learning algorithm to solve both of them at
once and still achieve maximum classification performance.

Definition: given two or more decision boundaries and a
family of learning algorithms defined by their hyperparam-
eter configurations, we say that these decision boundaries
are heterogeneous if their regions of maximum classification
performance in the hyperparameter space do not overlap.

Our definition of heterogeneity is dependent on the char-
acteristics of the data and the characteristics of the learning
algorithm chosen. For different algorithms, the geometrical
characteristics of the decision boundaries that make them
heterogeneous will be different.

This paper will study how the heterogeneity of decision
boundaries can diminish the classification performance when
two or more decision boundaries are solved simultaneously.

Ill. PROOF OF CONCEPT

We are going to illustrate the concept behind heterogeneous
decision boundaries with a toy example. As a family of learn-
ing algorithms, we use a decision tree learner, CART [11]
(as implemented in the package rpart in R). In our setting,
we will only tune the depth of the tree and keep the rest of the
parameters constant. The advantage of just tuning the depth
of the tree is that we can measure the classifier’s complexity
— the shallower the tree, the simpler the model.

In the left picture Fig. 1, we have exemplified two decision
boundaries. We will solve two different problems with CART.
First, we will classify all the classes simultaneously. Then,
we will independently solve the diagonal decision boundary
and the horizontal one. The CART algorithm can only make
splits parallel to the axis. Therefore, the diagonal decision
boundary needs a very deep (or complex) tree, while the
parallel one needs a very shallow (or simple) tree. In this
way, the decision boundaries become heterogeneous for the
selected learning algorithm.

In Fig. 1, on the right, we can see an example of the data
generated for this proof of concept. To obtain it, we sample
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FIGURE 2. Results of a single classifier with tree depths 2, 6, 10 and 16 respectively.

Decision Boundaries by TWO Classifiers

N ¢

-30 -20 -10 0

FIGURE 3. Results of learning the two decision boundaries independently.

10000 points from each of the classes denoted by the colors.
We add Gaussian noise to the x and y components for the
vertical decision boundary to force the learning algorithm
to be penalized by overfitting. We perform 5-fold cross-
validation to evaluate the behavior of our classifiers under
different hyperparameter configurations.

In Fig. 2, we can see the behavior of a single classifier
solving both decision boundaries simultaneously for differ-
ent tree depths. The CART algorithm is presented with the
four classes denoted by the colors. As the depth of the tree
increases, the classifier matches the diagonal decision bound-
ary better. However, we observe the opposite behavior in the
horizontal decision boundary.

As a comparison, in Fig. 3, we can see the results of
training two different classifiers, separately for each decision
boundary. With two classifiers, the decisions match almost
perfectly the original distribution of the data. At the same
time, for a single classifier, there is no possible depth of the
tree where the CART algorithm can achieve optimal perfor-
mance. By optimal, we mean the best this learning algorithm
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FIGURE 4. Dependence of the error of each classifier as the depth of the
tree changes. In red, the error of a classifier solving the diagonal decision
boundary. In green, the error of a single solving the horizontal decision
boundary. In black, the error of a classifier solving both decision
boundaries.

can do; it is capable of doing better if it solves each decision
boundary independently, as demonstrated in Fig. 3.

In a way, the two decision boundaries are interacting
with each other through the learning algorithm. The global
optimization of the depth of the tree forces the learning
algorithms to find a compromise between the two decision
boundaries.

In Fig. 4, we can see the details of the error of the different
classifiers as a function of the depth of the tree. To obtain an
estimation of the error, we have sampled 10 different training
sets from the original distribution.

For the vertical decision boundary, the optimal depth of the
tree should be 1, and it starts to overfit after depth 4. For
the diagonal decision boundary, it underfits until the depth of
the tree is 7. The optimal region in the hyperparameter space
for the vertical decision boundary is from 1 to 4; the optimal
region for the diagonal decision boundary goes from 7 to 30.
When training a single classifier, the optimal depth of the tree
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FIGURE 5. On the left, the training set of the first iteration (no noise). On the right, the training for the last iteration with

noise in all inner triangles.

is somewhere between 5 and 7. A tree of this depth overfits
for the vertical decision boundary.

Theoretically, there clearly exists a tree where the best
performance can be achieved — but our family of learning
algorithms is unable to find it. The inductive bias rooting
from selecting the learning algorithm and its hyperparameters
makes it impossible for it to solve both decision boundaries
with the best possible performance simultaneously.

Overfitting is of crucial importance to understand this toy
experiment. For more advanced algorithms, those able to
avoid overfitting, there is no penalization for the most com-
plex trees: in Fig. 4, the red line would be flat, and the optimal
region in the hyperparameter space will go from 1 to 30.
By design, this experiment has one simple and one complex
decision boundaries that do not overlap in the hyperparameter
space. However, as we will show later in the paper, model
complexity and overfitting are just one possible reason for the
heterogeneity; in high dimensional hyperparameter spaces,
we can expect more complex sets of heterogeneous decision
boundaries.

Obviously, the family of learning algorithms chosen
defines the optimal region in the hyperparameter space. Dif-
ferent families will have different parameters to optimize.
This illustrative example is specific to decision trees, where
we only tune the depth of the tree; other algorithms will
exhibit similar behavior, albeit in other scenarios.

IV. EXPERIMENTS

A. MULTI-CLASS CLASSIFICATION AND HETEROGENEITY
OF DECISION BOUNDARIES

In this experiment, we are going to evaluate how state-of-
the-art approaches are affected by the heterogeneity of deci-
sion boundaries. In particular, we are going to evaluate a
single classifier, One-vs-All decomposition, and One-vs-One
decomposition.

A multi-output classifier can natively deal with more than
two classes. CART from [11] is an example of this type of
learning algorithm.

One-vs-All trains one binary classifier for each class, ver-
sus all the data points from the rest of the classes. All binary
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FIGURE 6. Accuracy comparison of multi-output, OVA, and OVO classifiers
as the heterogeneity grows.

classifiers need to be evaluated, and the final prediction is
built by integrating all the binary predictions through voting.
If the output of the classifier is probabilistic, the classifier that
outputs the highest probability defines the prediction, cf. [7].

One-vs-One trains one binary classifier for each pair of
classes. To output a prediction, all binary classifiers are
evaluated, and the final prediction is decided via voting.
If the output of the classifier is probabilistic, there are many
different approaches to combine the outputs, cf. [7]. In our
experiment, for simplicity, we choose to combine the One-
vs-One classifiers via voting.

We will again use synthetic datasets based on diagonal and
parallel to the axis decision boundaries. Using our definition
of heterogeneity of decision boundaries, we will start with a
set of homogeneous decision boundaries, and iiteratively we
will add heterogeneity. Our dataset will consist of 16 classes.
In Fig. 5, we can see an example of all the decision bound-
aries without noise, and all of the inner classes with noise.
We control the heterogeneity by adding noise: without it
there is no overfitting, parallel to the axis and diagonal deci-
sion boundaries are homogeneous; with noise, very complex
trees are penalized when solving parallel to the axis decision
boundaries. At each iteration, we will add noise to one of the
inner triangles. Our learning algorithm will again be CART,
and we will tune the pruning parameter through 10-Fold
cross-validation.
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FIGURE 7. Decomposition of the original multi-class problem into two 4-class problems. On the left, parallel to the axis decision

boundaries. On the right, diagonal decision boundaries.

For all our experiments, we will sample 50 training sets and
report the accuracy on the original distribution without noise.
In this way, we make sure that we correctly evaluate how well
the classifier matches all underlying decision boundaries.

The results of the comparison of the three approaches
can be seen in Fig. 6. In the first iterations, there are no
significant differences between the approaches. When deci-
sion boundaries are fully homogeneous, the performance of
the multi-output classifier is indistinguishable from OVO,
and only slightly higher than OVA. However, as we inject
more and more heterogeneity through noise, obviously the
performance of all the classifiers degrades — however, both
OVA and the multi-output classifier suffer more, and perform
increasingly worse in comparison to OVO.

The key observation here is that OVO is treating every
decision boundary individually, finding the optimal hyper-
parameter configuration for each of them. Thus, the only
difference in performance comes from the problem becoming
inherently harder with more noise. The other two approaches
group together decision boundaries, including heterogeneous
ones, which necessarily leads to additional performance loss,
as demonstrated in the toy example in Section III.

B. EXTENDING THE MULTI-OUTPUT CLASSIFIER TO DEAL
WITH HETEROGENEITY

Generally, when a learning algorithm that can deal with
more than two classes is chosen, usually no attention is paid
to the structure of the classes and possible decompositions
of the problem. On the other hand, we have shown how
a single multi-output classifier is adversely affected by the
heterogeneity of decision boundaries. Based on these finding,
however, we will now demonstrate how knowing what type
of heterogeneities we are dealing with allows for designing
efficient, even if ad-hoc, solutions.

For example, in the case of Fig. 5, since we have two types
of decision boundaries, we can decompose our 16-classes
classiification problem into two 4-classes classification prob-
lems. The decomposition is visualized in Fig. 7. The first clas-
sifier distinguishes between the four meta-classes on the left
figure, the second classifier distinguishes between the four
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FIGURE 8. Error comparison of multi-output, and 2-fold multi-output with
respect to OVO.

meta-classes on the right figure. In this way, every individual
class in the figure is identified unambiguously.

In Fig. 8, we can see the comparison of a single
multi-output classifier with the 2-fold decomposed multi-
output classifier. The graph shows the error compared to
OVO, since that is the gold-standard approach that obtains the
best results. We knew from before that a single multi-output
classifier performs worse and worse as the heterogeneity
increases. Here, we are showing that a decomposition that
separates the decision boundaries in homogeneous groups
obtains results equivalent to those of OVO.

C. EXTENDING BINARY CLASSIFIERS TO DEAL WITH
HETEROGENEITY

CART can natively deal with multi-class classification prob-
lems; however, other learning algorithms can only deal with
binary outputs. Now, we are going to introduce two binary
decompositions that incorporate the information about the
heterogeneity.

Minimal Decomposition: we decompose the 16-classes
classification problem into 4-binary classification problems.
A combination of the 4 classifiers will uniquely define each
class. The decomposition can be easily understood with help
of Fig. 9

Heterogeneity Aware Hierarchy (HAH): we are going to
decompose the 16-classes classification problem into a hier-
archy of 15 binary problems. At each node of the hierarchy,
a binary classifier is trained to discern between the instances
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FIGURE 9. Decomposition of the original multi-class problem into
4 binary problems.

labeled with the classes on the left branch, and those labeled
with the classes on the right branch. In Fig. 10, we have a
description of how the hierarchical decomposition has been
made.

In Fig. 11, we can see the comparison of the two
approaches, together with OVA, with respect to OVO. Again,
those decompositions that separate decision boundaries into
homogeneous groups obtain classification performances sim-
ilar to OVO, and significantly outperform approaches that do
not take into account this information, like OVA.

D. COMPARISON OF HAH AND RANDOM HIERARCHIES
Our hierarchy has been manually created. In this subsection,
we will compare our handcrafted hierarchy with a state of the
art method to find good hierarchies.

The method presented in [6] takes a number of hierarchies
sampled uniformly at random. Through cross-validation on
the training set, we pick the hierarchy that yields the best
performance. Then, we use this hierarchy to train the final
models.

For this experiment, we will calculate the best hierarchy
from a pool of 1, 5, 10, 30, 50, and 100 randomly generated
hierarchies.

The results of the different approaches are presented in
Fig. 12. HAH clearly outperforms the rest of the hierarchies.
With 16 classes, the number of possible hierarchies is huge
compared to the number of hierarchies that effectively sepa-
rate all heterogeneous decision boundaries.

As the number of random hierarchies to choose from
increases, the performance slightly increases. However, even
for 100 sampled hierarchies, the performance is significantly
worse than that of HAH.

Given our synthetic dataset, finding hierarchies that sepa-
rate all heterogeneous decision boundaries into homogeneous
groups is a complex task. Each decision boundary does not
overlap with many of the other decision boundaries; it is
very unlikely to find a suitable decomposition randomly. For
simpler cases, where the set of decision boundaries that do
not overlap in the hyperparameter space is small, it is more
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likely to find a good decomposition by sampling random
hierarchies.

E. COMPARISON OF HAH WITH ECOCS

In the literature, there are two ways to try to improve the
multi-class classification performance based on binary classi-
fiers. The first one, shown previously, tries to find a structure
between the classes. The second one makes use of ensembles.
In this section, we will compare our handcrafted hierarchy
with the Error Correcting Output Code (ECOC) method.
ECOC, originally presented in [12], trains a number of binary
classifiers, each of them separating a group of classes from
another.

There are different heuristics to group classes for each
binary classifier. The key of ECOC is redundancy and diver-
sity. Several classifiers learn each decision boundary. In this
way, if one of the classifiers fails, but the rest is correct, they
will recover the error. This phenomenon will happen if the
errors of the different classifiers are uncorrelated.

In ECOC, each binary classifier assigns one of two labels to
all the classes of the original problem. In this way, each class
is defined by a unique code based on the different classifiers.

We will try different lengths of codes (8, 12, 24, 64, 256).
To create the codes, we follow the randomized hill-climbing
heuristic presented in the original paper.

The results are presented in Fig. 13. When presented with
the most homogeneous setup, HAH outperforms some of
the simpler ECOC variants, but significantly underperforms
compared to the most complex. As we inject heterogeneity,
the difference with respect to the simpler ECOCs increases.
In fact, some of the ECOCs that outperformed the hierar-
chy for the homogeneous case, underperform in the more
heterogeneous one (ECOC 24). The most complex codes
(ECOC 64 and 256), consistently outperform the hierarchical
approach.

At the first glance, these results contradict our hypothesis.
Heterogeneity of decision boundaries is not being taken into
account in the design of the codes; however, ECOC seems
to outperform our HAH, when the number of codes is big
enough.

To understand this, we will decompose the error in bias
and variance, as done in [13]. In Fig. 14, we can see this
decomposition. Interestingly, the bias error of the hierarchi-
cal decomposition is increasingly lower as the heterogeneity
increases when compared to all ECOC versions. However,
the more complex ECOC approaches consistently have lower
variance error.

These results should remind us about the traditional bias-
variance trade-off; however, we can look deeper into what
type of bias errors are made by the two different approaches.
In Fig. 15, we can track where the bias errors are produced.
We already stated that the HAH has a lower bias error. This is
obvious in two regions: the union of decision boundaries and
the parallel to the axis decision boundaries.

The first case can be explained through the voting and
the error correction mechanisms, the same mechanisms that
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FIGURE 13. Error comparison ECOCs, with respect to the HAH.

lower the variance error. However, the bias error in the par-
allel to the axis decision boundaries is different. The root of
this bias error is in the heterogeneity of decision boundaries.
Given our experiment setup, most of the 256 classifiers are
mixing diagonal and parallel to the axis decision boundaries;
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most of them are suffering from the heterogeneity of decision
boundaries.

Ensemble approaches like ECOC can significantly
increase the classification performance when compared to
non-ensemble approaches. However, they are not immune
to the problems rooting from the heterogeneity of decision
boundaries.

F. A HYBRID SOLUTION COMBINING ECOC AND
HETEROGENEITY KNOWLEDGE

For the proposed hybrid approach, we are going to create a
variation of ECOC that combines the error-correcting power
of ECOC and the decomposition based on the knowledge
about the heterogeneity of decision boundaries. We will cre-
ate specific classifiers to separate the four different regions
of the left image in Fig. 7. These four regions combine all
parallel to the axis decision boundaries. We will exhaust every
possible combination of those 4 regions to train 12 different
classifiers.

We will add these 12 classifiers to classifiers created like
in ECOC, with the constraint that they are only concerned
with diagonal decision boundaries. In total, we are creating
12 codes to separate the parallel to the axis decision bound-
aries, and 84 to separate the rest.

The results of the comparison can be seen in Fig. 16.
The hybrid approach performs increasingly better than the
ECOC-256 approach, even if the number of codes is much
higher in the latter. The reason behind this can only be the
heterogeneity of decision boundaries. By manipulating the
codes so that parallel to the axis and diagonal decision bound-
aries are never mixed, we are decreasing the bias of all the
base classifiers. In addition, we are using the error-correcting
properties of this approach to reduce the part of the error
rooting in the variance, clearly outperforming the hierarchical
decomposition.

G. NUMBER OF CLASSES, NUMBER OF CODES, AND TIME
One of the main challenges of multi-class classification prob-
lems is the time it takes to train models and output predic-
tions [14]. In this section, we will report the training and
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FIGURE 14. On the left, Bias error of ECOC wrt HAH. On the right, Variance error of ECOC wrt HAH.
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FIGURE 16. Error comparison of the Hybrid approach, and the ECOC
approach with 256 codes with respect to the hierarchical decomposition.

cross-validation, and testing times of some of the proposed
approaches with a different number of classes: 16, 32, and
64. The total number of instances for training and testing will
be the same so that we can isolate the effect of the number of
classes. In Table 1, we can see the results of this comparison.

OVO is the standard ‘‘brute-force’ solution. It achieves
higher accuracy than one-vs-all or the multi-output classifier.
This increase in accuracy comes at the expense of training and
testing time, especially if the number of classes is high. The
multi-output classifier is the fastest of them, but also the most
affected by the heterogeneity in terms of accuracy, together
with OVA.

Minimal decomposition and HAH achieve significantly
better results than the multi-output classifier or OVA
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approaches. In these cases, the benefits of taking into account
the heterogeneity of decision boundaries can be seen in the
classification performance of our models. When compared
to OVO, these approaches achieve similar classification per-
formance. In these cases, the benefit of taking into account
the heterogeneity of decision boundaries can be noted in the
training and testing times. Note that the testing time of HAH
could be further reduced by only evaluating the classifiers
connecting the root of the hierarchy and the leaf correspond-
ing to the final prediction [14].

With long enough codes, ECOC achieves the best per-
formances among the off-the-shelf approaches. It does so
at the expense of training a high number of classifiers on
the whole dataset; it requires more time to both train and
test. With the hybrid approach, adding information about the
heterogeneity of decision boundaries boosts the classification
performance significantly, without further harming the com-
putational time.

H. CONCLUSIONS AND DISCUSSIONS ABOUT THE
EXPERIMENT

We have showcased, with ad-hoc decompositions, how a
heterogeneity-aware decomposition can improve existing
algorithms for multi-class classification. In our case, the
problem was explicitly designed so that we have control over
the modes of heterogeneity.
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TABLE 1. Time comparison in seconds of different approaches and different number of classes. The approaches are sorted (ascending) by the accuracy in
classifying the most heterogeneous cases. Double line separation means significant difference in accuracy.

Training and cv Testing
16 classes | 32 classes | 64 classes 16 classes | 32 classes | 64 classes

Multi-output 3.1 4.6 8.5 0.2 0.5 1.2
OVA 9.8 13.6 23.6 1.8 3.6 11.8
2-Fold MO 3.9 4 5.5 1.1 2.1 5.6
[e)Y¢) 4.8 8 87 5.5 10.8 15.7
HAH 2.4 24 3.1 1.7 3.7 15
ECOC 96 [ 103 [ 103 [ 104 “ 19 55 [ 177 ]
Hybrid 96 [ 102 [ 104 [ 102 “ 18 [ 57 [ 177 ]

Another aspect to take into account is the simplicity of
our synthetic datasets. We have only three types of decision
boundaries: diagonals, perpendicular to the axes, and not
contiguous (these do not have any effect on the heterogeneity
discussion since they can never overfit). The two “‘relevant”
types of decision boundaries can be easily clustered in homo-
geneous groups with the minimal or the 2-Fold Multi-output
decomposition. Problems with more modes of heterogeneity
might not be as easily handled with such straightforward
approaches.

However, our synthetic dataset is also, in another sense,
quite complex. All classes end up having heterogeneous
decision boundaries with respect to the rest of the classes.
In this setup, methods based on randomness like the method
presented in [6], and the ECOC approach presented in [12]
are going to underperform when compared with HAH and
the hybrid codes approach respectively. If the total number
of heterogeneous decision boundaries is smaller, we expect
these methods to be more competitive.

V. MEASURING THE HETEROGENEITY AND APPLICATION
TO A REAL DATASET

In this section, we are going to apply our ideas of heterogene-
ity of decision boundaries to practical use in a real dataset,
using state of the art learning algorithms. We are going to use
SVM as implemented in the package liquidsvm. We define
our learning task as the one where we want to find the best
SVM model with gaussian kernel, fine tuning the width of
the gaussian y and the regularization parameter C (in the
liquidsvm, the parameter X is used instead of C, A is inversely
proportional to C and normalized to the number of instances).

As an example, we are going to use the letter
dataset [15], primarily for its interpretability. The dataset has
20000 instances and 16 features consisting on descriptors of
distorted letters from different fonts, corresponding to the
26 letters in English language. Our aim with these experi-
ments is to show that heterogeneity of decision boundaries
does indeed happen in real life situations, both in terms of
realistic data and realistic learning algorithms. Moreover, this
phenomenon can be measured, and can be exploited.

In Figure 17, we show four examples of how the SVM clas-
sifier with different hyper-parameter configurations behaves
when solving individual decision boundaries. On the top
row, we have an example of two heterogeneous decision
boundaries, where the regions of maximum performance do
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FIGURE 17. Visualization of the relative classification performance of
different hyper-parameter configurations for four different decision
boundaries. The color gradient corresponds to the relative difference in
terms of standard deviations from the best possible performance. On the
top row, we have an example of heterogeneous decision boundaries,
where the regions of maximum performance do not overlap. On the
bottomo row, an example of two decision boundaries that are
homogeneous, i.e., their regions of maximum performance overlap.

TABLE 2. The accuracy achievable when solving the decision boundaries
of interest individually versus when heterogeneous boundaries are mixed.

H-R & B-V HB-RV HV-BR
Accuracies solving HR and BV | 0.991 +0.006 | 0.983 £ 0.007 | 0.985 £ 0.008

J-Z & E-Q JE-ZQ JQ-EZ
Accuracies solving JZ and EQ 0.999 £ 0.001 | 0.997 £ 0.003 | 0.998 £ 0.004

not overlap. On the bottom row, we have an example of
two homogeneous decision boundaries, where their regions
of maximum performance do indeed overlap. In Table 2,
we show the results of solving two different decision bound-
aries with different learning setups. In the first one, we solve
the two decision boundaries individually. In the second and
third setup, we mix the classes so that the decision boundaries
are combined. We run a 10-fold cross-validation and run
a paired t-test. In the case of the heterogeneous decision
boundaries, we observer a significant difference in favor
of solving the decision boundaries individually. In the case
of the homogeneous decision boundaries, we observe small
differences in favor of solving the decision boundaries indi-
vidually, however these differences are not significant.

A. MEASURING THE HETEROGENEITY
So far in the paper, we have discussed heterogeneity qual-
itatively. In our synthetic datasets, we were creating sets
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of heterogeneous decision boundaries and we increased or
decreased the heterogeneity by increasing or decreasing the
number of sets of heterogeneous decision boundaries. In a
non-synthetic dataset, we do not have this information a
priori, and instead need to find a way to measure the hetero-
geneity.

For each decision boundary, we are going to compare
the accuracy of a classifier with different hyper parameter
configurations. Let Ag be the array of accuracies of a fam-
ily of classifiers solving the decision boundary i over the
hyper-parameter space S. The plots in Figure 17 are in fact the
visualization of different A, where we have sampled a grid
of hyper-parameter configurations. We measure the amount,
or degree, of heterogeneity between two decision boundaries
i and j with the equation:

HDB(i, j) = max(A%) + max(A}) — max(A' + A)s (1)

The last term of the equation corresponds to the selection of
the hyper-parameter configuration that produces the highest
accuracy of both decision boundaries, as they are combined
and solved together. If the two decision boundaries share a
region of the hyper-parameter space where they achieve the
maximum accuracy, the value of HDB is 0, i.e., the decision
boundaries are homogeneous. If they do not share the region
of maximum performance, the maximum value of the com-
bined (A’ +A/)s will not coincide with the individual maxima
of A§ and A%. In this case, the value of HDB would be bigger
than 0, indicating that the decision boundaries are heteroge-
neous, and capturing the degree of the heterogeneity. This
measure can be easily expanded to more than two decision
boundaries:

HDB(1,....n) =Y max(Ay) —max(}_A)s ()
i=1 i=1

In the next set of experiments, we are going to demonstrate
that the heterogeneity of decision boundaries, as measured
using HDB, indeed has an effect on classification perfor-
mance. This will establish that our intuitions and results from
Section 4 also apply in this more realistic scenario. For the
first experiment, we are going to repeatedly split randomly
the letters of the alphabet into two groups. Using a cross-
validation scheme, we are going to evaluate the HDB of
every split using the training set, then we are going to train
a classifier (SVM with the best hyper-parametrization) to
distinguish between the two groups of letters. We will name
this classifier ““split classifier”’. On the validation set, we are
going to measure the accuracy of the split classifier and
compare it with the accuracy of an OVO classifier trained
with all 26 classes, but evaluated on the two groups only.
We use OVO as a benchmark, since it treats every decision
boundary independently, and we have shown before that it
is not affected by the presence of heterogeneous decision
boundaries.

On the left of Fig. 18, we can see the relationship between
HDB and the difference in accuracy between the OVO clas-
sifier and split classifier. HDB is an absolute measure, i.e.,
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it is not normalized to the number of decision boundaries.
To explore the effect of the number of classes, we have sam-
pled 30 different splits of the letters, with different number of
classes in each split. In the right plot of Fig. in 18, we see the
difference in accuracies as a function of the number of classes
(counting the majority group in every split).

There is a clear correlation between the HDB and the
difference in accuracy. The more heterogeneous the decision
boundaries in the split are, the higher the difference in accu-
racies between an approach that deals with the heterogeneous
boundaries separately (OVO) and the approach that deals
with them simultaneously (split classifier). There is also an
obvious correlation between how heterogeneous the decision
boundaries are and the number of classes in the majority
group of each split. This is an expected result, since we
assume that the set of heterogeneous decision boundaries
is uniformly distributed. The more decision boundaries are
present in the split, the higher is the expected number of
heterogeneous decision boundaries, and thus the higher value
of HDB. The extreme case is when we have one class against
the rest, where the difference in accuracies approaches 0.

In principle, our notion of heterogeneity of decision bound-
aries seems to contradict the conclusions of [9]: that there are
no significant differences in performance between OVA and
OVO. However, this last result points to a phenomenological
reason that can reconcile both stances. In the Letters dataset,
classes are quite compact. Every individual class is “‘equally”
dissimilar from the rest of the classes. It is only when we
merge decision boundaries that do not share classes, that
we see heterogeneous decision boundaries. In datasets like
letters, the OVA decomposition clusters the decision bound-
aries into homogeneous groups, therefore OVO and OVA can
achieve a similar performance in many real world problems.
However, we believe that this situation is not universal.

According to this experiment, the difference in accuracy
between the OVO classifier and the split classifier is not only
correlated to the measure of HDB, but also to the different
number of classes in each side of the split. For the next exper-
iment, we want to isolate the effect of the heterogeneity of
decision boundaries independently of the number of classes
in the split. To this effect, we are going to select the splits
that separate the 26 letters into two groups of 13. There are
10400600 different possible splits, so exhaustive analysis
is clearly infeasible, and we will sample just 150 randomly.
Again, we will measure the HDB value and compare it with
the difference in accuracies between OVO and the split clas-
sifier.

In Fig. 19, we can see the relation between the HDB
measured and the difference between the accuracies of
approaches that take into account the heterogeneity of deci-
sion boundaries and those that not. We can confirm our
hypothesis: independently of the number of classes in the
split, the more heterogeneity, the bigger the difference
between the accuracies of approaches that take into account
the heterogeneity of decision boundaries and those that
not. We measure the Pearson correlation between these two
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FIGURE 19. Difference in the accuracy between an OVO classifier and a
classifier trained on the two groups of letters as a function of the HDB
measure.

variables and obtain a value of 0.3. We test against the null
hypothesis that the two variables are uncorrelated and obtain
a p-value 0.01. There exist a clear relation between the HDB
measured and the difference in accuracies.

B. EXPLOITING HDB

In this section, we want to find the split of the 26 classes
into two groups of 13 where the performance of the split
classifier is as close as possible to the performance of the
OVO classifier. Evaluating every possible split is not feasi-
ble, so we will use the correlation between HDB and the
difference in accuracies presented in the previous experiment.
Still, we need to evaluate the HDB of every possible split.
To avoid this process we are going to use an off-the-shelf
genetic algorithm. As a fitness function, we use the HDB
of the split measured with the training set in each fold of
the cross-validation scheme. We weigh this value with the
number of classes, so that the best splits have 13 classes in
each group, but the rest of the splits are not discarded in the
search process and help the algorithm to find the best possible
split.

To evaluate our approach, we will benchmark our can-
didate split against 150 random splits. In Fig. 20, we can
observe the distribution of the difference in the performance
of the 150 random splits we have selected. Highlighted in
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FIGURE 20. Histogram of the difference in accuracies between OVO and
the split classifier. Highlighted in green, the split found using the genetic
algorithm.

TABLE 3. Accuracies of One-vs-One, hierarchical classification using a
random hierarchy, and hierarchical classification using HDB measure to
create the hierarchy.

One-vs-One
0.9753 4+ 0.0054

Random hierarchy
0.9692 + 0.0039

HDB hierarchy
0.9737 £ 0.0040

green is the position of the split found by our genetic algo-
rithm. The split optimized for HDB ranks 14th out of 150 in
terms of accuracy difference.

Using this methodology of finding the best split, we are
going to create a binary hierarchy by greedily selecting the
best possible splits in a top-bottom manner. We decide to
keep the hierarchy as balanced as possible. Given that, for
26 classes, we need a hierarchy with 5 levels, we will allow
the first level to be unbalanced, as long as the splits at the rest
of the levels are balanced.

To have a benchmark, we compare the results against a
randomly sampled hierarchy and OVO. Results are presented
in Table 3. We perform paired t-test comparisons between the
different approaches. The hierarchical approach using HDB
measurements to create the hierarchy is significantly better
than the hierarchical approach using a random hierarchy, with
a p-value of 0.04. There is no significant difference between
the One-vs-One approach and the hierarchy using HDB (with
a p-value of 0.22).
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VI. LITERATURE REVIEW

What makes classification hard has been extensively stud-
ied, but only in the binary case. In [4], the difficulty of
binary classification problems is described by several factors,
studying geometrical properties of the decision boundary.
It is indicated that the study of the difficulty of multi-class
classification problems could be done through the summary
of individual class-vs-class decision boundaries. The findings
of our work imply that the total complexity of the multi-class
problem is not simply the addition of the complexities of
the individual decision boundaries but also depends on the
heterogeneity of decision boundaries. The total complexity
can be more than the sum of the parts, i.e., of the complexities
of the individual problems.

In [10], the authors provide a theoretical explanation of
whether to choose “flat” or “hierarchical” approaches in
multi-class classification. In their formalism, this means
eliminating or creating intermediate nodes in the hierarchy,
i.e., whether to group or not decision boundaries. Their dis-
cussion is based on the study of error generalization bounds.
Analyzing the unbalance of classes, the authors suggest to
use shallow hierarchies for well-balanced problems and use
deeper hierarchies for unbalanced cases, i.e., grouping deci-
sion boundaries when the classes have similar number of
instances and separate them otherwise.

Although not directly, the unbalance of classes can be
related to the heterogeneity of decision boundaries as we
have described it in this paper. Many hyperparameters can
be related to the number of instances per class (number of
neighbors in KNN, number of instances per leaf in CART,
slack variables in support vector machines, and so on). On the
other hand, in our experiments, we have shown an example
of a completely shallow hierarchy (multi-output classifier)
performing significantly worse than a deep hierarchy (HAH)
for a completely balanced problem.

In [16], the authors observe that the performance of C4.5 on
multi-class classification problems decreases if the classes
are grouped. The authors attribute this behavior to the fact
that the instances of the grouped classes may lie in different
areas of the feature space. It would be very interesting to
analyze this problem from the point of view of heterogeneity
of decision boundaries. In addition, the datasets where this
effect is more acute happen to be those with higher imbalance
of classes.

Reference [17] presents a novel method to train linear
classifier. Instead of learning a model on the data space,
they propose to learn models in the weight space. There is a
clear correspondence between the weight space in their work
and our hyper-parameter space. In their case, the weights
are directly related to the final model; in our case, the
hyper-parameters define the classifier created by a learning
algorithm.

In the literature, ensemble methods like bagging, stacking,
or boosting are always among the most competitive meth-
ods. The core idea behind the success of ensemble methods
is to train diverse classifiers and ensemble their outputs.

80460

ECOC [12], is an ensemble method tailored specifically for
multi-class classification. A number of binary classifiers are
trained to separate a group of classes from the rest, i.e.,
grouping decision boundaries in different ways.

In our work, we have shown that ensemble approaches
have benefits that are independent of the heterogeneity of
decision boundaries; however, ECOC is not immune to the
adverse effects of the heterogeneity of decision boundary.
If most of the binary classifiers are affected, the final ensem-
ble will as well.

Ensemble methods are one of the ways to improve
multi-class classification performance. The other direction
is transforming the multi-class problem into a collection of
binary classifier. The simplest approaches are OVO or OVA.
In [7], the authors compare these approaches using different
base learners. In general, OVO outperforms OVA, and this in
turn outperforms the multioutput classifier. In [18], OVA is
proven to outperform the multioutput classifier using random
forest as base learner. In [19], OVO is proven to outperform
OVA when training depp neural networks from scratch.

Other approaches try to find structure in the classes. Exam-
ples can be found in [20] and [14], [21]. In [20], the authors
build a chain of classifiers, while in [14], [21], the authors
build a hierarchy of classes. The approaches that we have
discussed in this paper fall into this category.

In our work, we have based our decomposition strategies
on the knowledge about the heterogeneity of decision bound-
aries. In the literature, these approaches have been based
on the similarity of classes. There are two main ways of
measuring the similarity of classes: geometrical distance of
centroids [21], and classifier based distance [14]. The latter
consists of first training a classifier on the data, and estimate
which classes are similar or dissimilar based on the classi-
fication performance. None of these similarities are directly
linked to the heterogeneity of decision boundaries, although
we speculate that the classifier based similarity might be
correlated.

In the field of regression, heterogeneity has already been
treated. Reference [22] presents MARS, a regression method
that uses splines to create different fits in different parts of the
feature space.

VII. CONCLUSION AND DISCUSSIONS

The main contribution of this paper is the identification and
description of a previously untreated phenomenon: how het-
erogeneity of decision boundaries can affect the performance
of multi-class classification performance.

The concept of heterogeneity in decision boundaries
speaks about the relationship of these decision boundaries
through the lens of a learning algorithm. Two decision bound-
aries can be heterogeneous under one learning algorithm
and homogeneous under another. Heterogeneity of decision
boundaries is not a direct result of the geometrical properties
of the decision boundaries, but how those properties relate
to each other through the learning algorithm. If two decision
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boundaries are heterogeneous, a learning algorithm will solve
them better individually than simultaneously.

We have identified the inductive bias introduced by the
hyperparameter tuning as a source of heterogeneity. Hyper-
parameter tuning is generally done with the help of validation
schemes like cross-validation. This is a strong example of
inductive bias: among all possible hypotheses, we are only
going to select the ones that can be found by the particular
learning algorithm and hyperparameter configuration chosen.
If the hyperparameter configurations that achieve maximum
performance for two or more decision boundaries do not
overlap, it will result in a performance loss.

We have shown how one part of the classification problem
can negatively affect another part of the problem in terms
of classification performance. To the best of our knowledge,
this is the first comprehensive description of pure algorithmic
bias mechanism in classification. Some decision boundaries
are incorrectly estimated by the presence of other decision
boundaries; this is especially true when we compare the same
learning algorithms acting individually on the same decision
boundaries. Research of fairness in machine learning and
Al generally focuses on bias rooting from the quality of the
data [23]. Heterogeneity of decision boundaries looks like a
promising direction to study fairness in Al.

We have studied how the heterogeneity of decision bound-
aries affects different approaches to solve multi-class classi-
fication problems. The main lesson we have learned is that
whenever a learning algorithm has to solve two or more
heterogeneous decision boundaries, the classification perfor-
mance decreases.

We have also shown that the information about the het-
erogeneity of decision boundaries can be used to devise
approaches that obtain better classification performances.
The information about the heterogeneity of decision bound-
aries can also be used to devise approaches that allow us to get
similar classification performance at a lower computational
cost as compared to approaches that do not use information
about heterogeneity. In the field of multi-class classification,
this is important, since generally computation time increases
significantly with the number of classes.

In our work, we have designed the synthetic dataset with
only two types of decision boundaries so that we could easily
identify and group them in homogeneous groups. Finding the
same structures in real-life problems might not be as sim-
ple. Some of the proposed decompositions, like the minimal
or 2-Fold multi-output decompositions, are very restrictive;
more complex structures in the heterogeneity might not be
as easily represented with these schemes. We believe that
other approaches, such as ECOC or hierarchical decompo-
sitions, are potentially more practical since they are flexible
enough to represent complex hidden structures among deci-
sion boundaries.

We have applied our findings about the heterogeneity of
decision boundaries on a real dataset using a competitive
learning algorithm like SVM. We have proposed a way to
measure the degree of heterogeneity of decision boundaries
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and have corroborated its effects on classification perfor-
mance. Finally, we have used the measurement of the het-
erogeneity of decision boundaries to extract a hierarchy of
classes that outperforms other hierarchies that do not take this
information into account.

We have used multi-class classification as a natural field to
showcase the heterogeneity of decision boundaries. However,
indirectly, we have also shown the effects on binary classifi-
cation by comparing OVA and OVO. As a hypothesis, one
could further decompose a binary problem into a collection
of smaller binary problems defining new decision boundaries
that might be heterogeneous. How to do it is not obvious.
However, positive results in ensemble methods for binary
classification problems indicates the potential of this idea,
especially if we consider the computational time to output a
new prediction for ensemble methods.

An interesting final remark is how we have used learning
algorithms to describe decision boundaries. Generally, the
complexity of data is too big for humans to understand and
visualize its characteristics easily. In quantum mechanics,
nature is described by interacting with it through the pro-
cess of measure. Here, we have taken a similar approach,
describing the nature of the data by how it interacts with our
measuring instruments (performance of classifiers learned by
a particular algorithm). In addition, we have described how
decision boundaries can interact with another through the
effects of learning.
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